Supplementary Materials: 1,3-Diene Polymerization Mediated by Homoleptic Tetramethylaluminates of the Rare-Earth Metals

Christoph O. Hollfelder ¹, Lars N. Jende ¹, Dominic Diether ¹, Theresa Zelger ¹, Rita Stauder ¹, Cäcilia Maichle-Mössmer ¹ and Reiner Anwander ^{1,*}

S1. Polymerization Data

S1.1 Isoprene polymerization at standard conditions

If not mentioned otherwise in the respective table, the polymers shown in this section have been synthesized according to the procedure given in Section 3.4 of the main article (Materials and Methods) or are taken from the literature for comparison.

entry ^b	precatalyst	cocatalyst	yield [%]	<i>cis-</i> content [%]ª	<i>trans-</i> content [%] ^d	vinylic content [%]ª	<i>M</i> n [10 ⁴ g/mol] ^e	PDI ^e	Т _g [°С] ^g	ref.
$1^{\rm h}$	La(AlMe ₄) ₃ (2 ^{La})	Α	>99	46.3	51.4	2.3	5.0	1.29	n.d.	[1]
2	Ce(AlMe ₄) ₃ (2 ^{Ce})	Α	>99	44.4	51.8	3.8	3.5	1.25	-62	_ ^s
3	Pr(AlMe ₄) ₃ (2 ^{Pr})	Α	93	44.7	50.2	5.1	3.9	1.35	-66	_s
4	$Nd(AlMe_4)_3$ (2 Nd)	Α	86	44.3	50.9	4.9	3.8	1.29	-64	_s
5	$Gd(AlMe_4)_3$ (2 ^{Gd})	Α	95	62.4	26.4	11.3	5.6	1.76	-59	_s
6	Tb(AlMe ₄) ₃ (2 ^{Tb})	Α	85	55.1	33.5	11.4	5.2	3.02	-55	_s
7	$Dy(AlMe_4)_3$ (2 ^{Dy})	Α	92	58.7	29.0	12.3	9.6	1.74	-60	_s
8	Ho(AlMe ₄) ₃ (2 ^{Ho})	Α	84	63.7	24.2	12.1	5.6	2.15	-56	_s
9 ^h	Y(AlMe ₄) ₃ (2 ^y)	Α	>99	69.1	23.6	7.3	9.0	2.09	n.d.	[1]
10	$Er(AlMe_4)_3$ (2 ^{Er})	Α	80	70.3	21.5	8.3	7.9	1.91	-56	_s
11	$Lu(AlMe_4)_3$ (2 ^{Lu})	Α	>99	77.1	17.6	5.3	6.7	1.58	-62	_s
12	$La(AlMe_4)_3$ (2 ^{La})	2 A	79	69.9	18.2	11.9	5.3 ^r	6.90 ^r	-63	_s
13	Ce(AlMe ₄) ₃ (2 ^{Ce})	2 A	>99	68.1	18.7	13.3	4.0	1.28	-55	_5
14	Pr(AlMe ₄) ₃ (2 ^{Pr})	2 A	78	n.d. u	n.d. u	n.d. ^u	8.0 ^r	2.35 ^r	n.d.	_5
15	$Nd(AlMe_4)_3$ (2 Nd)	2 A	76	66.2	21.2	12.6	4.7	1.38	-57	_5
16	$Gd(AlMe_4)_3$ (2 ^{Gd})	2 A	99	75.8	9.0	15.2	2.9	1.63	-51	_5
17	Tb(AlMe ₄) ₃ (2 ^{Tb})	2 A	77	76.3	8.2	15.5	2.6	1.62	-52	_5
18	$Dy(AlMe_4)_3$ (2 ^{Dy})	2 A	82	72.1	10.4	17.5	1.5	1.87	-55	_5
19	Ho(AlMe ₄) ₃ (2 ^{Ho})	2 A	85	77.9	6.5	15.6	3.7	1.57	-55	_5
20	Y(AlMe4)3 (2 ^y)	2 A	77	73.7	11.7	14.5	3.1	1.62	-53	_5
21	Er(AlMe ₄) ₃ (2 ^{Er})	2 A	79	76.5	5.9	17.7	4.1	1.62	-50	_5
22	Lu(AlMe ₄) ₃ (2 ^{Lu})	2 A	90	70.3	13.8	15.9	3.4	1.62	-55	_s

Table S1.1.1. Comparison of the polyisoprenes obtained applying cocatalyst A^a

^a For data sorted by precatalyst, see Section S1.2. ^b Conditions: 0.02 mmol of the resp. Ln precatalyst, 0.02 or 0.04 mmol co-catalyst, in toluene, [Ln]:[isoprene] 1:1000 (n/n), reaction time 1 h, pre-reaction time 0.5 h. ^c **A** = [Ph₃C][B(C₆F₅)₄]. ^d Determined by ¹H and ¹³C NMR spectroscopy in CDCl₃. ^eDetermined by means of size-exclusion chromatography (SEC) against polystyrene standards. ^g Determined by differential scanning calorimetry; heating rate: 20 K/min, cooling rate: 60 K/min. ^h Reaction time 24 h. ^r These data represent only 28.5 mol% (**2**^{La}) and 75 mol% (**2**^{Pr}) of the polymer, the rest showed swelling behavior in THF implying crosslinking. ^s This study. ^u Insoluble in CDCl₃.

Table S1.1.2. Comparison	n of the polyisoprenes o	obtained applying	cocatalyst B ª
--------------------------	--------------------------	-------------------	-----------------------

entry ^b	precatalyst	cocatalyst ^c	yield [%]	<i>cis-</i> content [%]ª	<i>trans-</i> content [%] ^d	vinylic content [%] ^d	Mn [10 ⁴ g/mol] ^e	PDIe	Т _g [°С] ^g	ref.
1^{h}	La(AlMe ₄) ₃ (2 ^{La})	В	>99	49.8	46.8	3.4	6.0	1.23	n.d.	[1]
2	Ce(AlMe ₄) ₃ (2 ^{Ce})	В	92	43.7	53.0	3.3	2.8	1.35	-62	_s
3	Pr(AlMe ₄) ₃ (2 ^{Pr})	В	92	45.5	50.2	4.3	3.2	1.55	-67	_5
4	$Nd(AlMe_4)_3$ (2 Nd)	В	79	46.8	48.4	4.8	1.6	1.27	-64	_s
5	$Gd(AlMe_4)_3$ (2 ^{Gd})	В	89	58.8	30.0	11.2	6.1	1.70	-64	_5
6	Тb(AlMe4)3 (2 ть)	В	87	58.9	27.6	13.4	7.5	1.97	-57	-5
7	$Dy(AlMe_4)_3$ (2 ^{Dy})	В	95	57.5	27.4	15.1	10.0	1.70	-58	- ^s
8	Ho(AlMe4)3 (2 ^{Ho})	В	93	64.3	20.0	15.7	12.1	1.85	-56	_5
9 ^h	$Y(AlMe_4)_3$ (2 ^Y)	В	>99	60.0	26.0	14.0	11.7	1.60	n.d.	[2]
10	$Er(AlMe_4)_3$ (2 ^{Er})	В	81	67.6	19.0	13.5	9.1	2.63	-55	_s
11	Lu(AlMe ₄) ₃ (2 ^{Lu})	В	>99	77.2	16.9	5.9	5.2	2.06	-63	_5
12	La(AlMe ₄) ₃ (2 ^{La})	2 B	88	70.5	19.4	10.1	5.0	1.15	-62	_s
13	Ce(AlMe ₄) ₃ (2 ^{Ce})	2 B	>99	57.7	33.5	8.8	3.5	1.18	-62	_s
14	$\Pr(AlMe_4)_3$ (2 ^{Pr})	2 B	90	45.9	49.7	4.4	14.1	1.78	-65	_s
15	$Nd(AlMe_4)_3$ (2 Nd)	2 B	82	62.6	28.5	8.9	4.4	1.26	-57	_s
16	$Gd(AlMe_4)_3$ (2 ^{Gd})	2 B	94	66.3	21.6	12.0	8.4	1.88	-61	_s
17	Tb(AlMe ₄) ₃ (2 ^{Tb})	2 B	87	65.6	19.4	15.0	5.6	1.74	-58	_s
18	$Dy(AlMe_4)_3$ (2 ^{Dy})	2 B	88	65.2	19.9	14.9	6.7	1.79	-57	_s
19	Ho(AlMe ₄) ₃ (2 ^{Ho})	2 B	93	63.7	20.1	16.2	7.8	2.31	-55	_s
20^{h}	$Y(AlMe_4)_3$ (2 ^y)	2 B	>99	67.0	13.0	20.0	26.0	1.50	n.d.	[2]
21	Er(AlMe ₄) ₃ (2 ^{Er})	2 B	74	71.4	13.4	15.2	5.9	2.13	-52	_s
22	$Lu(AlMe_4)_3$ (2 ^{Lu})	2 B	>99	73.1	15.4	11.5	4.2	1.78	-59	_5

^a For data sorted by precatalyst, see Section S1.2 .^b Conditions: 0.02 mmol of the resp. Ln precatalyst, 0.02 or 0.04 mmol cocatalyst, in toluene, [Ln]:[isoprene] 1:1000 (n/n), reaction time 1 h, pre-reaction time 0.5 h. ^c **B** = [PhNMe₂H][B(C₆F₅)₄]. ^d Determined by ¹H and ¹³C NMR spectroscopy in CDCl₅. ^e Determined by means of size-exclusion chromatography (SEC) against polystyrene standards.^g Determined by differential scanning calorimetry; heating rate: 20 K/min, cooling rate: 60 K/min. ^h Reaction time 24 h. ^s This study.

Table S1.1.3. Comparison of the polyisoprenes obtained applying cocatalyst C ^a

entry ^b	precatalyst	cocatalyst	yield [%]	cis-content [%]ª	<i>trans</i> -content [%] ^d	vinylic content [%] ^d	<i>M</i> n [10⁴ g/mol]⁰	PDIe	Т _g [°С] ^g	ref.
1 ^h	La(AlMe ₄) ₃ (2 ^{La})	С	>99	39.1	59.5	1.4	33.0	1.18	n.d.	[1]
2	Ce(AlMe ₄) ₃ (2 ^{Ce})	С	86	55.4	41.8	2.7	3.3	1.22	-61	_s
3	Pr(AlMe ₄) ₃ (2 ^{Pr})	С	87	65.6	30.4	4.0	6.8	1.32	-65	_5
4	$Nd(AlMe_4)_3$ (2 Nd)	С	76	68.0	29.2	2.7	7.9	1.16	-63	_s
5	$Gd(AlMe_4)_3$ (2^{Gd})	С	87	63.4	36.6	0.0	9.6	1.28	-65	_5
6	Tb(AlMe ₄) ₃ (2 ^{Tb})	С	83	60.4	35.5	4.1	8.0	1.57	-66	_s
7	$Dy(AlMe_4)_3$ (2 ^{Dy})	С	54	63.3	33.0	3.7	8.5	1.33	-65	_s
8	Ho(AlMe4)3 (2 ^{Ho})	С	78	57.0	38.8	4.3	11.6	1.73	-64	_5
9 ^h	Y(AlMe ₄) ₃ (2 ^y)	С	56	62.5	35.1	2.4	12.0	2.03	n.d.	[1]
10	Er(AlMe ₄) ₃ (2 ^{Er})	С	85	74.2	21.4	4.5	15.5	1.86	-59	_s
11	Lu(AlMe ₄) ₃ (2 ^{Lu})	С	>99	67.6	28.1	4.3	23.0	1.55	-61	_5
12	La(AlMe4)3 (2 ^{La})	2 C	69	77.6	18.8	3.7	16.3	1.40	-63	_5
13	Ce(AlMe ₄) ₃ (2 ^{Ce})	2 C	84	86.0	8.8	5.2	5.9	1.13	-58	_s
14	Pr(AlMe ₄) ₃ (2 ^{Pr})	2 C	87	87.9	6.0	6.1	8.7	1.35	-61	_s
15	$Nd(AlMe_4)_3$ (2^{Nd})	2 C	83	92.7	2.9	4.5	17.6	2.48	-61	_5
16	$Gd(AlMe_4)_3$ (2^{Gd})	2 C	87	87.0	7.0	6.0	11.8	1.36	-68	_s
17	Тb(AlMe₄) ₃ (2 ^{ть})	2 C	83	89.7	5.5	4.8	10.6	1.43	-61	_s
18	Dy(AlMe4)3 (2 ^{Dy})	2 C	94	91.5	3.9	4.6	13.1	1.40	-61	_5
19	Ho(AlMe4)3 (2 ^{Ho})	2 C	90	90.4	4.1	5.5	17.6	1.39	-62	_s
20	Y(AlMe ₄) ₃ (2 ^y)	2 C	86	82.2	13.3	4.4	16.1	1.55	-62	_s
21	Er(AlMe ₄) ₃ (2 ^{Er})	2 C	93	92.6	2.1	5.2	15.5	1.75	-57	_s
22	Lu(AlMe ₄) ₃ (2 ^{Lu})	2 C	>99	85.9	8.7	5.4	9.2	2.07	-61	_s

^a For data sorted by precatalyst, see Section S1.2. ^b Conditions: 0.02 mmol of the resp. Ln precatalyst, 0.02 or 0.04 mmol cocatalyst, in toluene, [Ln]:[isoprene] 1:1000 (n/n), reaction time 1 h, pre-reaction time 0.5 h. ^c C = B(C₆F₅)₃, ^d Determined by ¹H and ¹³C NMR spectroscopy in CDCl₃. ^eDetermined by means of size-exclusion chromatography (SEC) against polystyrene standards. ^s Determined by differential scanning calorimetry; heating rate: 20 K/min, cooling rate: 60 K/min. ^h Reaction time 24 h. ^s This study.

