
catalysts

Review

Advances in Enantioselective C–H
Activation/Mizoroki-Heck Reaction and
Suzuki Reaction

Shuai Shi 1 ID , Khan Shah Nawaz 1 ID , Muhammad Kashif Zaman 1 and Zhankui Sun 1,2,* ID

1 School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Shanghai 200240, China;
shishuai@sjtu.edu.cn (S.S.); snkhan@sjtu.edu.cn (K.S.N.); kashifzaman43@sjtu.edu.cn (M.K.Z.)

2 Huzhou Research and Industrialization Center for Technology, Chinese Academy of Sciences,
1366 Hongfeng Road, Huzhou 313000, China

* Correspondence: zksun@sjtu.edu.cn; Tel.: +86-21-3420-8590

Received: 31 January 2018; Accepted: 15 February 2018; Published: 23 February 2018

Abstract: Traditional cross-coupling reactions, like Mizoroki-Heck Reaction and Suzuki Reaction,
have revolutionized organic chemistry and are widely applied in modern organic synthesis. With the
rapid development of C–H activation and asymmetric catalysis in recent years, enantioselective
C–H activation/cross-coupling reactions have drawn much attention from researchers. This review
summarizes recent advances in enantioselective C–H activation/Mizoroki-Heck Reaction and Suzuki
Reaction, with emphasis on the structures and functions of chiral ligands utilized in different reactions.
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1. Introduction

Over the past few decades, C–H bond activation was established as a credible and viable strategy
in organic synthesis [1–18]. On the basis of previous work, C–H activation/functionalization is
employed as a dynamic strategy for the synthesis of a great deal of highly valuable natural products
and other classes of compounds for pharmaceutics or research interests [19–22]. Chemists have long
been captivated by such synthetic techniques, owing to the obvious merits. From a philosophical point
of view, chemists regard C–H bonds as dormant equivalents of various pre-functionalized groups.
Moreover, the direct modification of ubiquitously-existing C–H bonds successfully live up to the criteria
of one perfect catalytic reaction that ought to be atom-economic and environmental-friendly [23]. Thus,
it provides new synthetic disconnections in retrosynthetic analysis [24–28].

It is widely acknowledged that carbon-carbon (C–C) bond formation is fundamental and essential
in organic chemistry. Numerous methods have been well developed to enable such C–C bond formation
to proceed smoothly. Among these reactions, transition-metals (Pd, Rh, Ru, Cu, Zn, Sn, Mg, etc.)
catalyzed cross-coupling reactions are efficient techniques to realize C–C bond formation, which can
be well exemplified by Suzuki [29], Mizoroki-Heck [30], Sonogashira [31], Negishi [32], Stille [33],
Kumada [34] coupling reaction, etc. These coupling reactions are renowned for their extraordinary
utility, practicality, and reliability, and have been broadly utilized in many syntheses, involving
pharmaceuticals, fine chemicals, agrochemicals, etc. Consequently, Richard Mizoroki-Heck, Ei-ichi
Negishi, and Akira Suzuki jointly won the Nobel Prize in Chemistry 2010 for their excellent work of
“palladium-catalyzed cross-coupling reactions in organic synthesis”, which furnished a novel way to
achieve C–C bond formation that substantially accelerated the development of pharmaceutics and
electronics industries [35]. Although lots of outstanding achievements in this field have been made,
from an atom-economic and environmental-harmoniously perspective, there are still shortcomings
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in these known and powerful traditional cross-coupling reactions. For instance, the substrates must
be pre-functionalized, such as using organic (pseudo) halides or organometallic reagents, to gain
reactivity during cross-coupling processes. Subsequently, it would result in metal (pseudo) halide
wastes, which are supposed to be evaded for atom-economic purpose. Therefore, it is a brilliant notion
to develop new methods replacing the pre-functionalized substrates with raw arenes or hydrocarbons,
which can achieve the C–H activation and C–C cross-coupling simultaneously. When compared with
traditional cross-coupling reactions, the C–H activation/C–C cross coupling reactions have obvious
superiority in the aspect of atom-economy and environmental benignity.

