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Abstract: Metal–organic frameworks (MOFs), as a new class of porous solid materials, have emerged
and their study has established itself very quickly into a productive research field. This short review
recaps the recent advancement of chiral MOFs. Here, we present simple, well-ordered instances to
classify the mode of synthesis of chiral MOFs, and later demonstrate the potential applications of
chiral MOFs in heterogeneous asymmetric catalysis and enantioselective separation. The asymmetric
catalysis sections are subdivided based on the types of reactions that have been successfully carried
out recently by chiral MOFs. In the part on enantioselective separation, we present the potentiality
of chiral MOFs as a stationary phase for high-performance liquid chromatography (HPLC) and
high-resolution gas chromatography (GC) by considering fruitful examples from current research
work. We anticipate that this review will provide interest to researchers to design new homochiral
MOFs with even greater complexity and effort to execute their potential functions in several fields,
such as asymmetric catalysis, enantiomer separation, and chiral recognition.

Keywords: chiral metal–organic frameworks; chiral ligand; asymmetric catalysis; enantioselective
separation

1. Introduction

Metal–organic frameworks (MOFs), as a unique class of coordination polymers, exist as
well-organized crystalline structures and exhibit varied coordination geometries [1–4]. The diversity
of metals and organic bridging ligands offers numerous structural and functional variations
of MOFs, and directs the materials to various promising applications, such as catalysis [5–7],
gas storage [8,9], chromatographic separation [10–12], chemical sensing [13–16], membranes [17,18],
and drug delivery [19,20]. Considering the importance of chirality, today, research work on chirality
has been expanded to numerous fields [21–23]. One of the most actively emerging fields is the design
and synthesis of chiral MOFs [24] and exploring their applications in various fruitful research fields,
including asymmetric catalysis [25–28], molecular recognition [29], non-linear optics [30–32], and
enantioselective separation [33,34]. Several structural features of chiral MOFs, such as their large
internal surface area, high adsorption capacity, efficient porosity, chemically and thermally stable
skeleton, and above all chiral atmosphere, play a vital role in performing the above-mentioned
applications (Figure 1). However, the successful design and application of chiral MOFs are challenging
tasks for researchers. The present review outlines the recent applications in asymmetric catalysis and
chiral separation explored by chiral MOF.

Catalysts 2018, 8, 120; doi:10.3390/catal8030120 www.mdpi.com/journal/catalysts

http://www.mdpi.com/journal/catalysts
http://www.mdpi.com
https://orcid.org/0000-0001-9956-8517
http://www.mdpi.com/journal/catalysts
http://dx.doi.org/10.3390/catal8030120


Catalysts 2018, 8, 120 2 of 28

Catalysts 2018, 8, x FOR PEER REVIEW  2 of 26 

 

Asymmetric catalysis [25] is one of the essential areas of chiral chemistry, which efficiently 
assists the synthesis of valuable chiral products by selectively making and breaking the chemical 
bonds in an organic transformation. From the economic and ecological point of view, the use of 
homochiral MOFs as asymmetric catalysts is considered to be a potential eco-friendly method due to 
their numerous advantages, including mild reaction conditions, high enantiomeric excess, easy 
purification of the products, and reusability of the catalysts. Moreover, the reactions can take place 
in the inner pores of a chiral MOF catalyst, which serve as reaction chambers to facilitate the guest 
molecules to access the catalytically active sites within the pores. The size of the pores can be changed 
by changing the linkers of the MOFs. Due to these numerous benefits of homochiral MOF catalysts, 
a wide variety of chiral MOFs have been designed and explored as asymmetric catalysts. 
Consequently, the field has expanded rapidly and chiral MOF chemistry has been developing 
remarkably. 