Table S1.1.4. Comparison of the polyisoprenes obtained applying cocatalyst D
--

entry ^b	precatalyst	cocatalyst	yield [%]	cis-content [%]ª	<i>trans</i> -content [%] ^d	vinylic content [%]ª	<i>M</i> n [10⁴ g/mol]⁰	PDIe	Tg [°C]g	ref.
1 ^z	La(AlMe ₄) ₃ (2 ^{La})	D	4	_f	_f	_f	1.6	6.28	-61	_s
2	Ce(AlMe ₄) ₃ (2 ^{Ce})	D	7	97.1	0.0	2.9	11.7	1.28	-59	_5
3	$\Pr(AlMe_4)_3$ (2 ^{Pr})	D	27	97.2	0.0	2.8	6.5	2.98	-64	_s
4	Nd(AlMe ₄) ₃ (2 Nd)	D	40	98.9	0.0	1.1	9.4	6.77	-60	_5
5	$Gd(AlMe_4)_3$ (2 ^{Gd})	D	51	>99.9	0.0	0.0	5.6	5.30	-67	_5
6	Tb(AlMe ₄) ₃ (2 ^{Tb})	D	66	85.0	13.5	1.5	4.9	4.44	-66	_s
7	$Dy(AlMe_4)_3$ (2 ^{Dy})	D	34	79.3	20.7	0.0	3.0	6.52	-67	_s
8	Ho(AlMe4)3 (2 ^{Ho})	D	7	67.6	31.1	1.3	2.9	2.64	-67	_5
9	Y(AlMe ₄) ₃ (2 ^y)	D	traces	40.6	52.5	6.9	_f	_f	_f	_s
10	$Er(AlMe_4)_3$ (2 ^{Er})	D	traces	_f	_f	_f	_f	_f	_f	_s
11	Lu(AlMe ₄) ₃ (2 ^{Lu})	D	none	_f	_f	_f	_f	_f	_f	_s
12	$La(AlMe_4)_3$ (2 ^{La})	2 D	2	91.5	5.6	2.9	_f	_f	_f	_5
13	Ce(AlMe ₄) ₃ (2 ^{Ce})	2 D	21	97.4	0.0	2.6	3.3	3.73	-60	_5
14	Pr(AlMe ₄) ₃ (2 ^{Pr})	2 D	42	97.4	0.0	2.6	8.7	3.09	-62	_5
15	$Nd(AlMe_4)_3$ (2 Nd)	2 D	56	97.9	0.0	2.1	11.3	5.26	-61	_s
16	$Gd(AlMe_4)_3$ (2 ^{Gd})	2 D	56	96.0	4.0	0.0	6.9	7.00	-67	_ ^s
17	Tb(AlMe ₄) ₃ (2 ^{Tb})	2 D	67	84.6	13.6	1.9	3.6	6.63	-66	_s
18	$Dy(AlMe_4)_3$ (2 ^{Dy})	2 D	31	88.7	11.3	0.0	3.2	6.19	-67	_s
19	Ho(AlMe4)3 (2 ^{Ho})	2 D	17	68.3	31.7	0.0	3.6	4.87	-66	_5
20	Y(AlMe ₄) ₃ (2 ^y)	2D	6	52.9	46.2	0.9	2.9	2.92	-68	_s
21 ^z	$Er(AlMe_4)_3$ (2 ^{Er})	2 D	traces	_f	_f	_f	_f	_f	_f	_5
22	Lu(AlMe ₄) ₃ (2 ^{Lu})	2 D	none	_f	_f	_f	_f	_f	_f	_5

^a For data sorted by precatalyst, see Section S1.2.^b Conditions: 0.02 mmol of the resp. Ln precatalyst, 0.02 or 0.04 mmol cocatalyst, in toluene, [Ln]:[isoprene] 1:1000 (n/n), reaction time 1 h, pre-reaction time 0.5 h. ^c **D** = Me₂AlCl. ^d Determined by ¹H and ¹³C NMR spectroscopy in CDCls. ^eDetermined by means of size-exclusion chromatography (SEC) against polystyrene standards. ^f No further evaluation possible due to low yield. ^g Determined by differential scanning calorimetry; heating rate: 20 K/min, cooling rate: 60 K/min. ^s This study. ^z For data obtained for a reaction time of 24 h with this active system, see Table S1.4.4.

Table S1.1.5. Comparison	of the polyisoprenes of	obtained applying cocatal	lyst Eª
--------------------------	-------------------------	---------------------------	---------

entry ^b	precatalyst	cocatalyst	yield [%]	<i>cis-</i> content [%]ª	trans- content [%]ª	vinylic content [%]ª	<i>M</i> n [10⁴ g/mol]⁰	PDIe	<i>T</i> g [°C]g	ref.
1 ^z	La(AlMe ₄) ₃ (2 ^{La})	E	3	89.3	7.6	3.1	_f	_f	_f	_5
2	Ce(AlMe ₄) ₃ (2 ^{Ce})	Ε	19	97.2	0.0	2.8	0.2	3.44	-61	_s
3	$\Pr(AlMe_4)_3 \left(2^{\mathbf{p}_r}\right)$	Е	43	97.6	0.0	2.4	4.4	4.84	-61	_s
4	$Nd(AlMe_4)_3$ (2 Nd)	Ε	57	98.2	0.0	1.8	5.6	4.52	-61	_5
5	$Gd(AlMe_4)_3$ (2 ^{Gd})	Ε	77	94.6	4.2	1.2	3.8	7.89	-63	_s
6	Tb(AlMe ₄) ₃ (2 ^{Tb})	Ε	82	88.8	9.7	1.5	2.5	6.36	-67	_s
7	$Dy(AlMe_4)_3$ (2^{Dy})	Ε	34	82.6	17.4	0.0	1.9	6.80	-67	_s
8	Ho(AlMe4)3 (2 ^{Ho})	Ε	15	61.5	37.1	1.4	2.2	2.70	-67	_s
9	Y(AlMe ₄) ₃ (2 ^y)	Е	10	48.4	50.6	1.0	2.1	1.43	-67	_s
10 ^z	Er(AlMe ₄) ₃ (2 ^{Er})	Ε	traces	_f	_f	_f	_f	_f	_f	_s
11	$Lu(AlMe_4)_3$ (2 ^{Lu})	Е	none	_f	_f	_f	_f	_f	_f	_s
12 ^z	La(AlMe ₄) ₃ (2 ^{La})	2 E	5	92.1	5.0	2.9	2.3	3.27	-62	_5
13	Ce(AlMe4)3 (2 ^{Ce})	2 E	34	97.3	0.0	2.7	3.1	3.81	-61	_s
14	$\Pr(AlMe_4)_3 \left(2^{\mathbf{p}_r}\right)$	2 E	84	95.4	2.3	2.3	4.1	4.10	-62	_s
15	$Nd(AlMe_4)_3$ (2 Nd)	2 E	86	98.0	0.0	2.0	5.3	4.66	-62	_5
16	$Gd(AlMe_4)_3$ (2 ^{Gd})	2 E	89	92.6	5.9	1.5	3.2	5.87	-63	_s
17	Tb(AlMe ₄) ₃ (2 ^{Tb})	2 E	87	90.2	8.1	1.7	2.1	12.66	-67	_5
18	$Dy(AlMe_4)_3$ (2^{Dy})	2 E	46	86.3	13.7	0.0	1.6	8.95	-67	_s
19	Ho(AlMe ₄) ₃ (2 ^{Ho})	2 E	4	71.5	28.5	0.0	2.5	4.90	-66	_5
20	Y(AlMe ₄) ₃ (2 ^y)	2 E	22	60.1	39.0	0.9	3.2	3.84	-66	_5
21 ^z	Er(AlMe ₄) ₃ (2 ^{Er})	2 E	2	47.4	51.3	1.3	_f	_f	-66	_5
22 ^z	Lu(AlMe ₄) ₃ (2 ^{Lu})	2 E	traces	_f	_f	_f	_f	_f	_f	_s

^a For data sorted by precatalyst, see Section S1.2. ^b Conditions: 0.02 mmol of the resp. Ln precatalyst, 0.02 or 0.04 mmol cocatalyst, in toluene, [Ln]:[isoprene] 1:1000 (n/n), reaction time 1 h, pre-reaction time 0.5 h. ^c E = Et₂AlCl. ^d Determined by ¹H and ¹³C NMR spectroscopy in CDCl₃. ^cDetermined by means of size-exclusion chromatography (SEC) against polystyrene standards. ^f No further evaluation possible due to low yield. ^g Determined by differential scanning calorimetry; heating rate: 20 K/min, cooling rate: 60 K/min. ^h Reaction time 24 h. ^s This study. ^g For data obtained for a reaction time of 24 h with this active system, see Table S1.4.4.

If not mentioned otherwise in the respective table, the polymers shown in this section have been synthesized according to the procedure given in Section 3.4 of the main article (Materials and Methods) or are taken from the literature for comparison.

entry ^b	cocatalyst	yield [%]	<i>cis</i> -content [%]ª	trans- content [%] ^d	vinylic content [%]ª	Mn [10 ⁴ g/mol] ^e	PDI	<i>Т</i> g [°С]g	ref.
1 ^h	Α	>99	46.3	51.4	2.3	5.0	1.29	n.d.	[1]
2	2 A	79	69.9	18.2	11.9	5.3	6.90	-63	_5
3^{h}	В	>99	49.8	46.8	3.4	6.0	1.23	n.d.	[1]
4	2 B	88	70.5	19.4	10.1	5.0	1.15	-62	_5
5^{h}	С	>99	39.1	59.5	1.4	33.0	1.18	n.d.	[1]
6	2C	69	77.6	18.8	3.7	16.3	1.40	-63	_5
7	D	4	_f	_f	_f	1.6	6.28	-61	_5
8	2D	2	91.5	5.6	2.9	_f	_f	_f	_8
9	Ε	3	89.3	7.6	3.1	_f	_f	_f	_5
10	2 E	5	92.1	5.0	2.9	2.3	3.27	-62	_s

Table S1.2.1. Comparison of the polyisoprenes obtained applying precatalyst 2^{La}

^b Conditions: 0.02 mmol of 2^{La} , 0.02 or 0.04 mmol cocatalyst, in toluene, [Ln]:[isoprene] 1:1000 (n/n), reaction time 1 h, pre-reaction time 0.5 h. ^c $A = [Ph_3C][B(C_6F_5)_4]$, $B = [PhNMe_2H][B(C_6F_5)_4]$, $C = B(C_6F_5)_3$, $D = Me_2AlCl$, $E = Et_2AlCl$. ^d Determined by ¹H and ¹³C NMR spectroscopy in CDCl₃. ^e Determined by means of size-exclusion chromatography (SEC) against polystyrene standards. ^g Determined by differential scanning calorimetry; heating rate: 20 K/min, cooling rate: 60 K/min. ^c No further evaluation possible due to low yield. ^h Reaction time 24 h. ^s This study.

entry ^b	cocatalyst	yield [%]	<i>cis-</i> content [%]ª	<i>trans</i> -content [%] ^d	vinylic content [%] ^d	Mn [10 ⁴ g/mol] ^e	PDI®	Tg [℃] ^g	ref.
1	Α	> 99	44.4	51.8	3.8	3.5	1.25	-62	_s
2	2 A	> 99	68.1	18.7	13.3	4.0	1.28	-55	_5
3	В	92	43.7	53.0	3.3	2.8	1.35	-62	_5
4	2 B	> 99	57.7	33.5	8.8	3.5	1.18	-62	_s
5	С	86	55.4	41.8	2.7	3.3	1.22	-61	_5
6	2C	84	86.0	8.8	5.2	5.9	1.13	-58	_5
7	D	7	97.1	0.0	2.9	11.7	1.28	-59	_s
8	2 D	21	97.4	0.0	2.6	3.3	3.73	-60	_5
9	Е	19	97.2	0.0	2.8	0.2	3.44	-61	_5
10	2E	34	97.3	0.0	2.7	3.1	3.81	-61	_5

Table S1.2.2. Comparison of the polyisoprenes obtained applying precatalyst 2^{Ce}