With the rapid development of C–H activation/C–C cross-coupling reactions and the emerging of
asymmetric catalysis, the enantioselective C–H activation/C–C cross-coupling reactions drew much
more attention from researchers. It is a dynamic research frontier to achieve C–H activation/C–C
cross-coupling reactions in a stereoselective manner. However, the direct asymmetric functionalizations
of inert C–H bonds still remain challenging in current organic synthesis because of the poor reaction
selectivity (regioselectivity and enantioselectivity). This is not odd due to the properties of C–H bond:
(1) Substrates commonly contain diverse C–H bonds, which usually have high but comparable bond
dissociation energy (BDE of C–H bonds are typically 90–110 kcal·mol−1) within one molecular, rather
than bearing a single targeted C–H bond [36–40]; (2) Higher reaction temperature is required for most
of the reactions that are related to C–H activation in order to meet the high energy for the cleavage of
C–H bonds, which would undoubtedly impose a detrimental effect on the asymmetric induction or
coordination between the chiral ligands and the transition metals. Despite the difficulty in controlling
stereoselectivity of C–H cleavage, tremendous progresses have been made in transition-metal catalyzed
enantioselective C–H activation in the past few decades [41–46]. Among these highly efficient
synthetic methodologies, complex chiral ligands or neighboring directing groups are usually needed.
For instance, the Pd-catalyzed desymmetrization of prochiral C–H bonds has emerged as a promising
strategy that can lead to a wide range of corresponding coupling products.

To our knowledge, numerous articles and reviews have been reported previously [30,36,39–41,46–52],
particularly in the field of enantioselective coupling via asymmetric cross-dehydrogenative-coupling
(CDC) [40,51] and enantioselective metal carbenoid/nitrenoid insertion into unactivated C–H
bonds [40,46,53,54]. As such, this review is meant to briefly highlight, discuss, and illustrate the
latest progresses and encountered challenges on enantioselective C–H activation/Mizoroki-Heck
reaction and Suzuki reaction with a focus on the origin of chirality. The corresponding mechanism and
characteristic features of each part will be discussed in detail, meanwhile, emphasizing the structures
and functions of chiral ligands utilized in different reactions.

2. Enantioselective C–H Activation/Suzuki Reaction

Among different cross-coupling strategies, the Suzuki reaction between a C(sp2/sp3)-halide
or C(sp2/sp3)-triflate with a C(sp2/sp3)-boronic acid or ester manifests remarkable performance in
realizing C-C bond formation (Scheme 1). It has fascinated enormous attention since its first disclosure
in 1979 and become a dynamic and powerful tool [29].Catalysts 2018, 8, 90 3 of 33 
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The great influences of Suzuki reaction are attributed to its high tolerance of different functional
groups and extraordinary efficiency under facile reaction conditions in various media. In addition,
its prominent compatibility to diverse processes, including microwave [55] and continuous flow
conditions [56,57], and the easy accessibility of organic boronic acid or ester coupling partners, which
are usually stable to oxygen, water, as well as harsh reaction conditions, are also attractive to scientists.

In recent years, the direct asymmetric C–H activation/Suzuki cross-coupling reactions have
substantially attracted the attention of synthetic chemists. Herein, we review the recent progresses on
enantioselective C–H activation/Suzuki cross-coupling reactions of prochiral substrates.

In 2008, Li et al., developed the asymmetric C(sp3)–H arylation reactions of tetrahydroisoquinolines
with aryl boronic acids [58]. The reaction proceeded smoothly with CuBr as the catalyst and T-HYDRO
as the oxidant in DME. Interestingly, when chiral PhPyBox was added as the ligand, the desired product
was obtained with 30% ee (Scheme 2). The addition of CuOTf instead of CuBr further increased the
enantioselectivity to 44%.
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Scheme 2. Copper-catalyzed oxidative C(sp3)–H bond arylation with aryl boronic acids. Reproduced
from Reference [58].