Chiral MOFs also provide a significant role for enantioselective separation [10,11]. As we know, 
the separation of chiral isomers is a challenging task because of their identical physical and chemical 
properties. A chiral environment is required to separate the chiral isomers as the different affinities 
grasped by the chiral isomers have different spatial structures. A large number of chiral stationary 
phases based on crown ethers, polysaccharides, glycopeptides, and proteins have been reported for 
the separations of chiral isomers [35–37]. Alternatively, chiral MOFs are regarded as prospective 
chiral stationary phases in HPLC and GC for enantioselective separation. The main advantages of 
chiral MOFs over other chiral stationary phases are their well-ordered frameworks containing 
available chiral pores to interact with guests and their controllable functionalities by varying chiral 
linkers and metal ions as the separation isomers require. Therefore, the selectivity and the separation 
of chiral isomers can be efficiently done by chiral MOFs. 

 
Figure 1. Typical structural requirement for chiral MOFs for their applications. 

Quite a few review articles have appeared recently on chiral MOFs [38–41]. The reviews have 
endeavored to describe the synthesis of those chiral MOFs that are suitable for applications in various 
fields. As this field is advancing rapidly, a new review article to provide an overview of the recent 
progress in applications of chiral MOFs is quite necessary. This review article is primarily divided 
into two parts. The first part mainly focuses on the emerging synthetic strategies for obtaining chiral 
MOFs and the second part highlights the recent successful applications of chiral MOFs from 2014 in 
the fields of asymmetric catalysis and chromatographic separation. Each part of the review is 
subdivided based on the synthetic approaches to chiral MOFs, the type of reactions carried out, and 
the different methods used for chromatographic separation, aiming to facilitate readers to understand 
them easily. We envision that this brief overview will provide researchers with means to catch up 
straightforwardly with recent advancement in the research on chiral MOFs. 

2. Synthetic Strategies of Chiral MOFs 

Chiral MOFs can be built by using numerous distinct strategies, each of which has its individual 
advantages and disadvantages [42,43]. In this review, we have classified the synthesis of chiral MOFs 
broadly into two different classes, namely the straightforward method and the indirect method, 
which are based on the component used for creating chirality within MOFs. The straightforward 
method for constructing chiral MOFs uses chiral components, such as enantiopure ligands or chiral 
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Asymmetric catalysis [25] is one of the essential areas of chiral chemistry, which efficiently assists
the synthesis of valuable chiral products by selectively making and breaking the chemical bonds in an
organic transformation. From the economic and ecological point of view, the use of homochiral MOFs
as asymmetric catalysts is considered to be a potential eco-friendly method due to their numerous
advantages, including mild reaction conditions, high enantiomeric excess, easy purification of the
products, and reusability of the catalysts. Moreover, the reactions can take place in the inner pores
of a chiral MOF catalyst, which serve as reaction chambers to facilitate the guest molecules to access
the catalytically active sites within the pores. The size of the pores can be changed by changing the
linkers of the MOFs. Due to these numerous benefits of homochiral MOF catalysts, a wide variety of
chiral MOFs have been designed and explored as asymmetric catalysts. Consequently, the field has
expanded rapidly and chiral MOF chemistry has been developing remarkably.

Chiral MOFs also provide a significant role for enantioselective separation [10,11]. As we know,
the separation of chiral isomers is a challenging task because of their identical physical and chemical
properties. A chiral environment is required to separate the chiral isomers as the different affinities
grasped by the chiral isomers have different spatial structures. A large number of chiral stationary
phases based on crown ethers, polysaccharides, glycopeptides, and proteins have been reported for
the separations of chiral isomers [35–37]. Alternatively, chiral MOFs are regarded as prospective chiral
stationary phases in HPLC and GC for enantioselective separation. The main advantages of chiral
MOFs over other chiral stationary phases are their well-ordered frameworks containing available
chiral pores to interact with guests and their controllable functionalities by varying chiral linkers and
metal ions as the separation isomers require. Therefore, the selectivity and the separation of chiral
isomers can be efficiently done by chiral MOFs.