^b Conditions: 0.02 mmol of 2^{C_6} , 0.02 or 0.04 mmol cocatalyst, in toluene, [Ln]:[isoprene] 1:1000 (n/n), reaction time 1 h, pre-reaction time 0.5 h. ^c A = [Ph₃C][B(C₆F₅)₄], B = [PhNMe₂H][B(C₆F₅)₄], C = B(C₆F₅)₃, D = Me₂AlCl, E = Et₂AlCl. ^d Determined by ¹H and ¹³C NMR spectroscopy in CDCl₃. ^eDetermined by means of size-exclusion chromatography (SEC) against polystyrene standards. ^g Determined by differential scanning calorimetry; heating rate: 20 K/min, cooling rate: 60 K/min. ^s This study.

entry ^b	cocatalyst	yield [%]	<i>cis</i> -content [%]ª	<i>trans-</i> content [%]ª	vinylic content [%]ª	<i>M</i> n [10 ⁴ g/mol] ^e	PDIe	Т _g [°С] ^g	ref.
1	Α	93	44.7	50.2	5.1	3.9	1.35	-66	_s
2	2 A	78	n.d. ^u	n.d. ^u	n.d. ^u	8.0	2.35	n.d.	_s
3	В	92	45.5	50.2	4.3	3.2	1.55	-67	_s
4	2 B	90	45.9	49.7	4.4	14.1	1.78	-65	_s
5	С	87	65.6	30.4	4.0	6.8	1.32	-65	_s
6	2C	87	87.9	6.0	6.1	8.7	1.35	-61	_s
7	D	27	97.2	0.0	2.8	6.5	2.98	-64	_ ^s
8	2 D	42	97.4	0.0	2.6	8.7	3.09	-62	_5
9	Ε	43	97.6	0.0	2.4	4.4	4.84	-61	_s
10	2 E	84	95.4	2.3	2.3	4.1	4.10	-62	_s

Table S1.2.3. Comparison of the polyisoprenes obtained applying pre-catalyst 2^{Pr}

 $\frac{10}{2E} = \frac{84}{95.4} = \frac{2.3}{2.3} = \frac{4.1}{4.10} = \frac{4.10}{-62} = \frac{-5}{6}$ ^b Conditions: 0.02 mmol of **2**^{Pr}, 0.02 or 0.04 mmol cocatalyst, in toluene, [Ln]:[isoprene] 1:1000 (n/n), reaction time 1 h, pre-reaction time 0.5 h.
^c **A** = [Ph₂C][B(C₆F₅)₄], **B** = [PhNMe₂H][B(C₆F₅)₄], **C** = B(C₆F₅)₅, **D** = Me₂AlCl, **E** = Et₂AlCl. ^d Determined by ¹H and ¹³C NMR spectroscopy in
CDCl₃. ^e Determined by means of size-exclusion chromatography (SEC) against polystyrene standards. ^f No further evaluation possible due to

entry ^b	cocatalyst ^c	yield [%]	<i>cis</i> -content [%]ª	trans- content [%]ª	vinylic content [%] ^d	Mn [10 ⁴ g/mol] ^e	PDIe	Tg [°C]g	ref.
1	Α	86	44.3	50.9	4.9	3.8	1.29	-64	_s
2	2 A	76	66.2	21.2	12.6	4.7	1.38	-57	_s
3	В	79	46.8	48.4	4.8	1.6	1.27	-64	_5
4	2 B	82	62.6	28.5	8.9	4.4	1.26	-57	_5
5	С	76	68.0	29.2	2.7	7.9	1.16	-63	_5
6	2 C	83	92.7	2.9	4.5	17.6	2.48	-61	_s
7	D	40	98.9	0.0	1.1	9.4	6.77	-60	_s
8	2 D	56	97.9	0.0	2.1	11.3	5.26	-61	_s
9	Е	57	98.2	0.0	1.8	5.6	4.52	-61	_5
10	2 E	86	98.0	0.0	2.0	5.3	4.66	-62	_5

Table S1.2.4. Comparison of the polyisoprenes obtained applying precatalyst 2Nd

low yield. & Determined by differential scanning calorimetry; heating rate: 20 K/min, cooling rate: 60 K/min. * This study. " Insoluble in CDCIs.

^b Conditions: 0.02 mmol of 2^{Nd} , 0.02 or 0.04 mmol cocatalyst, in toluene, [Ln]:[isoprene] 1:1000 (n/n), reaction time 1 h, pre-reaction time 0.5 h. ^c A = [Ph₃C][B(C₆F₅)₄], B = [PhNMe₂H][B(C₆F₅)₄], C = B(C₆F₅)₃, D = Me₂AlCl, E = Et₂AlCl. ^d Determined by ¹H and ¹³C NMR spectroscopy in

CDCl₃.

^e Determined by means of size-exclusion chromatography (SEC) against polystyrene standards. ^g Determined by differential scanning calorimetry; heating rate: 20 K/min, cooling rate: 60 K/min. ^s This study.

entry ^b	cocatalyst	yield [%]	<i>cis</i> -content [%]ª	trans- content [%] ^d	vinylic content [%]ª	<i>M</i> n [10 ⁴ g/mol] ^e	PDIe	Т _g [°С] ^g	ref.
1	Α	95	62.4	26.4	11.3	5.6	1.76	-59	_5
2	2 A	99	75.8	9.0	15.2	2.9	1.63	-51	_5
3	В	89	58.8	30.0	11.2	6.1	1.70	-64	_5
4	2 B	94	66.3	21.6	12.0	8.4	1.88	-61	_s
5	С	87	63.4	36.6	0.0	9.6	1.28	-65	_s
6	2 C	87	87.0	7.0	6.0	11.8	1.36	-66	_s
7	D	51	>99.9	0.0	0.0	5.6	5.30	-67	_5
8	2 D	56	96.0	4.0	0.0	6.9	7.00	-67	_5
9	Ε	77	94.6	4.2	1.2	3.8	7.89	-63	_5
10	2 E	89	92.6	5.9	1.5	3.2	5.87	-63	_s

Table S1.2.5. Comparison of the polyisoprenes obtained applying precatalyst 2^{Gd}

^b Conditions: 0.02 mmol of 2^{G4} , 0.02 or 0.04 mmol cocatalyst, in toluene, [Ln]:[isoprene] 1:1000 (n/n), reaction time 1 h, pre-reaction time 0.5 h. ^c A = [Ph₃C][B(C₆F₅)₄], B = [PhNMe₂H][B(C₆F₅)₄], C = B(C₆F₅)₃, D = Me₂AlCl, E = Et₂AlCl. ^d Determined by ¹H and ¹³C NMR spectroscopy in CDCl₃.

^e Determined by means of size-exclusion chromatography (SEC) against polystyrene standards. ^g Determined by differential scanning calorimetry; heating rate: 20 K/min, cooling rate: 60 K/min. ^s This study.

entry ^b	cocatalyst	yield [%]	<i>cis</i> -content [%]ª	<i>trans-</i> content [%] ^d	vinylic content [%]ª	<i>M</i> n [10 ⁴ g/mol] ^e	PDIe	Т _g [°С] ^g	ref.
1	Α	85	55.1	33.5	11.4	5.2	3.02	-55	_5
2	2 A	77	76.3	8.2	15.5	2.6	1.62	-52	_s
3	В	87	58.9	27.6	13.4	7.5	1.97	-57	_5
4	2 B	87	65.6	19.4	15.0	5.6	1.74	-58	_8
5	С	83	60.4	35.5	4.1	8.0	1.57	-66	_5
6	2C	83	89.7	5.5	4.8	10.6	1.43	-61	_5
7	D	66	85.0	13.5	1.5	4.9	4.44	-66	_8
8	2 D	67	84.6	13.6	1.9	3.6	6.63	-66	_s
9	Ε	82	88.8	9.7	1.5	2.5	6.36	-67	_s
10	2 E	87	90.2	8.1	1.7	2.1	12.66	-67	_5

Table S1.2.6. Comparison of the polyisoprenes obtained applying precatalyst 2^{Tb}

^b Conditions: 0.02 mmol of 2^{Tb} , 0.02 or 0.04 mmol cocatalyst, in toluene, [Ln]:[isoprene] 1:1000 (n/n), reaction time 1 h, pre-reaction time 0.5 h. ^c $A = [Ph_3C][B(C_6F_5)_4], B = [PhNMe_2H][B(C_6F_5)_4], C = B(C_6F_5)_3, D = Me_2AlCl, E = Et_2AlCl. ^d Determined by ¹H and ¹³C NMR spectroscopy in CDCl₃.$

^e Determined by means of size-exclusion chromatography (SEC) against polystyrene standards. ^g Determined by differential scanning calorimetry; heating rate: 20 K/min, cooling rate: 60 K/min. ^s This study.

entry ^b	cocatalyst	yield [%]	<i>cis</i> -content [%]ª	<i>trans-</i> content [%]ª	vinylic content [%]ª	<i>M</i> n [10 ⁴ g/mol] ^e	PDIe	<i>T</i> g [°C]g	ref.
1	Α	92	58.7	29.0	12.3	9.6	1.74	-60	_5
2	2 A	82	72.1	10.4	17.5	1.5	1.87	-55	_s
3	В	95	57.5	27.4	15.1	10.0	1.70	-58	_s
4	2 B	88	65.2	19.9	14.9	6.7	1.79	-57	_s
5	С	54	63.3	33.0	3.7	8.5	1.33	-65	_s
6	2 C	94	91.5	3.9	4.6	13.1	1.40	-61	_s
7	D	34	79.3	20.7	0.0	3.0	6.52	-67	_s
8	2 D	31	88.7	11.3	0.0	3.2	6.19	-67	_s
9	Е	34	82.6	17.4	0.0	1.9	6.80	-67	_s
10	2 E	46	86.3	13.7	0.0	1.6	8.95	-67	_s

Table S1.2.7. Comparison of the polyisoprenes obtained applying precatalyst 2^{Dy}

^b Conditions: 0.02 mmol of 2^{Dy} , 0.02 or 0.04 mmol cocatalyst, in toluene, [Ln]:[isoprene] 1:1000 (n/n), reaction time 1 h, pre-reaction time 0.5 h. ^c A = [Ph₃C][B(C₆F₅)₄], B = [PhNMe₂H][B(C₆F₅)₄], C = B(C₆F₅)₃, D = Me₂AlCl, E = Et₂AlCl. ^d Determined by ¹H and ¹³C NMR spectroscopy in CDCl₃.

^e Determined by means of size-exclusion chromatography (SEC) against polystyrene standards. ^g Determined by differential scanning calorimetry; heating rate: 20 K/min, cooling rate: 60 K/min. ^s This study.

entry ^b	cocatalyst	yield [%]	<i>cis</i> -content [%]ª	trans- content [%]ª	vinylic content [%]ª	<i>M</i> n [10 ⁴ g/mol] ^e	PDIe	Tg [°C]g	ref.
1	Α	84	63.7	24.2	12.1	5.6	2.15	-56	_5
2	2 A	85	77.9	6.5	15.6	3.7	1.57	-55	_s
3	В	93	64.3	20.0	15.7	12.1	1.85	-56	_s
4	2 B	93	63.7	20.1	16.2	7.8	2.31	-55	_s
5	С	78	57.0	38.8	4.3	11.6	1.73	-64	_s
6	2C	90	90.4	4.1	5.5	17.6	1.39	-62	_s
7	D	7	67.6	31.1	1.3	2.9	2.64	-67	_s
8	2 D	17	68.3	31.7	0.0	3.6	4.87	-66	_s
9	Е	15	61.5	37.1	1.4	2.2	2.7	-67	_s
10	2 E	4	71.5	28.5	0.0	2.5	4.9	-66	_5

Table S1.2.8 Comparison of the polyisoprenes obtained applying precatalyst 2^{Ho}

^b Conditions: 0.02 mmol of 2^{H_0} , 0.02 or 0.04 mmol cocatalyst, in toluene, [Ln]:[isoprene] 1:1000 (n/n), reaction time 1 h, pre-reaction time 0.5 h. ^c $A = [Ph_3C][B(C_6F_5)_4], B = [PhNMe_2H][B(C_6F_5)_4], C = B(C_6F_5)_3, D = Me_2AlCl, E = Et_2AlCl. ^d Determined by ¹H and ¹³C NMR spectroscopy in CDCl₃.$

^e Determined by means of size-exclusion chromatography (SEC) against polystyrene standards. ^g Determined by differential scanning calorimetry; heating rate: 20 K/min, cooling rate: 60 K/min. ^s This study.

entry ^ь	cocatalyst ^c	yield [%]	<i>cis</i> -content [%]ª	trans- content [%]ª	vinylic content [%]ª	<i>M</i> n [10 ⁴ g/mol] ^e	PDIe	Т _g [°С] ^g	ref.
1 ^h	А	>99	69.1	23.6	7.3	9.0	2.09	n.d.	[1]
2	2 A	77	73.7	11.7	14.5	3.1	1.62	-53	_ ⁵
3^{h}	В	>99	60.0	26.0	14.0	11.7	1.60	n.d.	[2]
$4^{\rm h}$	2 B	> 99	67.0	13.0	20.0	26.0	1.50	n.d.	[2]
5^{h}	С	56	62.5	35.1	2.4	12.0	2.03	n.d.	[1]
6	2C	86	82.2	13.3	4.4	16.1	1.55	-62	_8
7	D	traces	40.6	52.5	6.9	_f	_f	_f	_8
8	2 D	6	52.9	46.2	0.9	2.9	2.92	-68	_s
9	Ε	10	48.4	50.6	1.0	2.1	1.43	-67	_5
10	2 E	22	60.1	39.0	0.9	3.2	3.84	-66	_s