There were two proposed mechanism pathways (Scheme 3) and path B is preferred. In pathway
B, the copper-iminium ion intermediate is generated and the subsequent coupling with aryl boronic
acids gives access to the desired product. Meanwhile, the introduction of chiral ligands could induce
the enantioselective C–H activation process. However, the enantioselectivity still remains to be further
improved for practical applications.
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Since 2009, the direct arylation of inert C–H of heteroarenes catalyzed by Pd-catalysts has rapidly
evolved as a reliable and practical method. In 2011, Itami et al., developed the Pd-catalyzed oxidative
C4-selective C–H arylation of thiophenes and thiazoles enabled by boronic acids (Scheme 4) [59].
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This approach was further improved by Itami group in 2012 [60]. In order to access the hindered
heterobiaryls, the screening of ligands was executed employing 4a and 5a (2,3-dimethylthiophene and
2-methylnaphthalenyl-1-boronic acid respectively) as substrates and PdII as the catalyst. Consequently,
the desired coupling product was obtained with bisoxazolines ligands in the presence of Pd(OAc)2,
and L3 was proved to be the most effective ligand (Scheme 5). Under the optimized reaction conditions,
the scope of the substrates (thiophenes and arylboronic acids) was examined. A variety of different
substrates were amenable for this system, delivering moderate yields of up to 84% and excellent C4
regioselectivities up to 99%. The successful synthesis of the tetra-ortho-substituted heterobiaryl 6aa
manifested the high efficiency of this bisoxazoline-Pd catalytic system.
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As the ligands delivering excellent performance (L2 and L3) are chiral, the enantioselective
synthesis of axially chiral heterobiaryls was predicted to be possible. To have a better understanding
of the axial chirality of the substituted heterobiaryls, the rotation energy of 3-methyl-4-(2-
methylnaphthalen-1-yl)-thiophene (6ba) between two conformations was investigated by DFT
calculations (Figure 1). It was found that the rotation energy was high enough for the two atropisomers
to exist stably at room temperature.
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After investigating various conditions, impressively, the asymmetric induction truly occurred
(Scheme 5). When the n-PrOH solution of 4a and 5a was exposed to Pd(OAc)2/L2 and TEMPO at
70 ◦C for 12 h under air, the product (S)-6aa was obtained with 41% ee and 63% yield. When a more
sterically encumbered arylboronic acid 5e was used, the enantiometric excess of the corresponding
product was improved to 72%, albeit with a lower yield. The absolute stereo-configuration of the
asymmetric products was determined by X-ray crystallography.

In 2013, the same group revealed another version of this reaction [61]. In this paper, they utilized
a PdII–sulfoxide–oxazoline/iron–phthalocyanine (FePc) dual catalyst system for the syntheses of
sterically hindered heterobiaryls with air as the oxidant instead of using TEMPO as the stoichiometric
co-oxidant (Scheme 6). It was proposed that the ligands (e.g., L4) took effect in the form of a Pd-sox
complex, which exhibited higher reactivity in coupling hindered partners.
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In 2008, a huge advance was made by Yu and coworkers [62]. They developed the PdII/chiral
mono-N-protected amino acid (MPAA) system and applied it in the desymmetrization reaction of
prochiral substrates (Scheme 7).
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Detailed mechanism studies by Yu and coworkers suggested that using conformationally rigid
chiral carboxylic acids as ligands as well as PdII catalyst might induce the enantioselective C–H
activation process. Indeed, when Boc-protected chiral amino acids were used, the asymmetric induction
took place. With compound 7 and butylboronic acid as model substrates, Boc-L-leucine afforded the
corresponding product with 63% yield and 90% ee (Scheme 8). Intriguingly, when the Boc protecting
group was removed or substituted by methyl group, the reactions failed to occur, which indicates that
an electron-withdrawing group on the nitrogen atom is essential in maintaining the electrophilicity
of PdII towards the C–H bond. Moreover, the esterification of the amino acid or the decrease
of the nitrogen protecting group size resulted in significant declines of enantioselectivities. Thus,
the bulkier menthoxycarbonyl protecting groups were introduced and ligand L13 was found to give
the best results.
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With the optimized condition in hand, different substrates and boronic acids were investigated
and the products were obtained in good yields and moderate to excellent ee (Table 1). Furthermore,
enantioselective alkylation of C(sp3)–H bonds, such as substrate 9, was also executed and the desired
product was obtained with 38% yield and 37% ee (Scheme 9).

Table 1. Investigation on substrate scope [62].
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In the proposed transition state, both the nitrogen atom and the carboxylate group of the amino
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Transition state 11a rather than 11b is preferred, in that the steric repulsion between the substituent
on the newly generated chiral center (o-Tol) and the Boc group on the nitrogen center is minimized
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In 2011, Yu and coworkers reported the enantioselective C(sp3)–H activation of cyclopropanes
catalyzed by PdII/MPAA (Scheme 10) [44].
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Scheme 10. Asymmetric C–H activation/C–C coupling reaction of cyclopropane [44].