Quite a few review articles have appeared recently on chiral MOFs [38–41]. The reviews have
endeavored to describe the synthesis of those chiral MOFs that are suitable for applications in various
fields. As this field is advancing rapidly, a new review article to provide an overview of the recent
progress in applications of chiral MOFs is quite necessary. This review article is primarily divided
into two parts. The first part mainly focuses on the emerging synthetic strategies for obtaining chiral
MOFs and the second part highlights the recent successful applications of chiral MOFs from 2014 in the
fields of asymmetric catalysis and chromatographic separation. Each part of the review is subdivided
based on the synthetic approaches to chiral MOFs, the type of reactions carried out, and the different
methods used for chromatographic separation, aiming to facilitate readers to understand them easily.
We envision that this brief overview will provide researchers with means to catch up straightforwardly
with recent advancement in the research on chiral MOFs.

2. Synthetic Strategies of Chiral MOFs

Chiral MOFs can be built by using numerous distinct strategies, each of which has its individual
advantages and disadvantages [42,43]. In this review, we have classified the synthesis of chiral MOFs
broadly into two different classes, namely the straightforward method and the indirect method, which
are based on the component used for creating chirality within MOFs. The straightforward method for
constructing chiral MOFs uses chiral components, such as enantiopure ligands or chiral salen, to react
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with metal salts, where the chirality is directly created to the frameworks from the chiral components.
In the indirect method, achiral bridging ligands are used to synthesize achiral MOFs, which are
subsequently transferred to chiral MOFs by applying various techniques, such as (a) post-synthetic
modification (PSM) by reacting an achiral MOF with a chiral auxiliary and (b) a superficial chiral
etching process (SCEP); chiral MOFs can also be attained from achiral bridging ligands by the method
called (c) spontaneous resolution and (d) chiral induction. Chiral induction can be done by using
the appropriate chiral templates, namely, (i) a chiral-co-ligand or chiral spectator; (ii) a chiral-solvent,
and (iii) circularly polarized light. Figure 2 presents the classification of the synthetic strategies of
chiral MOFs.

Catalysts 2018, 8, x FOR PEER REVIEW  3 of 26 

 

salen, to react with metal salts, where the chirality is directly created to the frameworks from the 
chiral components. In the indirect method, achiral bridging ligands are used to synthesize achiral 
MOFs, which are subsequently transferred to chiral MOFs by applying various techniques, such as 
(a) post-synthetic modification (PSM) by reacting an achiral MOF with a chiral auxiliary and (b) a 
superficial chiral etching process (SCEP); chiral MOFs can also be attained from achiral bridging 
ligands by the method called (c) spontaneous resolution and (d) chiral induction. Chiral induction 
can be done by using the appropriate chiral templates, namely, (i) a chiral-co-ligand or chiral 
spectator; (ii) a chiral-solvent, and (iii) circularly polarized light. Figure 2 presents the classification 
of the synthetic strategies of chiral MOFs. 

 
Figure 2. Schematic representation of the classification of the synthetic strategies of chiral MOFs. 
SCEP: superficial chiral etching process. 

2.1. Straightforward Method 

2.1.1. Chiral MOFs Prepared from Chiral Ligands 

The conventional synthetic strategy for obtaining chiral MOFs greatly relies on chiral ligands 
(Scheme 1), in which the crucial step is the selection of suitable chiral ligands. In 2000, Kim and co-
workers reported the synthesis of chiral MOFs from the enantiopure tartaric-acid-derived bridging 
ligands, [Zn3(µ3-O)(L1)6]·2H3O·12H2O (1) (L1 = (4S,5S)-2,2-dimethyl-5-(pyridine-4-ylcarbamoyl)-1,3-
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[45–48], tartaric acid derivatives [49,50], and modified 1,1′-binaphthalene-2,2′-diol (BINOL) 
derivatives [51–53] for designing chiral MOFs. Recently, the approach of synthesis has been extended 
widely with some alteration, which will be described in the review. 