Table S1.2.9. Comparison of the polyisoprenes obtained applying pre-catalyst 2^{Ya}

^a For data produced by systems of $2^{y}/B$ and $2^{y}/2B$ in the presence of Al*i*Bu₃, see ref. [2].^b Conditions 0.02 mmol of 2^{y} , 0.02 or 0.04 mmol cocatalyst, in toluene, [Ln]:[isoprene] 1:1000 (n/n), reaction time 1 h, pre-reaction time 0.5 h. ^c A = [Ph₃C][B(C₆F₅)₄], B = [PhNMe₂H][B(C₆F₅)₄], C = B(C₆F₅)₃, D = Me₂AlCl, E = Et₂AlCl. ^d Determined by ¹H and ¹³C NMR spectroscopy in CDCl₃. ^eDetermined by means of size-exclusion chromatography (SEC) against polystyrene standards. ^f No further evaluation possible due to low yield. ^g Determined by differential scanning calorimetry; heating rate: 20 K/min, cooling rate: 60 K/min. ^s This study.

entry ^ь	cocatalyst	yield [%]	<i>cis</i> -content [%] ^d	trans- content [%] ^a	vinylic content [%]ª	<i>M</i> n [10 ⁴ g/mol] ^e	PDIe	<i>T</i> g [℃] ^g	ref.
1	Α	80	70.3	21.5	8.3	7.9	1.91	-56	_5
2	2 A	79	76.5	5.9	17.7	4.1	1.62	-50	_5
3	В	81	67.6	19.0	13.5	9.1	2.63	-55	_8
4	2 B	74	71.4	13.4	15.2	5.9	2.13	-52	_8
5	С	85	74.2	21.4	4.5	15.5	1.86	-59	_s
6	2C	93	92.6	2.1	5.2	15.5	1.75	-57	_s
7	D	traces	_f	_f	_f	_f	_f	_f	_s
8	2D	traces	_f	_f	_f	_f	_f	_f	_5
9	E	traces	_f	_f	_f	_f	_f	_f	_5
10	2 E	2	47.4	51.3	1.3	_f	_f	_f	_s

Table S1.2.10. Comparison of the polyisoprenes obtained applying precatalyst 2^{Er}

^b Conditions 0.02 mmol of 2^{E_7} 0.02 or 0.04 mmol cocatalyst, in toluene, [Ln]:[isoprene] 1:1000 (n/n), reaction time 1 h, pre-reaction time 0.5 h. ^c $A = [Ph_3C][B(C_6F_5)_4], B = [PhNMe_2H][B(C_6F_5)_4], C = B(C_6F_5)_3, D = Me_2AlCl, E = Et_2AlCl. ^d Determined by ¹H and ¹³C NMR spectroscopy in CDCl₃.$

^e Determined by means of size-exclusion chromatography (SEC) against polystyrene standards. ^{*i*} No further evaluation possible due to low yield. ^g Determined by differential scanning calorimetry; heating rate: 20 K/min, cooling rate: 60 K/min. ^s This study.

entry ^b	cocatalyst	yield [%]	<i>cis</i> -content [%] ^d	<i>trans-</i> content [%]ª	vinylic content [%]ª	<i>M</i> n [10 ⁴ g/mol] ^e	PDIe	Т _g [°С] ^g	ref.
1	Α	>99	77.1	17.6	5.3	6.7	1.58	-62	_s
2	2 A	90	70.3	13.8	15.9	3.4	1.62	-55	_ ^s
3	В	>99	77.2	16.9	5.9	5.2	2.06	-63	_5
4	2 B	>99	73.1	15.4	11.5	4.2	1.78	-59	_ ^s
5	С	>99	67.6	28.1	4.3	23	1.55	-61	_5
6	2 C	>99	85.9	8.7	5.4	9.2	2.07	-61	_s
7	D	none	_f	_f	_f	_f	_f	_f	_s
8	2 D	none	_f	_f	_f	_f	_f	_f	_s
9	Е	none	_f	_f	_f	_f	_f	_f	_s
10	2 E	traces	_f	_f	_f	_f	_f	_f	_5

Table S1.2.11. Comparison of the polyisoprenes obtained applying precatalyst 2^{Lu}

^b Conditions: 0.02 mmol of 2^{Lu} , 0.02 or 0.04 mmol cocatalyst, in toluene, [Ln]:[isoprene] 1:1000 (n/n), reaction time 1 h, pre-reaction time 0.5 h. ^c $A = [Ph_3C][B(C_6F_5)_4], B = [PhNMe_2H][B(C_6F_5)_4], C = B(C_6F_5)_3, D = Me_2AlCl, E = Et_2AlCl. ^d Determined by ¹H and ¹³C NMR spectroscopy in CDCl₃.$

^e Determined by means of size-exclusion chromatography (SEC) against polystyrene standards. ^f No further evaluation possible due to low yield. ^g Determined by differential scanning calorimetry; heating rate: 20 K/min, cooling rate: 60 K/min. ^s This study.

S1.3 Isoprene polymerization at standard conditions by results

If not mentioned otherwise in the respective table, the polymers shown in this section have been synthesized according to the procedure given in Section 3.4 of the main article (Materials and Methods) or are taken from the literature for comparison.

		-		-			-				
						cocata	alyst				
entry ^b	precatalyst	Α	2 A	В	2 B	С	2 C	D	2 D	E	2E
1	La(AlMe4)3 (2 ^{La})	>99 ^h	79	>99 ^h	88	>99 ^h	69	4	2	3	5
2	Ce(AlMe ₄) ₃ (2 ^{Ce})	>99	>99	92	100	86	84	7	21	19	34
3	Pr(AlMe ₄) ₃ (2 ^{Pr})	93	78	92	90	87	87	27	42	43	84
4	Nd(AlMe ₄) ₃ (2 Nd)	86	76	79	82	76	83	40	56	57	86
5	$Gd(AlMe_4)_3$ (2^{Gd})	95	99	89	94	87	87	51	56	77	89
6	Tb(AlMe4)3 (2 ть)	85	77	87	87	83	83	66	67	82	87
7	Dy(AlMe ₄) ₃ (2 ^{Dy})	92	82	95	88	54	94	34	31	34	46
8	Ho(AlMe4)3 (2 ^{Ho})	84	85	93	93	78	90	7	17	15	4
9	Y(AlMe ₄) ₃ (2 ^y)	>99 ^h	77	>99 ^h	>99 ^h	56 ^h	86	trt	6	10	22
10	Er(AlMe ₄) ₃ (2 ^{Er})	80	79	81	74	85	93	trt	trt	trt	2
11	L11(AlMe4)3 (2 ^{Lu})	>99	90	>99	>99	>99	>99	0	0	0	trt

Table S1.3.1. Comparison of the yields obtained for the polyisoprenes^a

^a For detailed information on polymerization data and origin of the values (literature or this study), see sections S1.1 and S1.2. The values in this table are given in [%]. ^b Conditions: 0.02 mmol of the resp. Ln precatalyst, 0.02 or 0.04 mmol cocatalyst, in toluene, [Ln]:[isoprene] 1:1000 (n/n), reaction time 1 h, pre-reaction time 0.5 h. ^c $\mathbf{A} = [Ph_3C][B(C_6F_5)_4]$, $\mathbf{B} = [PhNMe_2H][B(C_6F_5)_4]$, $\mathbf{C} = B(C_6F_5)_3$, $\mathbf{D} = Me_2AlCl$, $\mathbf{E} = Et_2AlCl$. ^h Reaction time 24 h. ^s This study. ⁱ tr. = traces.

						coca	utalyst ^c				
entry ^b	precatalyst	Α	2 A	В	2 B	С	2 C	D	2 D	Е	2 E
1	La(AlMe ₄) ₃ (2 ^{La})	46.3 ^h	69.9	49.8 ^h	70.5	39.1 ^h	77.6	_f	91.5	89.3	92.1
2	Ce(AlMe ₄) ₃ (2 ^{Ce})	44.4	68.1	43.7	57.7	55.4	86.0	97.1	97.4	97.2	97.3
3	Pr(AlMe ₄) ₃ (2 ^{Pr})	44.7	0.0	45.5	45.9	65.6	87.9	97.2	97.4	97.6	95.4
4	Nd(AlMe ₄) ₃ (2 Nd)	44.3	66.2	46.8	62.6	68.0	92.7	98.9	97.9	98.2	98.0
5	$Gd(AlMe_4)_3$ (2^{Gd})	62.4	75.8	58.8	66.3	63.4	87.0	100.0	96.0	94.6	92.6
6	Tb(AlMe ₄) ₃ (2 ^{ть})	55.1	76.3	58.9	65.6	60.4	89.7	85.0	84.6	88.8	90.2
7	Dy(AlMe ₄) ₃ (2 ^{Dy})	58.7	72.1	57.5	65.2	63.3	91.5	79.3	88.7	82.6	86.3
8	Ho(AlMe ₄) ₃ (2 ^{Ho})	63.7	77.9	64.3	63.7	57.0	90.4	67.6	68.3	61.5	71.5
9	Y(AlMe ₄) ₃ (2 ^y)	69.1 ^h	73.7	60.0 ^h	67.0 ^h	62.5 ^h	82.2	40.6	52.9	48.4	60.1
10	Er(AlMe ₄) ₃ (2 ^{Er})	70.3	76.5	67.6	71.4	74.2	92.6	_f	_f	_f	47.4
11	Lu(AlMe ₄) ₃ (2 ^{Lu})	77.1	70.3	77.2	73.1	67.6	85.9	_f	_f	_f	_f

Table S1.3.2. Comparison of the cis-1,4-contents obtained for the polyisoprenes^{ad}

^a For detailed information on polymerization data and origin of the values (literature or this study), see sections S1.1 and S1.2. The values in this table are given in [%]. Selectivities of >99.9 % are represented by 100. ^b Conditions: 0.02 mmol of the resp. Ln precatalyst, 0.02 or 0.04 mmol cocatalyst, in toluene, [Ln]:[isoprene] 1:1000 (n/n), reaction time 1 h, pre-reaction time 0.5 h. ^c A = [Ph₃C][B(C₆F₅)₄], B = [PhNMe₂H][B(C₆F₅)₄], C = B(C₆F₅)₅, D = Me₂AlCl, E = Et₂AlCl. ^d Determined by ¹H and ¹³C NMR spectroscopy in CDCl₃. ^c No further evaluation possible due to low yield. ^h Reaction time 24 h.

		cocatalyst ^c										
entry ^b	precatalyst	А	2A	В	2 B	С	2C	D	2 D	E	2E	
1	La(AlMe ₄) ₃ (2 ^{La})	51.4 ^h	18.2	46.8 ^h	19.4	59.5 ^h	18.8	_f	5.6	7.6	5.0	
2	Ce(AlMe ₄) ₃ (2 ^{Ce})	51.8	18.7	53.0	33.5	41.8	8.8	0.0	0.0	0.0	0.0	
3	Pr(AlMe ₄) ₃ (2 ^{Pr})	50.2	0.0	50.2	49.7	30.4	6.0	0.0	0.0	0.0	2.3	
4	Nd(AlMe ₄) ₃ (2 Nd)	50.9	21.2	48.4	28.5	29.2	2.9	0.0	0.0	0.0	0.0	
5	$Gd(AlMe_4)_3$ (2 ^{Gd})	26.4	9.0	30.0	21.6	36.6	7.0	0.0	4.0	4.2	5.9	
6	Тb(AlMe4)3 (2 ть)	33.5	8.2	27.6	19.4	35.5	5.5	13.5	13.6	9.7	8.1	
7	Dy(AlMe ₄) ₃ (2 ^{Dy})	29.0	10.4	27.4	19.9	33.0	3.9	20.7	11.3	17.4	13.7	
8	Ho(AlMe ₄) ₃ (2 ^{Ho})	24.2	6.5	20.0	20.1	38.8	4.1	31.1	31.7	37.1	28.5	
9	Y(AlMe ₄) ₃ (2 ^y)	23.6 ^h	11.7	26.0 ^h	13.0 ^h	35.1 ^h	13.3	52.5	46.2	50.6	39.0	
10	Er(AlMe ₄) ₃ (2 ^{Er})	21.5	5.9	19.0	13.4	21.4	2.1	_f	_f	_f	51.3	
11	Lu(AlMe4)3 (2 ^{Lu})	17.6	13.8	16.9	15.4	28.1	8.7	_f	_f	_f	_f	