In this reaction, the amide derivative of 1-methylcyclopropanecarboxylic acid was utilized as
the substrate and the electron-deficient arylamide group plays as a directing group. In the process
of screening the chiral MPAA ligands, it was discovered that both the protecting group of the amine
and the backbone of the amino acid were crucial for the enantioseectivities (Scheme 11). When the
protecting group Boc was changed into TcBoc, the enantioselectivity increased dramatically to 78%
from 31%, indicating that CCl3 might serve as a bulkier group and an electron-withdrawing group
(EWG) simultaneously. Further screening revealed that phenylalanine derivative L23 was the best
ligand, and up to 93% ee was achieved.
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With the optimized conditions, different cyclopropanes and organoboronic compounds were
investigated and the products were obtained in good yields and good to excellent ee (Figure 3).
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In 2014, the same group reported a further research for the arylation of methylene β-C(sp3)–H
bonds of cyclobutanecarboxylic acid derivatives with arylboron reagents using palladium(II)
catalyst with chiral mono-N-protected α-amino-O-methylhydroxamic acid (MPAHA) as the ligand
(Scheme 12) [63]. This method provided a complementary protocol for the syntheses of enantioenriched
cyclobutanes containing chiral quaternary stereocenters [64,65].
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Similar to the precedent studies, MPAHA can generate a chiral complex with PdII catalyst and
is the key to obtain appreciable yield and enantioselectivity. When O-methylhydroxamic acids were
used as ligands instead of the previously used mono-protected amino acids, a significant boost of
enantioselectivity was observed, which might derive from the stronger coordination between the
ligand and the PdII center. Further evaluation revealed that the Boc protecting group and an aromatic
side chain within the ligand were prone to elevate the enantioselectivities. Of the various ligands that
were tested, L32 gave the best results (Scheme 13). Further optimization of the solvents, bases and
catalysts eventually led to the desired product with 75% yield and 92% ee.
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Under the optimized condition, the reaction was found to work well between a variety of
arylboronic acid pinacol esters and various 1-substituted 1-cyclobutanecarboxylic acid derivatives
(Scheme 14).
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It is well known that planar chiral ferrocenes are frequently applied as highly efficient catalysts or
ligands in asymmetric synthesis [66–71]. Inspired by previous studies from Yu group [44,62], You et al.,
developed an enantioselective syntheses of planar chiral ferrocenes via palladium-catalyzed direct
coupling with arylboronic acids in 2013 (Scheme 15) [72].
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In this work, dimethylaminomethylferrocene 22a and phenylboronic acid 23a were chosen as
model substrates. The reaction proceeded smoothly in the presence of 10 mol % Pd(OAc)2, 20 mol %
Boc-L-Val-OH, and 1 equiv of K2CO3 in DMA (Dimethylacetamide) at 80 ◦C under air, providing the
desired product with 58% yield and 97% ee. The yield was further improved to 79% with 25 mol %
TBAB as the additive when the reaction was performed at 60 ◦C.