Duan and coworkers [54] in 2015 described the synthesis of two new chiral polyoxometalate 
(POM)-based MOFs. The one-pot solvothermal reaction of chiral ligands L- and D-N-tert-butoxy-
carbonyl-2-(imidazole)-1-pyrrolidine (L-BCIP/D-BCIP), Zn(NO3)2·6H2O, the bridging ligands NH2-
bipyridine, and the Keggin-type [ZnW12O40]6− oxidation catalyst fruitfully furnished chiral POM-
based MOFs denoted as ZnW-PYI1(2a) and ZnW-PYI2 (2b), respectively. The synthesized ZnW-PYI 
can act as an efficient asymmetric catalyst for the conversion of carbon dioxide to cyclic-carbonates 
on reacting with olefins. The catalyst becomes highly stereoselective as the oxidant [ZnW12O40]6− and 
the L-BCIP ligands in the pores control the alignment of the substrate moieties in the reaction 
medium. Figure 3 presents the synthetic mode of the homochiral MOF and its catalytic application 
in asymmetric reaction. 

Figure 2. Schematic representation of the classification of the synthetic strategies of chiral MOFs. SCEP:
superficial chiral etching process.

2.1. Straightforward Method

2.1.1. Chiral MOFs Prepared from Chiral Ligands

The conventional synthetic strategy for obtaining chiral MOFs greatly relies on chiral ligands
(Scheme 1), in which the crucial step is the selection of suitable chiral ligands. In 2000, Kim
and co-workers reported the synthesis of chiral MOFs from the enantiopure tartaric-acid-derived
bridging ligands, [Zn3(µ3-O)(L1)6]·2H3O·12H2O (1) (L1 = (4S,5S)-2,2-dimethyl- 5-(pyridine-4-
ylcarbamoyl)-1,3-dioxolane-4-carboxylicacid) [44]. Subsequently, the method has been developed,
and many research papers have been reported that use naturally occurring enantiopure amino acids
and their derivatives [45–48], tartaric acid derivatives [49,50], and modified 1,1′-binaphthalene-2,2′-diol
(BINOL) derivatives [51–53] for designing chiral MOFs. Recently, the approach of synthesis has been
extended widely with some alteration, which will be described in the review.

Duan and coworkers [54] in 2015 described the synthesis of two new chiral polyoxometalate
(POM)-based MOFs. The one-pot solvothermal reaction of chiral ligands L- and D-N-tert-butoxy-
carbonyl-2-(imidazole)-1-pyrrolidine (L-BCIP/D-BCIP), Zn(NO3)2·6H2O, the bridging ligands
NH2-bipyridine, and the Keggin-type [ZnW12O40]6− oxidation catalyst fruitfully furnished chiral
POM-based MOFs denoted as ZnW-PYI1(2a) and ZnW-PYI2 (2b), respectively. The synthesized
ZnW-PYI can act as an efficient asymmetric catalyst for the conversion of carbon dioxide to
cyclic-carbonates on reacting with olefins. The catalyst becomes highly stereoselective as the oxidant
[ZnW12O40]6− and the L-BCIP ligands in the pores control the alignment of the substrate moieties in
the reaction medium. Figure 3 presents the synthetic mode of the homochiral MOF and its catalytic
application in asymmetric reaction.
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In 2016, Kuang et al. [55] designed the chiral ligand N-(4-pyridylmethyl)-L-leucine HNO3 
(HL2·HNO3) for preparing a homochiral MOF, [CdL2Br]·H2O (3), and reported, for the first time, the 
helical arrangement of Ag nanoparticles (NPs) on this chiral MOF, denoted as h-Ag NPs@MOF (3). 

Scheme 1. Ligands commonly used for the synthesis of chiral MOFs.

In 2016, Kuang et al. [55] designed the chiral ligand N-(4-pyridylmethyl)-L-leucine HNO3

(HL2·HNO3) for preparing a homochiral MOF, [CdL2Br]·H2O (3), and reported, for the first time, the
helical arrangement of Ag nanoparticles (NPs) on this chiral MOF, denoted as h-Ag NPs@MOF (3).
When the synthesized homochiral MOF (3) is soaked in AgNO3 solution, the Ag(I) positive ions can
slowly remove the weak auxiliary ligand Br(I) ions from the MOF, forming AgBr on the surface of the
MOF. The successive reduction led to the formation of highly ordered Ag NPs. The h-Ag NPs@MOF
was further studied and found that it can serve as a surface-enhanced Raman scattering (SERS) sensor
for the enantioselective recognition of D/L-cysteine and D/L-asparagine enantiomers.
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Figure 3. Synthetic procedure of the homochiral MOF ZnW-PYI (2) and schematic representation
of the catalytic synthesis of cyclic-carbonates. Reproduced from [54] with permission from Nature
Publishing Group.