^a For detailed information on polymerization data and origin of the values (literature or this study), see sections S1.1 and S1.2. The values in this table are given in [%]. Selectivities of >99.9 % are represented by 100.0. ^b Conditions: 0.02 mmol of the resp. Ln precatalyst, 0.02 or 0.04 mmol cocatalyst, in toluene, [Ln]:[isoprene] 1:1000 (n/n), reaction time 1 h, pre-reaction time 0.5 h. ^c A = [Ph₃C][B(C₆F₅)₄], B = [PhNMe₂H][B(C₆F₅)₄], C = B(C₆F₅)₅, D = Me₂AlCl, E = Et₂AlCl. ^d Determined by ¹H and ¹³C NMR spectroscopy in CDCl₃. ^f No further evaluation possible due to low yield. ^h Reaction time 24 h.

						coca	atalyst				
entry ^b	precatalyst	А	2 A	В	2 B	С	2 C	D	2 D	Е	2E
1	La(AlMe ₄) ₃ (2 ^{La})	2.3 ^h	11.9	3.4 ^h	10.1	1.4^{h}	3.7	_f	2.9	3.1	2.9
2	Ce(AlMe ₄) ₃ (2 ^{Ce})	3.8	13.3	3.3	8.8	2.7	5.2	2.9	2.6	2.8	2.7
3	Pr(AlMe ₄) ₃ (2 ^{Pr})	5.1	0.0	4.3	4.4	4.0	6.1	2.8	2.6	2.4	2.3
4	Nd(AlMe ₄) ₃ (2 Nd)	4.9	12.6	4.8	8.9	2.7	4.5	1.1	2.1	1.8	2.0
5	$Gd(AlMe_4)_3$ (2 ^{Gd})	11.3	15.2	11.2	12.0	0.0	6.0	0.0	0.0	1.2	1.5
6	Tb(AlMe ₄) ₃ (2 ^{Tb})	11.4	15.5	13.4	15.0	4.1	4.8	1.5	1.9	1.5	1.7
7	Dy(AlMe ₄) ₃ (2 ^{Dy})	12.3	17.5	15.1	14.9	3.7	4.6	0.0	0.0	0.0	0.0
8	Ho(AlMe4)3 (2 ^{Ho})	12.1	15.6	15.7	16.2	4.3	5.5	1.3	0.0	1.4	0.0
9	Y(AlMe ₄) ₃ (2 ^y)	7.3 ^h	14.5	14.0 ^h	20.0 ^h	2.4 ^h	4.4	6.9	0.9	1.0	0.9
10	Er(AlMe ₄) ₃ (2 ^{Er})	8.3	17.7	13.5	15.2	4.5	5.2	_f	_f	_f	1.3
11	Lu(AlMe ₄) ₃ (2 ^{Lu})	5.3	15.9	5.9	11.5	4.3	5.4	_f	_f	_f	_f

Table S1.3.4. Comparison of the vinylic 3,4-contents obtained for the polyisoprenes^{ad}

^a For detailed information on polymerization data and origin of the values (literature or this study), see sections S1.1 and S1.2. The values in this table are given in [%]. Selectivities of >99.9 % are represented by 100.0. ^b Conditions: 0.02 mmol of the resp. Ln precatalyst, 0.02 or 0.04 mmol cocatalyst, in toluene, [Ln]:[isoprene] 1:1000 (n/n), reaction time 1 h, pre-reaction time 0.5 h. ^c $A = [Ph_3C][B(C_6F_5)_4], B =$

 $[PhNMe_2H][B(C_6F_5)_4], C = B(C_6F_5)_3, D = Me_2AlCl, E = Et_2AlCl. ^d Determined by ¹H and ¹³C NMR spectroscopy in CDCl₃. ^f No further evaluation possible due to low yield. ^h Reaction time 24 h.$

Table S1.3.5. Comparison of the number average molar weights obtained for the polyisoprenes^{ae}

						coca	atalyst				
entry ^b	precatalyst	Α	2 A	В	2 B	С	2 C	D	2 D	E	2 E
1	La(AlMe ₄) ₃ (2 ^{La})	5.0 ^h	5.3	6.0 ^h	5.0	33.0 ^h	16.3	1.6	_f	_f	2.3
2	Ce(AlMe ₄) ₃ (2 ^{Ce})	3.5	4.0	2.8	3.5	3.3	5.9	11.7	3.3	0.2	3.1
3	Pr(AlMe ₄) ₃ (2 ^{Pr})	3.9	8.0	3.2	14.1	6.8	8.7	6.5	8.7	4.4	4.1
4	Nd(AlMe ₄) ₃ (2 Nd)	3.8	4.7	1.6	4.4	7.9	17.6	9.4	11.3	5.6	5.3
5	Gd(AlMe ₄) ₃ (2 ^{Gd})	5.6	2.9	6.1	8.4	9.6	11.8	5.6	6.9	3.8	3.2
6	Tb(AlMe ₄) ₃ (2 ^{Tb})	5.2	2.6	7.5	5.6	8.0	10.6	4.9	3.6	2.5	2.1
7	Dy(AlMe ₄) ₃ (2 ^{Dy})	9.6	1.5	10.0	6.7	8.5	13.1	3.0	3.2	1.9	1.6
8	Ho(AlMe ₄) ₃ (2 ^{Ho})	5.6	3.7	12.1	7.8	11.6	17.6	2.9	3.6	2.2	2.5
9	Y(AlMe ₄) ₃ (2 ^y)	9.0 ^h	3.1	11.7 ^h	26.0 ^h	12.0 ^h	16.1	_f	2.9	2.1	3.2
10	Er(AlMe ₄) ₃ (2 ^{Er})	7.9	4.1	9.1	5.9	15.5	15.5	_f	_f	_f	_f
11	Lu(AlMe ₄) ₃ (2 ^{Lu})	6.7	3.4	5.2	4.2	23.0	9.2	_f	_f	_f	_f

^a For detailed information on polymerization data and origin of the values (literature or this study), see sections S1.1 and S1.2. The values in this table are given in [10⁴ g/mol]. ^b Conditions: 0.02 mmol of the resp. Ln precatalyst, 0.02 or 0.04 mmol co-catalyst, in toluene, [Ln]:[isoprene] 1:1000 (n/n), reaction time 1 h, pre-reaction time 0.5 h. ^c **A** = [Ph₃C][B(C₆F₅)₄], **B** = [PhNMe₂H][B(C₆F₅)₄], **C** = B(C₆F₅)₅, **D** = Me₂AlCl, **E** = Et₂AlCl.^c Determined by means of size-exclusion chromatography (SEC) against polystyrene standards. ^c No further evaluation possible due to low yield. ^h Reaction time 24 h.

						coca	talyst				
entry ^b	precatalyst	Α	2 A	В	2 B	С	2 C	D	2 D	Е	2 E
1	La(AlMe ₄) ₃ (2 ^{La})	1.29 ^h	6.90	1.23 ^h	1.15	1.18^{h}	1.40	6.28	_f	_f	3.27
2	Ce(AlMe ₄) ₃ (2 ^{Ce})	1.25	1.28	1.35	1.18	1.22	1.13	1.28	3.73	3.44	3.81
3	Pr(AlMe ₄) ₃ (2 ^{Pr})	1.35	2.35	1.55	1.78	1.32	1.35	2.98	3.09	4.84	4.10
4	Nd(AlMe ₄) ₃ (2 Nd)	1.29	1.38	1.27	1.26	1.16	2.48	6.77	5.26	4.52	4.66
5	$Gd(AlMe_4)_3$ (2 ^{Gd})	1.76	1.63	1.70	1.88	1.28	1.36	5.30	7.00	7.89	5.87
6	Tb(AlMe ₄) ₃ (2 ^{Tb})	3.02	1.62	1.97	1.74	1.57	1.43	4.44	6.63	6.36	12.66
7	Dy(AlMe ₄) ₃ (2 ^{Dy})	1.74	1.87	1.70	1.79	1.33	1.40	6.52	6.19	6.80	8.95
8	Ho(AlMe ₄) ₃ (2 ^{Ho})	2.15	1.57	1.85	2.31	1.73	1.39	2.64	4.87	2.70	4.90
9	Y(AlMe ₄) ₃ (2 ^y)	2.09 ^h	1.62	1.60 ^h	1.50 ^h	2.03 ^h	1.55	_f	2.92	1.43	3.84
10	Er(AlMe ₄) ₃ (2 ^{Er})	1.91	1.62	2.63	2.13	1.86	1.75	_f	_f	_f	_f
11	Lu(AlMe ₄) ₃ (2 ^{Lu})	1.58	1 62	2.06	1 78	1 55	2.07	_f	_f	_f	_f

Table S1.3.6. Comparison of the polydispersity indices obtained for the polyisoprenes^{ae}

^a For detailed information on polymerization data and origin of the values (literature or this study), see sections S1.1 and S1.2. ^b Conditions: 0.02 mmol of the resp. Ln precatalyst, 0.02 or 0.04 mmol co-catalyst, in toluene, [Ln]:[isoprene] 1:1000 (n/n), reaction time 1 h, pre-reaction time 0.5 h. ^c $A = [Ph_3C][B(C_6F_5)_4]$, $B = [PhNMe_2H][B(C_6F_5)_4]$, $C = B(C_6F_5)_3$, $D = Me_2AlCl$, $E = Et_2AlCl$. ^eDetermined by means of size-exclusion chromatography (SEC) against polystyrene standards. ^f No further evaluation possible due to low yield. ^h Reaction time 24 h.

Table S1.3.7. Compariso	on of the glass trans	sition temperatures c	btained for the pol	yisoprenes ^{ag}

						cocat	alyst				
entry ^b	precatalyst	Α	2 A	В	2 B	С	2 C	D	2 D	Е	2E
1	La(AlMe ₄) ₃ (2 ^{La})	n.d. ^h	-63	n.d. ^h	-62	n.d. ^h	-63	-61	_f	_f	-62
2	Ce(AlMe ₄) ₃ (2 ^{Ce})	-62	-55	-62	-62	-61	-58	-59	-60	-61	-61
3	Pr(AlMe ₄) ₃ (2 ^{Pr})	-66	n.d.	-67	-65	-65	-61	-64	-62	-61	-62
4	Nd(AlMe ₄) ₃ (2 Nd)	-64	-57	-64	-57	-63	-61	-60	-61	-61	-62
5	$Gd(AlMe_4)_3$ (2 ^{Gd})	-59	-51	-64	-61	-65	-66	-67	-67	-63	-63
6	Tb(AlMe ₄) ₃ (2 ^{ть})	-55	-52	-57	-58	-66	-61	-66	-66	-67	-67
7	Dy(AlMe ₄) ₃ (2 ^{Dy})	-60	-55	-58	-57	-65	-61	-67	-67	-67	-67
8	Ho(AlMe ₄) ₃ (2 ^{Ho})	-56	-55	-56	-55	-64	-62	-67	-66	-67	-66
9	Y(AlMe ₄) ₃ (2 ^y)	n.d. ^h	-53	n.d. ^h	n.d. ^h	n.d. ^h	-62	_f	-68	-67	-66
10	Er(AlMe ₄) ₃ (2 ^{Er})	-56	-50	-55	-52	-59	-57	_f	_f	_f	_f
11	Lu(AlMe ₄) ₃ (2 ^{Lu})	-62	-55	-63	-59	-61	-61	_f	_f	_f	_f

^a For detailed information on polymerization data and origin of the values (literature or this study), see sections S1.1 and S1.2. The values in this table are given in [°C]. ^b Conditions: 0.02 mmol of the resp. Ln precatalyst, 0.02 or 0.04 mmol co-catalyst, in toluene, [Ln]:[isoprene] 1:1000 (n/n), reaction time 1 h, pre-reaction time 0.5 h. ^c $A = [Ph_3C][B(C_6F_5)_4]$, $B = [PhNMe_2H][B(C_6F_5)_4]$, $C = B(C_6F_5)_4$, $D = Me_2AlCl$, $E = Et_2AlCl$. ^c No further evaluation possible due to low yield. ^g Determined by differential scanning calorimetry; heating rate: 20 K/min, cooling rate: 60 K/min. ^b Reaction time 24 h.

S1.4 Isoprene polymerization screenings

In order to gain more insight into the polymerization-active species, the standard conditions given in Section 3.4 of the main article (Materials and Methods) have been augmented as presented in the respective tables. Besides the obtained data, our group has reported on isoprene polymerization in *n*-hexane applying combinations of $Ln(AlMe_4)_3/E$ (Ln = La [4,5], Pr [6], Gd [4,5]) resulting in high yields after 24 h and nearly quantitative *cis*-selectivity. Moderate yields and selectivity were obtained for Ln = Y [4,5] and low yields (<7%) but high *cis*-contents after 24 h reaction time for Sm(AlMe_4)₃ [4,5]. Polymerization attempts with Nd(AlMe_4)₃ applying Me₃SiCl as a chlorine source did not reveal any polyisoprene formation, nor is Nd(AlMe_4)₃ active as a single component catalyst. Furthermore, polymerizations with some of the low yielding systems at standard conditions have been repeated with a reaction time of 24 h (results can be found in Table S1.4.4).