With the optimized condition, various aminomethylferrocene derivatives and boronic acids were
examined. Substituted arylboronic acids bearing either an electron-donating group or an electron-
withdrawing group were well-tolerated and afforded the corresponding products in good yields and
excellent enantioselectivities. Moreover, the reaction was also general for aminomethylferrocenes
with different alkyl groups on the nitrogen atom (Scheme 16). In addition, a large scale reaction was
executed smoothly, which further confirmed the practicality of this method.
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At last, the planar-chiral P,N-ligand L34 prepared from compound 24 was successfully utilized in
the palladium-catalyzed allylic alkylation reaction (Scheme 17), which fully demonstrated the potential
application of this novel protocol.
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It is well known that chiral phosphorus compounds play important roles as ligands or
organocatalysts in asymmetric synthesis [73–76]. In 2015, Han group reported the asymmetric syntheses
of traditionally inaccessible P-stereogenic phosphinamides via Pd-catalyzed enantioselective C(sp2)–H
functionalization (Scheme 18) [77].
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Similarly, chiral mono-N-protected amino acids (MPAA) were used as ligands in this reaction.
The presence of the carbamate moiety employed as the N-protecting group and the carboxylic acid
group within the ligand were essential to deliver the desired products with good enantioselectivities.
Of the various chiral ligands tested, ligand L35 was found to be the optimal ligand, affording 68%
yield and 96% ee (Scheme 18). The best reaction condition was found to be 10 mol % Pd(OAc)2, 20 mol
% L35, 0.5 equiv of BQ, 1.5 equiv of Ag2CO3, 3.0 equiv of Li2CO3, and 40.0 equiv of H2O in anhydrous
DMF at 40 ◦C under air. In addition, an array of substrates, including arylboronic esters decorated
with different groups and different diarylphosphinamides, were subjected to this protocol and most of
the reactions occurred efficiently (Scheme 19). Practically, this novel approach could be carried out in
the gram scale with consistent efficiency.
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Recently, the enantioselective ortho-C(sp2)–H coupling between para-nitrobenzenesulfonyl (nosyl)
protected diarylmethylamines and arylboronic acid pinacol esters was established by Yu and coworkers
(Scheme 20) [78].
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Herein, chiral mono-N-protected amino acids (MPAA) were adopted as chiral ligands at first.
Further screening revealed that carbamate-protected, N-methoxyamide-substituted aliphatic amino
acids were the best choice. When Fmoc-L-Leu-NHOMe was used, the desired product could be
obtained in 90% yield and 96% ee. This method was further applied to a variety of different
diarymethylamines with arylboronic acid pinacol esters as coupling partners. Under the optimized
condition, most of the reactions proceeded smoothly with good yields and excellent enantioselectivities
(Schemes 21 and 22).
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A stereochemical model was proposed (Figure 4). It was assumed that the coordination between
the imine moiety of the deprotonated anionic sulfonamide and PdII center promoted the stereoselective
C–H activation followed by arylation.
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3. Enantioselective C–H Activation/Mizoroki-Heck Type Reaction

Another important type of cross coupling reaction is the Mizoroki-Heck reaction (Scheme 23),
which exhibits extraordinary performance with high efficiency in assembling C–C bonds [79,80].
Herein, we will highlight the recent progresses in the field of enantioselective C–H activation
concerning Mizoroki-Heck type reaction.
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Scheme 23. Mizoroki-Heck reaction.

Inspired by the excellent performances of monoprotected amino acids (MPAA) as ligands for
enantioselective C–H activation [62], Yu and coworkers developed an enantioselective C–H olefination
reaction of diphenylacetic acids using MPAA as chiral ligands [81].

Among the various chiral monoprotected α-amino acids examined, Boc-Ile-OH proved to be the
best one. The yield could be improved to 73% (97% ee) with the preformed sodium salt of the starting
material and KHCO3 as the base (Scheme 24).
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Scheme 24. Enantioselective C–H olefination of diphenylacetic acids [81].

A broad range of styrenes with different substituents were inspected and it was found that
styrenes with para and meta alkyl substituents gave higher enantioselectivities (92–97% ee). In addition,
acrylate coupling partners were also tolerant to such condition, affording 99% ee. However, a mixture
of the desired olefination product and the corresponding conjugated addition product was isolated
(Scheme 25).
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Different carboxylic acids were also treated with this strategy and most of them proceeded
efficiently except for α-hydrogen containing substrate (58% ee). Besides, substrates containing
electron-donating groups and moderately electron-withdrawing groups were well compatible to
this procedure, although olefination of the latter gave lower yields (Scheme 26).
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Yu also proposed a possible transition state for this enantioselective C–H olefination (Figure 5).
A chiral carbon-Pd intermediate could be formed, followed by olefination to give the corresponding
chiral product.
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Based on the recent development of enantioselective C–H iodination using PdII/MPAA catalysts
for kinetic resolution through C–H hydroxylation and iodination [82,83], Yu and coworkers developed
a kinetic resolution method to achieve enantioselective C–H olefinations of α-hydroxy and α-amino
phenylacetic acids utilizing PdII-catalyzed system in 2016 (Scheme 27) [84].
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In this paper, Yu also employed mono-N-protected amino acid (MPAA) as ligands to enable
enantioselective C–H bond olefinations. Of different MPAA ligands screened, Boc-L-Thr(Bz)-OH (L38)
gave the best selectivity factor (s) [85] of 54 (90% ee and 45% yield). Notably, the loading of Pd(OAc)2

could be reduced to 5 mol % without a pronounced erosion of the selectivity, and the addition of
0.4 equivalent of olefin increased the enantioselectivity to 93%.