In 2017, Li et al. [56] reported a series of homochiral zeolitic MOFs by employing four
enantiopure amino acids (L-lanine (L-Ala), D-lanine (D-Ala), L-serine (L-Ser), and L-valine
(L-Val)) with a 5-methyltetrazole (5-Hmtz) ligand, giving rise to four isostructural components,
[Zn4(5-mtz)6(L-Ala)2]·2DMF (4a), [Zn4(5-mtz)6(D-Ala)2]·2DMF (4b), [Zn4(5-mtz)6(L-Ser)2]·2DMF (4c),
and [Zn4(5-mtz)6(L-Val)2]·2DMF (4d), respectively (Figure 4). All four components showed permanent
porosity with excellent enantioselective recognition capability.
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Bharadwaj and co-workers [57] recently designed a chiral tetracarboxylic acid ligand,
5,5′-[(S)-(+)-2-methylpiperazine-1,4-diyl]-diisophthalic acid (H4L3), and utilized the ligand to construct
the homochiral MOF [Cu2(L3)(H2O)]·4DMF·4H2O (5) under solvothermal conditions. The MOF
(5) displayed high catalytic activity in an A3 coupling reaction and a Pechmann reaction for the
synthesis of imidazopyridine and coumarin derivatives, respectively. Yaghi and co-workers [58]
reported the first instances of two Ca-based MOFs from naturally occurring nontoxic lactate linkers,
[Ca14(L-lactate)20(acetate)8(C2H5OH)(H2O)] (MOF-1201; (6a)) and [Ca6(L-lactate)3(acetate)9(H2O)]
(MOF-1203; (6b)), respectively, and subsequently demonstrated that MOF-1201 served as a degradable
carrier for pesticides. By varying the position and/or number of carboxylate functions attached to
the fluorenyl moiety (H2L4a, H2L4b, H2L4c, H2L4d), four optically pure chiral Cu-based MOFs with
diverse topologies have been synthesized and studied by Robin et al. [59]. Kaskel group [60] described
a homochiral MOF, DUT-129 (DUT: Dresden University of Technology, (7)), based on zinc ions and a
novel enantiopure H2bodc (bicyclo[2.2.2]octane-1,4-dicarboxylate) linker containing chiral secondary
amines and multiple stereocenters.

2.1.2. Chiral MOFs from Chiral Salen Ligands

Another direct approach to synthesize chiral MOFs is from metallosalen ligands (Scheme 1).
Metallosalen ligands possess a huge size, which facilitates the synthesis of chiral MOFs with extra-large
cavities. Consequently, the frameworks are highly stable towards water and heat and can bear harsh
chemical environments, which leads them to expand their range of applications.

In 2006, Cho et al. [61] prepared metallosalen ligands with the pyridyl-substituted salen-
manganese complex, N,N’-bis(3-tert-butyl-5-(4-pyridyl)-salicylidene)[(R,R)-1,2-cyclohexanediamine]
MnIIICl (L5), and offered a chiral MOF with the robust pillared layer structure of
[Zn2(bpdc)2L5]·10DMF·8H2O (8), (H2bpdc = 4,4’-biphenyldicarboxylic acid). The MOF (8) served as
an efficient catalyst in an enantioselective epoxidation reaction. Since then, many research groups have
made great efforts to synthesize chiral MOFs from metallosalen ligands [62,63].