Figure S1.4.1. Overview on the *cis*-contents obtained by screening the pre-reaction time (**a**) and cocatalyst concentration (**b**) of the isoprene polymerization applying Nd(AlMe₄)₃ (**2**Nd)/Et₂AlCl (E).

entry ^b	pre-reaction time [min]	yield [%]	<i>cis-</i> content [%] ^d	<i>trans-</i> content [%] ^d	vinylic content [%] ^d	Mn [10 ⁴ g/mol] ^e	PDIe	ref.
1	30	57	98.2	0	1.8	5.6	4.52	_5
2	22	87	97.0	0.8	2.2	6.2	4.11	_5
3	15	83	97.9 ¹	0	2.11	7.0	3.71	_5
4	10	83	97.9 ¹	0	2 .1 ¹	6.3	3.86	_ ^s
5	6	65	98.0	0	2.0	6.2	3.45	[3]

Table S1.4.1. Influence of pre-reaction time on isoprene polymerization by 2Nd/E^a

^a For data produced at standard conditions, see Table S1.2.4 as well. ^b Conditions: 0.02 mmol 2^{Nd} , 0.02 mmol cocatalyst, 8 mL toluene, [Ln]:[isoprene] 1:1000 (n/n), reaction time 1 h. ^c E = Et₂AlCl. ^d Determined by ¹H and ¹³C NMR spectroscopy in CDCls. ^e Determined by means of size-exclusion chromatography (SEC) against polystyrene standards. ¹ For entries 3 and 4 identical microstructures were obtained. ^s This study.

entry ^b	cocatalyst	yield [%]	<i>cis</i> -content [%]ª	<i>trans-</i> content [%]ª	vinylic content [%]ª	<i>M</i> n [10 ⁴ g/mol] ^e	PDIe	ref.
1	Ε	57	98.2	0.0	1.8	5.6	4.52	_s
2	1.25 E	77	97.9	0.0	2.1	5.9	4.65	_ ^s
3	1.5 E	80	97.1	0.9	2.0	6.7	4.28	_s
4	1.75 E	83	97.5	0.4	2.1	8.8	3.40	_ ^s
5	2 E	86	97.3	0.9	1.8	5.3	4.66	_ ^s
6	2.25 E	87	98.1	0.0	1.9	6.1	4.11	_ ^s
7	2.5 E	91	98.0	0.0	2.0	5.5	4.58	_ ^s

Table S1.4.2. Influence of cocatalyst concentration on isoprene polymerization by 2Nd/E^a

^a For data produced standard conditions, see Table S1.6.2. ^b Conditions: 0.02 mmol 2^{Nd} , 8 mL toluene, reaction time 1 h, pre-reaction time 0.5 h. ^c E = Et₂AlCl. ^d Determined by ¹H and ¹³C NMR spectroscopy in CDCl₃. ^e Determined by means of size-exclusion chromatography (SEC) against polystyrene standards. ^s This study.

Table S1.4.3. Influence of solvent on isoprene polymerization applying $2^{Nd}/E^a$

entrv ^b	colvont	yield	cis-content	trans-	vinylic	<i>M</i> n [104	DDIe	rof
citity	solvent	[%]	[%] ^d	[%] ^a	[%] ^a	g/mol] ^e	PDI	rei.
1	toluene	57	98.2	0.0	1.8	5.6	4.52	_s
2	toluene: <i>n</i> -hexane (1:7)	73	98.0	0.0	2.0	5.9	3.61	_s
3	<i>n</i> -hexane	52	94.6	3.2	2.2	7.2	7.07	_5

^a For data produced standard conditions, see Table S1.1.5. ^b Conditions: 0.02 mmol 2^{Nd} , 0.02 mmol cocatalyst, 25 mL solvent, prereaction time: 0.5 h, reaction time 1 h. ^c E = Et₂AlCl. ^d Determined by ¹H and ¹³C NMR spectroscopy in CDCl₃. ^eDetermined by means of size-exclusion chromatography (SEC) against polystyrene standards. ^s this study.

entry ^b	precatalyst	cocatalyst	yield [%]	cis-content [%]ª	<i>trans-</i> content [%] ^d	vinylic content [%]ª	<i>M</i> n [10 ⁴ g/mol] ^e	PDIe	ref.
1	La(AlMe ₄) ₃ (2 ^{La})	D	38	77.6	18.8	2.8/0.8 ^q	3.3	3.62	_5
2	$La(AlMe_4)_3$ (2 ^{La})	Ε	43	87.0	10.0	2.9	2.7	2.71	_ ^s
3	La(AlMe ₄) ₃ (2 ^{La})	2 E	83	87.2	10.1	2.8	5.1	2.73	_ ⁵
4	Er(AlMe ₄) ₃ (2 ^{Er})	2D	37	34.6	64.0	1.4	3.4	2.65	_s
5	Er(AlMe ₄) ₃ (2 ^{Er})	Ε	14	35.8	63.0	1.1	1.4	2.11	_ ^s
6	Er(AlMe ₄) ₃ (2 ^{Er})	2 E	54	24.3	74.1	1.5	2.2	1.91	_s
7	Lu(AlMe ₄) ₃ (2 ^{Lu})	2 E	4	14.1	81.8	4.1	6.0	2.46	_s

Table S1.4.4. 24 h-Reaction time for selected low-yielding systems in Tables S1.1.1 - S1.3.7 a

^a For data produced at standard conditions, see Tables S1.2.1, S1.2.10 and S1.2.11. ^b Conditions: 0.02 mmol of the resp. precatalyst, 0.02 or 0.04 mmol cocatalyst, 8 mL toluene, reaction time 24 h, pre-reaction time 0.5 h. ^c **D** = Me₂AlCl, **E** = Et₂AlCl. ^d Determined by ¹H and ¹³C NMR spectroscopy in CDCl₃. ^e Determined by means of size-exclusion chromatography (SEC) against polystyrene standards. ^q 3,4-Content / 1,2-content. ^s This study.

S1.5 Polyisoprene data on UV-light irradiated samples

Polymer data reported in this section were obtained from samples produced according to the standard conditions given in Sections 3.4 and 3.5 of the main article (Materials and Methods) and thereafter irradiated applying UV-light of 254 nm for 48 h under air. Data obtained before radiation are presented for comparison.

Table S1.5.1. Polymer data of polyisoprenes applying 2Nd after exposure to UV-light of 254 nm ^a

entry ^b	cocatalyst	<i>cis-</i> content [%]ª	trans- content [%]ª	vinylic content [%] ^d	<i>M</i> n [10 ⁴ g/mol] ^e	PDIe	ref.
1	Α	43.9	51.9	4.3	3.3	1.25	_5
2	В	39.9	55.8	4.3	5.6	1.14	_5
3	С	57.0	40.7	2.3	6.7	1.13	_5
4	D	97.9	0.0	2.1	8.9	6.66	_5
5	Е	98.0	0.0	2.0	4.2	5.50	_ ^s

^a For data of the original polymers, see Table S1.2.4, for ATR-IR data of the polymers, see Table S2.5.1. ^b 48 h Exposure to UV-light of 254 nm.^c $A = [Ph_3C][B(C_6F_5)_4]$, $B = [PhNMe_2H][B(C_6F_5)_4]$, $C = B(C_6F_5)_3$, $D = Me_2AlCl$, $E = Et_2AlCl$. ^d Determined by ¹H and ¹³C NMR spectroscopy in CDCl₃. ^e Determined by means of size-exclusion chromatography (SEC) against polystyrene standards. ^s This study.

S1.6 Polymerization of 1,3-butadiene at standard conditions by precatalyst

If not mentioned otherwise in the respective table, the polybutadienes shown in this section have been synthesized according to the procedure given in Section 3.5 of the main article (Materials and Methods) or taken from the literature for comparison.

entry ^ь	cocatalyst	pre-reaction time [h]	reaction time [h]	yield [%]	<i>cis-</i> content [%] ^d	<i>trans</i> -content [%]ª	vinylic content [%] ^d	<i>M</i> n [10 ⁴ g/mol] ^e	PDIe	ref.
1	В	0.5	0.5	<5	_f	_f	_f	_f	_f	[2]
2	В	4	0.5	73	n.d.	n.d.	n.d.	18.6	4.4	[2]
3	2 B	0.5	0.5	26	95	3	2	14.0	2.0	[2]
4	2 B	4	0.5	93	n.d.	n.d.	n.d.	31.2	2.6	[2]

Table S1.6.1. Polybutadiene applying Y(AlMe₄)₃ (2^Y)^a

^a For data produced by systems of $2^{y}/B$ and $2^{y}/2B$ in the presence of Al*i*Bu₃, see [2]. ^b Conditions: 0.02 mmol 2^{y} , 0.02 or 0.04 mmol resp. cocatalyst, 8 mL toluene, [9]:[1,3-butadiene] 1:1000 (n/n). ^c B = [PhNMe₂H][B(C₆F₃)₄]. ^d Determined by ¹H and ¹³C NMR spectroscopy in CDCl₃. ^e Determined by means of size-exclusion chromatography (SEC) against polystyrene standards. ^f No further evaluation possible due to low vield. Е

22.4

41

entry^b

1 2

	Table S1.	6.2. Pol	ybutadiene ap	plying Nd(A	AIMe ₄) ₃ (2^{NG}	l) ^a		
cocatalyst	BD [mmol]	yield [%]	<i>cis-</i> content [%]ª	trans- content	vinylic content	<i>M</i> n [10 ⁴	PDI®	ref.
				[~o]a	[%] ^a	g/mol]e		
D	53.5	28	99.7	0.0	0.3	40.7	2.39	_5

2.9

0.4

8.3

3.47

....

^a For data produced by optimization screenings, see Section S1.7; Polymerization attempts with Nd(AlMe4)3 applying Me3SiCl as a chlorine source did not reveal any polyisoprene formation, nor is Nd(AlMe₄)₃ active as a single component catalyst..^b Conditions: 0.02 mmol 2Nd, 0.02 mmol cocatalyst, 25 mL toluene, 100 rpm, 1 bar of BD pressure, reaction time 1 h, pre-reaction time 0.5 h. C D = Me₂AlCl, E = Et₂AlCl. ^d Determined by ¹H and ¹³C NMR spectroscopy in CDCl₃. ^e Determined by means of size-exclusion chromatography (SEC) against polystyrene standards. ^s This study.

96.7

entryª	cocatalyst ^b	yield [%]	<i>cis</i> -content [%] ^c	<i>trans-</i> content [%] ^c	vinylic content [%] ^c	Mn [10 ⁴ g/mol] ^d	PDI ^d	ref.
1	А	60	30.2	67.2	1.8	10.8	2.52	_s
2	В	54	28.8	69.2	2.0	11.8	3.60	_s
3	С	54	59.7	39.2	1.0	12.1	1.15	_s
4	D	22	92.2	7.1	0.7	10.0	5.07	_5
5	E	34	94.3	5.0	0.7	9.8	4.22	_s

Table S1.6.3 Polybutadiene applying Pr(AlMe₄)₃(2^{Pr})

^a Conditions: 0.02 mmol 2^{tr}, 0.02 mmol cocatalyst, 25 mL toluene, [3]:[1,3-butadiene] 1:3000 (n/n), 100 rpm, reaction time 1 h, pre-reaction time 0.5 h. ^b A = [Ph₃C][B(C₆F₅)₄], B = [Ph₃Me₂H][B(C₆F₅)₄], C = B(C₆F₅)₅, D = Me₂AlCl, E = Et₂AlCl. ^c Determined by ¹H and ¹³C NMR spectroscopy in CDCls. d Determined by means of size-exclusion chromatography (SEC) against polystyrene standards. * This study.

Okuda et al. used La(AlMe₄)₃ (2^{La}) and Gd(AlMe₄)₃ (2^{Gd}) along with co-catalyst A in the presence of AliBu₃ for 1,3-butadiene polymerization[7].