With the optimized reaction condition, a series of olefin coupling partners were subjected to this
transformation and a broad range of electron-deficient olefins were well tolerated. Of note, acrylates
were a good coupling partner affording s factors ranging from 46 to 54. Vinyl amides and vinyl
phosphates also proceeded smoothly. A wide range of different substituted mandelic acid substrates
were also successfully olefinated with reasonable s factors (Scheme 28).
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Moreover, the scope of different substituted racemic phenylglycine substrates was investigated
and most of them furnished the products with synthetically useful s factors (Scheme 29).
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Furthermore, for the remaining starting materials 37′ with 87% ee, a following olefination protocol
using the opposite configuration ligand could afford the corresponding chiral product with 99% ee
(Scheme 30).
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In analogy to previously mentioned mechanism, there are two proposed intermediates (Figure 6),
TSS and TSR, respectively, and TSS is the favored configuration due to the less steric repulsion
between the Boc group and larger OPiv moiety. This stereomodel can well rationalize the origin of
the enantioselectivity.
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Another interesting finding on enantioselective C–H activation/Heck reaction was provided by
Shi and coworkers in 2017 [86]. In this article, atroposelective synthesis of axially chiral biaryls by C–H
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olefination, utilizing the PdII/transient chiral auxiliary (TCA) as the catalytic system, was achieved.
Of note, in this asymmetric C–H olefination reaction, the chiral free amino acid played as a transient
chiral auxiliary (TCA), which promoted the C–H activation process instead of only serving as a simple
chiral ligand. Of the various TCA examined, the L-tert-leucine (T1) was found to be the optimal. As
expected, the other atropisomer was obtained, while the opposite TCA (D-tert-leucine) was employed
(Scheme 31).
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Scheme 31. Optimization of the reaction [86].

With the optimized reaction condition, the substrate generality was inspected. A broad range
of biaryls with different substituents were tolerated to this protocol. It ought to be noted that C–H
olefination of biaryls with substituents at either 6- or 2′-position or less hindered substituents at
both 6- and 2′-position proceeded successfully in a dynamic kinetic resolution (DKR) manner, giving
enantioenriched products in good to excellent yields and excellent enantioselectivities (95 to >99% ee)
(Scheme 32).
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Nonetheless, for the biaryls bearing sterically more hindered substituents at both 6- and
2′-position, C–H olefination would occur through a kinetic resolution (KR) manner in excellent
selectivities (Scheme 33). Moreover, various acrylates and styrenes were investigated and most of them
were compatible to this method, except that electronrich styrenes were determined as inert coupling
partners (Schemes 32 and 33).
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As far as the mechanism was concerned, it was proposed that the chiral amino acid would react
with the racemic substrate to give the imine intermediates A and B reversibly. Then, C–H cleavage
of B took place selectively due to the minor steric repulsion, resulting in intermediate C with axially
stereoenriched biaryl palladacycle. Then, intermediate C underwent a typical Heck reaction with olefin
to afford intermediate D, which would be hydrolyzed to furnish the desired chiral biaryls (Ra)-E.
Meanwhile, the Pd0 was reoxidised into PdII to close the catalytic cycle (Scheme 34).
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The PdII/MPAA catalysts were also applied in the enantioselective olefinations of N,N-
dimethylaminomethylferrocene by Wu group (Scheme 35) [87].
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In the proposed mechanism, the cyclopalladated complex A was first generated by palladium
species through coordination with the substrate and the ligand. Then, intermediate A underwent a
typical Heck reaction to furnish the desired product. It is worth noting that in this catalytic system,
the N,N-dimethylaminomethylferrocenium C was generated in situ by air and served as a terminal
oxidant to regenerate active PdII from the reduced Pd0 species, completing the catalytic cycle. Therefore,
no external oxidant was needed (Scheme 36).
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Scheme 36. The proposed mechanism for the reaction. Reproduced from Reference [87].

N,N-dimethylaminomethylferrocene and butyl acrylate were chosen as the model substrates.
It was found the introduction of mono-N-protected amino acids (MPAA) as ligands to PdII, not just
induced the high enantioselectivities, but also dramatically increased the reaction yields. Both Boc-L-
Phe-OH (L39) and Boc-L-Tle-OH (L40) gave excellent yields and enantioselectivities for the model
reaction (Scheme 35). Under the optimized condition, various acrylates, styrenes, and even aliphatic
olefins were tested (Scheme 37). All of them worked well with excellent enantioselectivities (up to
99%) and yields (up to 98%).
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Scheme 37. Substrate scope for the enantioselective C–H olefination reaction [87].

