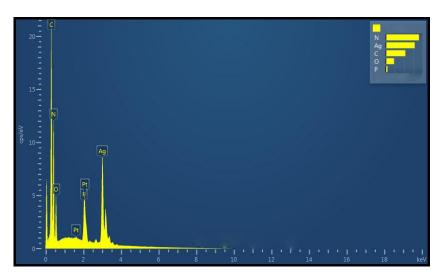
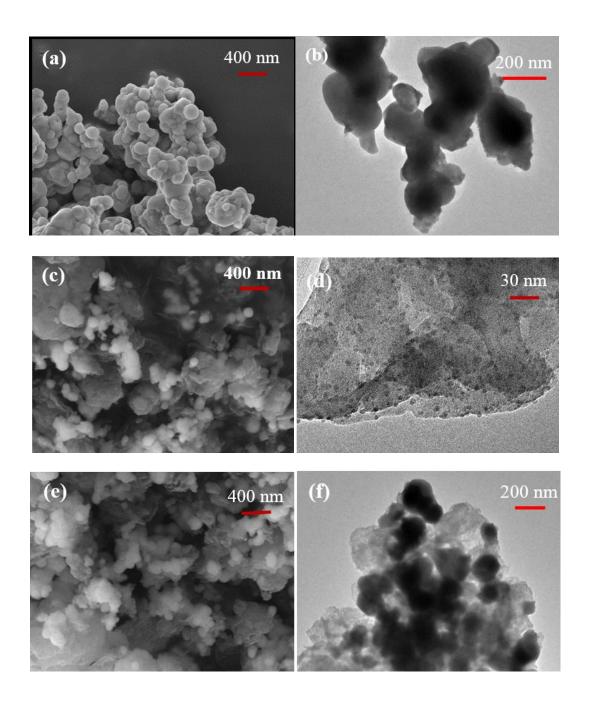
Supplementary Materials: Synthesis of Ag₃PO₄/g-C₃N₄ Composite with Enhanced Photocatalytic Performance for the Photodegradation of Diclofenac under Visible Light Irradiation

Wei Zhang, Li Zhou, Jun Shi * and Huiping Deng *




Figure. S1. EDS analysis of Ag₃PO₄/g-C₃N₄ (30%).

The leaching of Ag⁺ after each re-cycle was analyzed by an inductively coupled plasma optical emission spectrometer (ICP-OES), and the result was shown in Table S1.

The maximum concentration of Ag⁺ released from Ag₃PO₄/g-C₃N₄(30%) among the five cycles was only 39.6 μ gL⁻¹ (the total Ag in the solution was 51.1 mg L⁻¹), which indicated that the Ag₃PO₄/g-C₃N₄(30%) composite photocatalyst was durable and reusable.

	The concentration of Ag ⁺ (µgL ⁻¹)
1st	39.8
2nd	37.4
3rd	39.6
4th	33.7
5th	35.6

Table S1. The concentration of Ag^{+} after each re-cycle test.

Figure S2. SEM images of (**a**) Ag₃PO₄, (**c**) Ag₃PO₄/g-C₃N₄(20%) and (**e**) Ag₃PO₄/g-C₃N₄(40%). and TEM images (**b**) Ag₃PO₄, (**d**) Ag₃PO₄/g-C₃N₄(20%) and (**f**) Ag₃PO₄/g-C₃N₄(40%).

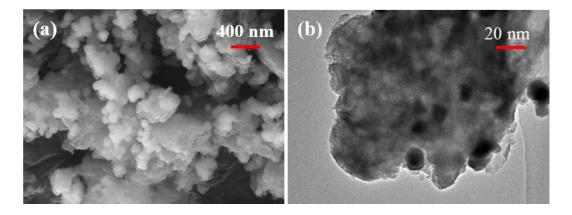


Figure S3. SEM and TEM images of Ag_3PO_4/g -C₃N₄ (30%) after the reaction.