Figure S1.7.1. Overview on the *cis*-contents obtained by screening the pre-reaction time (**a**) and cocatalyst concentration (**b**) of the 1,3-butadiene polymerization applying Nd(AlMe₄)₃ (2^{Nd})/Et₂AlCl (E).

|--|

entry ^ь	pre-reaction time [min]	BD [mmol]	yield [%]	<i>cis</i> -content [%] ^d	<i>trans-</i> content [%] ^d	vinylic content [%]ª	<i>M</i> n [10 ⁴ g/mol] ^e	PDI ^e	ref.
1	30	22.4	41	96.7	2.9	0.4	8.3	3.47	-5
2	22	21.6	57	97.2	2.7	0.1	12.2	3.90	_5
3	15	42.9	76	98.2	1.6	0.2	11.3	4.02	_ ^s
4	10	51.3	67	98.5	1.3	0.2	13.6	2.51	_5
5	6	36.9	52	98.8	0.9	0.3	10.3	4.24	_8

^a For data produced at standard conditions, see Table S1.6.2. ^b Conditions: 0.02 mmol 2^{Nd} , 0.02 mmol cocatalyst, 25 mL toluene, 100 rpm, 1 bar of BD pressure, reaction time 1h. ^c E = Et₂AlCl. ^d Determined by ¹H and ¹³C NMR spectroscopy in CDCl₃. ^eDetermined by means of size-exclusion chromatography (SEC) against polystyrene standards. ^s This study.

|--|

entry ^b	cocatalyst ^c	BD [mmol]	yield [%]	<i>cis</i> -content [%] ^d	trans- content [%]d	vinylic content [%]ª	<i>M</i> n [10 ⁴ g/mol] ^e	PDIe	ref.
1	0.25 E	35.6	5	98.8	1.0	0.2	14.5	4.62	_s
2	0.5 E	35.4	18	98.2	1.5	0.3	11.9	4.76	_s
3	0.75 E	34.1	39	98.0	1.9	0.1	8.3	5.12	_s
4	Е	22.4	41	96.7	2.9	0.4	8.3	3.47	_s
5	1.25 E	38.0	59	98.4	1.5	0.1	11.9	3.72	_s
6	1.5 E	39.9	46	98.2	1.6	0.2	16.5	3.57	_5
7	1.75 E	38.8	85	97.4 ¹	2.5 ¹	0.1^{1}	10.9	3.92	_s
8	2 E	25.9	76	97.4 ¹	2.5 ¹	0.1^{1}	16.6	3.50	_s
9	2.25 E	43.7	3	96.3	3.6	0.1	20.5	2.72	_s
10	2.5 E	56.6	41	99.5	0.4	0.1	18.8	3.31	_s

^a For data produced at standard conditions, see Table S1.6.2. ^b Conditions: 0.02 mmol 2Nd, 25 mL toluene, 100 rpm, 1 bar of BD pressure, reaction time 1 h, pre-reaction time 0.5 h. ^c E = Et₂AlCl. ^d Determined by ¹H and ¹³C NMR spectroscopy in CDCl₂. ^e Determined by means of size-exclusion chromatography (SEC) against polystyrene standards. ¹ These polymerizations resulted in identical micorstructures. ^e This study.

entry ^b	reaction time [h]	BD [mmol]	yield [%]	<i>cis</i> -content [%]ª	<i>trans-</i> content [%] ^d	vinylic content [%]ª	<i>M</i> n [10⁴ g/mol]⁰	PDIe	ref.
1	1	22.4	41	96.7	2.9	0.4	8.3	3.47	_s
2	2	30.9	78	97.6	2.2	0.2	11.3	3.85	_s

^a For data produced at standard conditions, see Table S1.6.2. ^b Conditions: 0.02 mmol 2^{Nd} , 0.02 mmol co-catalyst, 25 mL toluene, 100 rpm, 1 bar of BD pressure, pre-reaction time 0.5 h. ^c E = Et₂AlCl. ^d Determined by ¹H and ¹³C NMR spectroscopy in CDCl₃. ^e Determined by means of size-exclusion chromatography (SEC) against polystyrene standards. ^s This study.

Table S1.7.4. Influence of solvent on 1,3-butadiene polymerization applying $2^{Nd}/I$	Ea
--	----

entry ^b	solvent	BD [mmol]	yield [%]	cis- content [%]ª	<i>trans-</i> content [%] ^d	vinylic content [%]ª	<i>M</i> n [10 ⁴ g/mol] ^e	PDI	ref.
1	toluene	22.4	41	96.7	2.9	0.4	8.3	3.47	_5
2	<i>n</i> -hexane	60.0	49	99.3	0.0	0.7	25.5	3.66	_s

^a For data produced at standard conditions, see Table S1.6.2 ^b Conditions: 0.02 mmol 2^{Nd} , 0.02 mmol cocatalyst, 25 mL solvent, prereaction time: 0.5 h, reaction time 1 h, 100 rpm. ^c E = Et₂AlCl. ^d Determined by ¹H and ¹³C NMR spectroscopy in CDCl₃. ^eDetermined by means of size-exclusion chromatography (SEC) against polystyrene standards. ^s This study.

S1.8 Polymerization of ethylene

entry ^b	precatalyst	cocatalyst	yield [%]	Mn [10 ⁴ g/mol] ^e	PDIe	<i>T</i> m ^g [°C]	ref.
1	Nd(AlMe4)3 (2 Nd)	Е	8	16.3	3.4	138	_5
2	Nd(AlMe ₄) ₃ (2 Nd)	2E	58	13.2	4.0	130	_s

Table S1.8.1. Results of ethylene polymerization applying 2Nd/E and 2Nd/2E

^b Conditions: 0.06 mmol **2**Nd, 0.06 or 0.12 mmol cocatalyst, 125 mL toluene, 60 mmol of ethylene, pre-reaction time: 0.5 h, 60 °C, 50 rpm, reaction time 1 h. ^c E = Et₂AlCl. ^e Determined by means of high temperature size-exclusion chromatography (SEC) against polystyrene standards. ^g Determined by differential scanning calorimetry; heating rate: 20 K/min, cooling rate: 60 K/min. ^s This study.

S2. Comparison of Microstructure Data Obtained from ATR-IR and NMR Spectroscopic Analyses

The data obtained from the prescreening of the microstructure by ATR-IR spectroscopy is plotted versus the microstructure data calculated from the NMR spectra according to section 3.5 in the main article.

S2.1 Polyisoprene applying precatalyst Ce(AlMe₄)₃ (2^{Ce})

Figure S2.1.1. Comparison of the microstructure results obtained by NMR and ATR-IR spectroscopy, applying 2^{Ce} and cocatalysts **A**-**E** (**A** = [Ph₃C][B(C₆F₅)₄], **B** = [PhNMe₂H][B(C₆F₅)₄], **C** = B(C₆F₅)₃, **D** = Me₂AlCl, **E** = Et₂AlCl) in both one and two equivalents. For detailed polymerization data see Tables S1.2.2 and S2.1.1.

cocatalyst^c

A

2**A**

В

2**B**

С

2**C**

D

2D

Е

2E

entry^b

1

2

3

4

5

6

7

8

g

10

	NMR			ATR-IR				
<i>cis</i> -content [%]ª	<i>trans-</i> content [%] ^d	vinylic content [%]ª	<i>cis-</i> content [%] ^e	<i>trans</i> -content [%] ^e	vinylic content [%] ^e	ref.		
42.2	53.1	4.7	44.4	51.8	3.8	_s		
66.4	13.7	19.9	68.1	18.7	13.3	_ ^s		
37.7	51.7	10.6	43.7	53.0	3.3	_5		
53.4	30.5	16.1	57.7	33.5	8.8	_s		

55.4

86.0

97.1

97.4

97.2

97.3

Table S2.1.1. Comparison of the microstructure results by NMR and ATR-IR spectroscopy, data from isoprene polymerization applying **2**^{Ce a}

^a For detailed data on the respective chain properties, see Table S1.2.2. ^b Conditions: 0.02 mmol 2^{Ce} , 0.02 or 0.04 mmol resp. cocatalyst, 8 mL solvent, pre-reaction time: 0.5 h, reaction time 1 h. ^c $\mathbf{A} = [Ph_3C][B(C_6F_5)_4]$, $\mathbf{B} = [PhNMe_2H][B(C_6F_5)_4]$, $\mathbf{C} = B(C_6F_5)_3$, $\mathbf{D} =$ Me₂AlCl, $\mathbf{E} = Et_2AlCl.^d$ Determined by ¹H and ¹³C NMR spectroscopy in CDCl₃. ^eDetermined by ATR-IR spectroscopy. ^s This study.

2.3

5.1

2.2

3.5

2.4

1.7

S2.2 Polyisoprene applying precatalyst Nd(AlMe₄)₃ (2Nd)

54.4

88.4

95.3

95.9

97.6

98.2

43.3

6.5

2.5

0.6

0.0

0.1

Figure S2.2.1. Comparison of the microstructure results obtained by NMR and ATR-IR spectroscopy, applying Nd(AlMe₄)₃ (**2**Nd) and cocatalysts **A**-**E** (**A** = [Ph₃C][B(C₆F₅)₄], **B** = [PhNMe₂H][B(C₆F₅)₄], **C** = B(C₆F₅)₃, **D** = Me₂AlCl, **E** = Et₂AlCl) in both one and two equivalents. For detailed polymerization data see Tables S1.2.4 and S2.2.1.

2.7

5.2

2.9

2.6

2.8

27

_s

41.8

8.8

0.0

0.0

0.0

0.0

10

2**E**

			NMR			ATR-IR		
entry ^b	co-catalyst ^c	<i>cis-</i> content [%]ª	trans- content [%] ^d	vinylic content [%]ª	<i>cis</i> -content [%]•	trans- content [%]º	vinylic content [%]•	ref.
1	Α	44.3	50.9	4.9	43.3	49.4	7.3	_s
2	2 A	66.2	21.2	12.6	63.7	19.4	16.9	_ ^s
3	В	46.8	48.4	4.8	43.3	48.8	7.9	_5
4	2 B	62.6	28.5	8.9	59.5	27.6	12.9	_5
5	С	68.0	29.2	2.7	64.5	31.9	3.6	_ ^s
6	2 C	92.7	2.9	4.5	92.2	1.3	6.5	_5
7	D	98.0	0.0	2.0	99.2	0.0	0.8	_5
8	2 D	97.9	0.0	2.1	99.0	0.3	0.7	_ ^s
9	Ε	98.2	0.0	1.8	99.5	0.0	0.5	_5

Table S2.2.1. Comparison of the microstructure results by NMR and ATR-IR spectroscopy, data from isoprene polymerization applying **2**^{Nd a}

^a For detailed data on the respective chain properties, see Table S1.2.4. ^b Conditions: 0.02 mmol 2^{Nd} , 0.02 or 0.04 mmol resp. cocatalyst, 8 mL solvent, pre-reaction time: 0.5 h, reaction time 1 h. ^c A = [Ph₃C][B(C₆F₅)₄], B = [PhNMe₂H][B(C₆F₅)₄], C = B(C₆F₅)₃, D = Me₂AlCl, E = Et₂AlCl. ^d Determined by ¹H and ¹³C NMR spectroscopy in CDCl₃. ^eDetermined by ATR-IR spectroscopy. ^s This study.

2.0

99.9

0.0

0.0

0.0

S2.3 Polyisoprene applying precatalyst Tb(AlMe₄)₃ (2^{Tb})

98.0

Figure S2.3.1. Comparison of the microstructure results obtained by NMR and ATR-IR spectroscopy, applying Tb(AlMe₄)₃ (2^{Tb}) and cocatalysts **A-E** (**A** = [Ph₃C][B(C₆F₅)₄], **B** = [PhNMe₂H][B(C₆F₅)₄], **C** = B(C₆F₅)₃, **D** = Me₂AlCl, **E** = Et₂AlCl) in both one and two equivalents. For detailed polymerization data see Tables S1.2.6 and S2.3.1.

1	1 ,	11 2 0						
			NMR			ATR-IR		
			trans-	vinylic	cis-	trans-	vinylic	
entry ^b	cocatalyst ^c		content	content	content	content	content	ref.
		[%] ^u	[%] ^d	[%] ^d	[%]e	[%]e	[%]e	
1	А	55.1	33.5	11.4	53.9	31.8	14.3	_8
2	2 A	58.9	27.6	13.4	57.3	25.2	17.5	_s
3	В	60.4	35.5	4.1	55.9	40.0	4.1	_5
4	2 B	85.0	13.5	1.5	88.3	11.7	0.0	_s
5	С	88.8	9.7	1.5	88.8	11.2	0.0	_s
6	2 C	76.3	8.2	15.5	74.1	6.4	19.5	_5
7	D	65.6	19.4	15.0	63.4	16.9	19.7	_s
8	2 D	89.7	5.5	4.8	91.1	2.2	6.7	_s
9	Ε	84.6	13.6	1.9	83.5	11.0	5.5	-5
10	2E	90.2	8.1	1.7	90.9	9.1	0.0	_s

Table S2.3.1. Comparison of the microstructure results by NMR and ATR-IR spectroscopy, data from isoprene polymerization applying $2^{Tb a}$

^a For detailed data on the respective chain properties, see Table S1.2.6. ^b Conditions: 0.02 mmol **2**^{Tb}, 0.02 or 0.04 mmol resp. cocatalyst, 8 mL solvent, pre-reaction time: 0.5 h, reaction time 1 h. ^c **A** = [Ph₃C][B(C₆F₅)₄], **B** = [PhNMe₂H][B(C₆F₅)₄], **C** = B(C₆F₅)₃, **D** = Me₂AlCl, **E** = Et₂AlCl.^d Determined by ¹H and ¹³C NMR spectroscopy in CDCl₃. ^eDetermined by ATR-IR spectroscopy. ^s This study.

S2.4 Polyisoprene applying precatalyst Er(AlMe₄)₃ (2^{Er})

Figure S2.4.1. Comparison of the microstructure results obtained by NMR and ATR-IR spectroscopy, applying $Er(AlMe_4)_3$ (2^{Er}) and cocatalysts A-E (A = [Ph₃C][B(C₆F₅)₄], B = [PhNMe₂H][B(C₆F₅)₄], C = B(C₆F₅)₃, D = Me₂AlCl, E = Et₂AlCl) in both one and two equivalents. For detailed polymerization data see Tables S1.2.10 and S2.4.1.