Recently, in 2017, the highly stable chiral metallosalen-based MOF material,
[(Cu4I4)2L6

4]·20DMF·3CH3CN (9), was successfully synthesized from CuI and a predesigned nickel(salen)
ligand (L6) [L6 = (R,R)-N,N’-bis(3-tert-butyl-5-(4-pyridyl)salicylidene)-1,2- diphenylethylenediamine
nickel(II)] by Li et al. The authors stated that the framework displays a rare (4 + 4) 8-fold interpenetrated
structure with four-connected cubic Cu4I4 cluster nodes and two-connected Ni(salen) linkers. Despite
8-fold interpenetration, the structure possesses two types of one dimensional (1D) channels with large
pore size. Additionally, as a heterogeneous catalyst, the chiral salen-based MOF has successfully
catalyzed the cycloaddition reactions of carbon dioxide, azides, and alkynes with epoxides. Notably,
the catalyst can be reused for three successive cycles without substantial loss of its structural integrity [64].

Another noteworthy development was the fruitful synthesis of multivariate MOFs (MTV-MOFs),
where one, two, or three different enantiopure metallosalen organic linkers were strategically placed
and combined into one single framework. The metallosalen-derived ligands H2L7M (M = Cu,
VO, CrCl, MnCl, Fe(OAc), and Co(OAc)) were first prepared by carrying out the reaction with
N,N′-bis(3-tert-butyl-5-(carboxyl)salicylide (H4L7) and the corresponding metal salts in MeOH. Next,
five binary MTV-MOFs (10) (CuV, CuCr, CuMn, CuFe, and CuCo) were prepared by heating a 1:1
mixture of H2L7M (M = VO, CrCl, MnCl, Fe(OAc), Co(OAc)) and H2L7Cu with Zn(NO3)2·6H2O
in N,N-Dimethylformamide (DMF) and MeOH at 80 ◦C. The authors also successfully prepared
two crystals of the ternary MTV-MOFs (CuMnCr and CuMnCo) by using a similar strategy
(Figure 5). The synthesized MTV-MOFs (10) are efficient heterogeneous asymmetric catalysts for
many enantioselective reactions, which will be discussed in the asymmetric catalysis sections of
the review [65].
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Figure 5. (a) Construction of MOF 10Cu and corresponding multivariate (MTV)-MOFs 10CuM and
10CuMM′ with different metallosalen linkers; (b) one three-dimensional (3D) unit of MOF 10CuM;
(c) two-fold interpenetrating 10Cu (red indicates the interpenetrated 3D network); (d) close-up view of
two L7Cu units brought into proximity to each other by 2-fold interpenetration. Reproduced from [65]
with permission from the American Chemical Society.

2.2. Indirect Method

2.2.1. Post-Synthetic Modification (PSM)

The PSM of previously synthesized MOFs is an efficient approach to produce chiral MOFs.
The key fact for this method is the functional groups in the organic ligands of the pre-synthesized
achiral MOFs, which are susceptible to react with the chiral reagents. This approach affords a means of
decorating the MOFs with a variety of chiral functionalities, which may be impossible or tedious to
synthesize through conventional routes.

Cohen and co-workers demonstrated that the amino groups of IRMOF-3 (IRMOF = isoreticular
MOF) can be changed with amides by reacting them with enantiopure anhydride, resulting in
the formation of chirality in the framework [66–69]. Bonnefoy et al. [70] designed novel MOFs
to which are attached enantiopure peptide moieties. The three different MOFs, Al-MIL-101-NH2 (11a),
In-MIL-68-NH2 (11b), and Zr-UiO-66-NH2 (11c), were chosen to react under microwave irradiation
with numerous oligopeptides (up to tetrapeptides) for the synthesis of chiral hybrid solids. The
microwave irradiation controls the peptide racemization and offers a better grafting yield than the
conventional methods for the reaction.
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In 2016, Fröba and associates [47] reported the PSM of the oxazolidinone moieties connected to
the MOF UHM-25-Val-Evans (12). The acylation of the MOF (12) was attained by reacting it with
propionic anhydride in the presence of a nucleophilic catalyst 4-(dimethylamino)pyridine (DMAP) as
shown in Figure 6. The reaction was initially stirred for 24 h, yielding 37% of N-acylated product. By
increasing the reaction time from 24 h to 72 h, the rate of conversion can be further increased to 90%.
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Recently, Chen et al. [71] designed a chiral MOF, (R,R)-salen(Co(III))@IRMOF-3-AM (13), by using
a two-step procedure. In the first step, the (R,R)-salen(Co(III)) metal complex was adsorbed in the
nanocages of IRMOF-3, and in the second step, by PSM, the free amino groups present on IRMOF-3
were acylated by anhydride (Figure 7).