Another impressive development was revealed by You and coworkers [88]. They also employed
the PdII/MPAA catalyst system in the enantioselective oxidative C–H/C–H cross-coupling of
ferrocenes with heteroarenes to prepare planar chiral ferrocenes.

The Boc-L-Ile-OH proved to be the best ligand, affording the desired product in a C2 regioselective
manner with 71% yield and nearly perfect 99% ee under the optimal reaction conditions with air as
the oxidant. Subsequently, various ferrocene derivatives were evaluated and the reaction exhibited
excellent tolerance towards different functional groups (Scheme 38).
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Scheme 38. Enantioselective cross-coupling reactions of benzofurans [88].

Moreover, the scope of heteroarenes was explored as well. Various substituted benzofurans,
furans, thiophenes, pyrroles, and indoles worked smoothly under this condition, providing impressive
yields and enantioselectivities (up to 99%) (Scheme 39).
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Besides, the newly synthesized planar chiral ferrocenes could be further elaborated into useful
ligands for asymmetric transformations (Scheme 40).
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Another excellent work on synthesizing novel axially chiral biaryls by direct C–H bond olefination
was fulfilled by You and coworkers [89]. This dehydrogenative coupling reaction was catalyzed by
chiral Cp/rhodium complexes. Further screening revealed that catalysts with bulky substituents
usually led to diminished yield and e.r. value (Scheme 41). Finally, the combination of the Cat.1,
Ag2CO3 (1.0 equiv), and Cu(OAc)2 (20 mol %) in methanol was determined to be the optimal condition,
affording the desired product with 94% yield and 90:10 e.r.
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Scheme 41. Catalyst screening for the enantioselective oxidative Heck coupling reaction [89].

Under the optimized condition, biaryl substrates bearing different EDG or EWG proceeded
efficiently to generate the desired alkenylated products in moderate to excellent yields and
enantioselectivities, with up to 97% conversion and 93:7 e.r. Additionally, different olefins were
well tolerated to this reaction, including styrenes, acrylates, acrylamides, and vinyl phosphonate esters.
Notably, ethylene was also introduced, which gave the desired product with 86:14 e.r. Moreover,
the gram-scale reaction also worked well (Scheme 42).
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Finally, the product was successfully utilized as ligands in the rhodium-catalyzed conjugate
addition of phenylboronic acid to cyclohexenone reaction (Scheme 43), which sufficiently demonstrated
the potential of this method.
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4. Summary

Although traditional cross-coupling reactions have revolutionized organic chemistry and are
widely applied in modern organic synthesis, the need for prefunctionalized starting materials has
prompted chemists to investigate more atom and step economic alternatives. Therefore, C–H activation
has emerged as a powerful tool to achieve C–C bond formation, allowing for the transformation of
otherwise unreactive C–H bonds, thus maximizing the overall operational efficiency and decreasing
the amount of stoichiometric metallic waste. The combinations of C–H activation/C–C cross-coupling
reactions provide unlimited possibilities for synthetic chemists to access complex molecules.

This review summarizes the recent development on eantioselective C–H activation/Mizoroki-
Heck reaction and Suzuki reaction. Due to the low reactivity of the C–H bonds, and the selectivity
problem rooted in the abundance of C–H bonds, these transformations are extremely difficult
to achieve. However, thanks to the increased mechanistic studies, chemists continually develop
a better understanding of the mechanical aspects ruling these transformations. The PdII/MPAA
systems developed by Yu group have been utilized successfully and represents one of the most
important progresses.

It should also be pointed out that the concept of toxic heavy metals and benign lighter metals
should not be taken for granted. Recently, studies revealed that some palladium, rhodium compounds,
which were often considered heavy and toxic, might be less toxic than lighter metals [90]. This may
change our traditional views on the toxic effects of metal salts in favor of Pd-catalyzed C–H activation.

Even though apparent advancements in this area have been made, more general protocols are
highly demanded. Much research efforts as far as to design new chiral catalysts and chiral ligands,
expand the substrate scope, and improve the efficiency of these transformations are still needed before
a more general, atom-economical, and more environmentally friendly process become the method of
choice for chemists in industrial or academic settings.
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