			NMR trans-	vinylic content [%]ª		ATR-IR trans-	vinylic	ref.
entry ^b	cocatalyst ^c	<i>cis</i> -content	content [%]ª		<i>cis</i> -content [%] ^e	content [%] ^e	content [%]ª	
1	Α	67.8	22.8	9.4	70.3	21.5	8.3	_5
2	2 A	76.9	1.6	21.5	76.5	5.9	17.7	_s
3	В	67.7	16.4	15.9	67.6	19.0	13.5	_s
4	2 B	69.8	12.4	17.8	71.4	13.4	15.2	_5
5	С	73.3	23.4	3.3	74.2	21.4	4.5	_s
6	2 C	96.9	0.0	3.1	92.6	2.1	5.2	_5

Table S2.4.1. Comparison of the microstructure results by NMR and ATR-IR spectroscopies, data from isoprene polymerization applying **2**^{Er a}

^a For detailed data on the respective chain properties, see Table S1.2.10. ^b Conditions: 0.02 mmol 2^{Er}, 0.02 or 0.04 mmol resp. cocatalyst, 8 mL solvent, pre-reaction time: 0.5 h, reaction time 1 h. ^c A = [Ph₃C][B(C₆F₅)₄], B = [PhNMe₂H][B(C₆F₅)₄], C = B(C₆F₅)₃, D = Me₂AlCl, E = Et₂AlCl. ^d Determined by ¹H and ¹³C NMR spectroscopy in CDCl₃. ^e Determined by ATR-IR spectroscopy. ^s This study.

S2.5 Polyisoprene irradiated by UV-light at 254 nm

Figure S2.5.1. Comparison of the microstructure results obtained by NMR and ATR-IR spectroscopy, applying Nd(AlMe₄)₃ (2^{Nd}) and cocatalysts **A**-**E** (**A** = [Ph₃C][B(C₆F₅)₄], **B** = [PhNMe₂H][B(C₆F₅)₄], **C** = B(C₆F₅)₃, **D** = Me₂AlCl, **E** = Et₂AlCl) in one equivalent and 48 h of UV radiation at 254 nm. For detailed polymerization data see Tables S1.2.4, S1.5.1 and S2.5.1.

			NMR			ATR-IR		
entry ^b	cocatalyst	<i>cis</i> -content [%]ª	<i>trans-</i> content [%] ^d	vinylic content [%]ª	<i>cis</i> -content [%] ^e	<i>trans-</i> content [%] ^e	vinylic content [%] ^e	ref.
1	Α	43.9	51.9	4.3	35.8	42.1	22.1	_s
2	В	39.9	55.8	4.3	34.0	43.5	22.5	_5
3	С	57.0	40.7	2.3	47.9	33.8	18.3	_s
4	D	97.9	0.0	2.1	59.6	9.8	30.6	_8
5	Е	98.0	0.0	2.0	59.6	9.3	31.1	_ ^s

Table S2.5.1 Comparison of the microstructure results by NMR and ATR-IR spectroscopy, data from UV-irradiated samples of isoprene polymerization applying **2**^{Nd a}

^a For detailed data on the respective chain properties, see Tables S1.2.4 and S1.5.1. ^b Conditions: samples obtained from isoprene polymerization were exposed to UV-light of 254 nm for 48 h. ^c $\mathbf{A} = [Ph_3C][B(C_6F_5)_4]$, $\mathbf{B} = [PhNMe_2H][B(C_6F_5)_4]$, $\mathbf{C} = B(C_6F_5)_3$, $\mathbf{D} = Me_2AICL$, $\mathbf{E} = Et_2AICL$. ^d Determined by ¹H and ¹³C NMR spectroscopy in CDCl₃. ^eDetermined by ATR-IR spectroscopy. ^s This study.

Values reported for the 3,4 contents in Table and Figure S2.5.1 are given, as obtained from the algorithm. As a shift towards vinylic linkage by UV radiation does not seem likely, it is assumed, that UV-induced crosslinking creates oscillations in the IR spectrum that are misinterpreted by the algorithm.

S3. Extrapolation of the Ratio n(Chains) / n(Ln Centers)

In order to obtain the ratio of polymer chains per lanthanide center, the assumption is made, that if the polymerization would not be stopped after 1 h of reaction time, it would continue in the same fashion until all monomer is consumed.

The extrapolated number average molecular mass is then given by

$$M_{n,ext}(c_M = 0) = \frac{M_n(1\,h)}{Yield(1\,h)'} \tag{1}$$

where c_M is the concentration of the monomer. Due to the assumtion discussed above, errors occur, as the system, investigated in this study, is intended to set free a chain transfer agent AlMe₃, that could cause the initiation of new chains at all times. As the chain transfer capability of AlMe₃ is known to be low, and chain termination plays only a minor role in catalyzed polymerization, these errors are assumed to be low enough to be neglected.

The respective degree of polymerization is given by equation (2).

$$P_{n,ext} = \frac{M_{n,ext}}{M_M},\tag{2}$$

where $M_{\rm M}$ is the molecular mass of the monomer. For 100% monomer consumption, equation (3) applies.

$$P_n = \frac{n_M}{n_{act\,Ln}} = \frac{n_M}{n(chains)'} \tag{3}$$

where n_M is the amount of monomer fed [mol] and therefore constant during the whole reaction. n_{act} L_n is the amount of active lanthanide centers [mol], and n(chains) the amount of polymer chains formed during the reaction [mol].

 $P_{n, exp}$, the expected degree of polymerization if all Ln centers grow polymer chains is given by

$$P_{n,exp} = \frac{n_M}{n_{Ln}} = \frac{n_M}{n(chains)_{exp'}}$$
(4)

where nLn is the total amount of Ln centers. Therefore,

$$\frac{P_{n,exp}}{P_{n,ext}} = \frac{n(chains)}{n_{Ln}} = \frac{n_{act\,Ln}}{n_{Ln}}$$
(5)

Applying this extrapolation to the isoprene polymerizations discussed in Sections S1.1 - S1.3 led to the matrix shown as Table S3.1.

Table S3.1 Comparison of the ratios of the amounts of polymer chains and lanthanide centers obtained for the polyisoprenes^a

	precatalyst [Ln(AlMe ₄) ₃] (2 ^{Ln})											
entry ^b	cocatalyst ^c	2 ^{La}	2 ^{Ce}	2 ^{Pr}	2^{Nd}	2 ^{Gd}	2 ^{ть}	2^{Dy}	2 ^{Ho}	2 ^Y	2 ^{Er}	2 ^{Lu}
1	Α	1.36 ^h	1.94	1.62	1.54	1.15	1.11	0.65	1.02	0.76 ^h	0.69	1.01
2	2 A	1.01	1.70	0.66	1.09	2.32	2.01	3.72	1.56	0.18	1.31	1.80
3	В	1.13 ^h	2.23	1.96	3.37	0.99	0.79	0.65	0.52	0.58 ^h	0.61	1.31
4	2 B	1.20	1.94	0.43	1.25	0.76	1.06	0.89	0.81	0.17 ^h	0.85	1.62
5	С	0.16 ^h	1.78	0.87	0.65	0.62	0.71	0.43	0.46	0.32 ^h	0.37	0.30
6	2 C	0.29	0.97	0.68	0.32	0.50	0.53	0.49	0.35	0.36	0.41	_f
7	D	0.17	0.04	0.28	0.29	0.62	0.92	0.77	0.16	_f	_f	_f
8	2 D	_f	0.44	0.33	0.34	0.55	1.27	0.66	0.32	0.14	_f	_f
9	Ε	_ f	6.53	0.66	0.69	1.38	2.23	1.22	0.46	0.32	_f	_f
10	2 E	0.15	0.75	1.39	1.11	1.89	2.82	1.96	0.11	0.47	_f	_f

^a For detailed information on polymerization data and origin of the values (literature or this study), see sections S1.1 and S1.2. For information on the color code, *vide infra*. ^b Conditions: 0.02 mmol of the resp. Ln precatalyst, 0.02 or 0.04 mmol cocatalyst, in toluene, [Ln]:[isoprene] 1:1000 (n/n), reaction time 1 h, pre-reaction time 0.5 h. ^c $A = [Ph_3C][B(C_6F_5)_4], B = [Ph_3Me_2H][B(C_6F_5)_4], C = B(C_6F_5)_3, D = Me_2AlCl, E = Et_2AlCl. ^c No further evaluation possible due to low yield. ^b Reaction time 24 h.$

Table S3.1 shows the values implying multinary active species or low initiation rates (as n(chains) / n(n Ln centers) < 1) in green color. Those, which grow more than one chain per metal center or imply chain transfer or termination are given in blue and red; red highlights those active systems, that grow more than two chains per Ln center.

S4. Crystal Structure Data

Figure S4.1. ORTEP view of one of two individuals in the unit cell of **2**^{Tb}. Atoms are represented by atomic displacement ellipsoids at the 50% level. Hydrogen atoms are omitted for clarity. Selected distances (Å) and angles (deg): Tb1–C1 2.537(4), Tb1–C2 2.520(4), Tb1–C5 2.536(4), Tb1–C6 2.519(4), Tb1–C9 2.522(4), Tb1–C10 2.544(4), average Tb1–CX (X = 1, 2, 5, 6, 9, 10) 2.536, Al1–C1, 2.089(4), Al1–C2, 2.083(4); C1–Tb1–C2 84.27(12), C1–Tb1–C5 92.14(13), C1–Tb1–C6 175.02(13), C1–Al1–C2 108.81(15).

	2 ^{Gd}	2 ^{ть}			
CCDC Deposition	1817853	1817852			
Empirical formula	C12 H36 Al3 Gd	C12 H36 Al3 Tb			
Mw [g mol-1]	418.60	420.27			
T[K]	100(2)	100(2)			
Wavelength	0.71073 Å	0.71073 Å			
Crystal system	monoclinic	monoclinic			
Space group	P21/c	P21/c			
a [Å]	7.3841(4)	7.3790(18)			
b [Å]	17.7049(10)	17.703(5)			
c [Å]	32.1650(18)	32.277(8)			
α [°]	90	90			
β [°]	92.4360(10)	92.552(4)			
γ [°]	90	90			
Volume [ų]	4201.3(4)	4205.7 (19)			
Ζ	8	8			
density (calculated) [mg mm- ³]	1.324	1.327			
Absorption coefficient µ [mm ⁻¹]	3.265	3.417			
Theta range	2.222 to 27.103°	1.313 to 28.281°			
Reflections collected	60729	65817			
Independent reflections	9286 $[R_{(int)} = 0.0762]$	$10430 \ [R_{(int)} = 0.061]$			
Data / restraints / parameters	9286 / 0 / 445	10430 / 0 / 445			
R1(obs) ^a	0.0388	0.0306			
wR2(all)b	0.0689	0.0670			

Table S4.1. Crystal data and structure refinement for 2^{Gd} and 2^{Tb}

^a Final R indices [I>2σ(I)]; ^b R indices (all data).

References

Litlabø R, Lee H.S.; Niemeyer M.; Törnroos, K.W.; Anwander R. Rare-earth metal bis(tetramethylaluminate) complexes supported by a sterically crowded triazenido ligand. *Dalton Trans.* **2010**, *39*, 6815-6825.

Arndt, S.; Beckerle, K.; Zeimentz, P.M.; Spaniol, T.P.; Okuda, J. Cationic Yttrium Methyl Complexes as Functional Models for Polymerization Catalysts of 1,3-Dienes. *Angew. Chem. Int. Ed.* **2005**, *44*, 7473-7477.

Schädle, D., Personal Communication, Eberhard Karls Universität Tübingen, 2013.

Fischbach, A.; Klimpel, M.G.; Widenmeyer, M.; Herdtweck, E.; Scherer, W.; Anwander R. Stereospecific Polymerization of Isoprene with Molecular and MCM-48-Grafted Lanthanide(III) Tetraalkylaluminates. *Angew. Chem. Int. Ed.* **2004**, *43*, 2234-2239.

Fischbach, A.; Anwander, R. Rare-Earth Metals and Aluminum getting Close in Ziegler Type Organometallics. *Adv. Polym. Sci.* **2006**, 204, 155-281.

Zimmermann, M.; Frøystein, N.A.; Fischbach, A.; Sirsch, P.; Dietrich, H.M.; Törnroos, K.W.; Herdtweck, E.; Anwander, R. Homoleptic Rare-Earth Metal(III) Tetramethylaluminates: Structural Chemistry, Reactivity, and Performance in Isoprene Polymerization. *Chem. Eur. J.* **2007**, *13*, 8784-8800.

Robert, D.; Spaniol, T.P.; Okuda, J. Neutral and Monocationic Half-Sandwich Methyl Rare-Earth Metal Complexes: Synthesis, Structure, and 1,3-Butadiene Polymerization Catalysis. *Eur. J. Inorg. Chem.* **2008**, 2801-2809.