Catalysts 2018, 8, x FOR PEER REVIEW  7 of 26 

 

2.2. Indirect Method 

2.2.1. Post-Synthetic Modification (PSM) 

The PSM of previously synthesized MOFs is an efficient approach to produce chiral MOFs. The 
key fact for this method is the functional groups in the organic ligands of the pre-synthesized achiral 
MOFs, which are susceptible to react with the chiral reagents. This approach affords a means of 
decorating the MOFs with a variety of chiral functionalities, which may be impossible or tedious to 
synthesize through conventional routes. 

Cohen and co-workers demonstrated that the amino groups of IRMOF-3 (IRMOF = isoreticular 
MOF) can be changed with amides by reacting them with enantiopure anhydride, resulting in the 
formation of chirality in the framework [66–69]. Bonnefoy et al. [70] designed novel MOFs to which 
are attached enantiopure peptide moieties. The three different MOFs, Al-MIL-101-NH2 (11a), In-MIL-
68-NH2 (11b), and Zr-UiO-66-NH2 (11c), were chosen to react under microwave irradiation with 
numerous oligopeptides (up to tetrapeptides) for the synthesis of chiral hybrid solids. The microwave 
irradiation controls the peptide racemization and offers a better grafting yield than the conventional 
methods for the reaction. 

In 2016, Fröba and associates [47] reported the PSM of the oxazolidinone moieties connected to 
the MOF UHM-25-Val-Evans (12). The acylation of the MOF (12) was attained by reacting it with 
propionic anhydride in the presence of a nucleophilic catalyst 4-(dimethylamino)pyridine (DMAP) 
as shown in Figure 6. The reaction was initially stirred for 24 h, yielding 37% of N-acylated product. 
By increasing the reaction time from 24 h to 72 h, the rate of conversion can be further increased to 
90%. 

 
Figure 6. Post-synthetic acylation of UHM-25-Val-Evans (12). Reproduced from [47] with permission 
from the American Chemical Society. r.t.: room temperature. 

Recently, Chen et al. [71] designed a chiral MOF, (R,R)-salen(Co(III))@IRMOF-3-AM (13), by 
using a two-step procedure. In the first step, the (R,R)-salen(Co(III)) metal complex was adsorbed in 
the nanocages of IRMOF-3, and in the second step, by PSM, the free amino groups present on IRMOF-
3 were acylated by anhydride (Figure 7). 

 
Figure 7. Synthetic method of (R,R)-salen(Co(III))@IRMOF-3-AM (13). Reproduced from [71] with 
permission from the Royal Society of Chemistry. 

  

Figure 7. Synthetic method of (R,R)-salen(Co(III))@IRMOF-3-AM (13). Reproduced from [71] with
permission from the Royal Society of Chemistry.

2.2.2. Superficial Chiral Etching Process

Hou et al. [72] recently designed chiral-achiral hybrid MOFs with the core-shell structure
of an achiral MOF@homochiral MOF by employing a new technique called the superficial
chiral etching process (SCEP). In this process, the surface of the pre-synthesized achiral MOF,
[Cu3(Btc)2] (14), provides a Cu(II) source to react with (+)-Cam and Dabco to generate a
homochiral MOF [Cu2((+)-Cam)2Dabco] (15) shell on the surface of the achiral MOF (14), leading to
[Cu3(Btc)2]@[Cu2((+)-Cam)2Dabco] (16). The synthesized MOF (16) demonstrated the enantioselective
sorption of (R)- and (S)-limonene (Figure 8).
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2.2.3. Spontaneous Resolution

In this method, chiral MOFs are built from achiral precursors through crystallization in the
enantiomorphous space group within the MOFs. During crystallization, it breaks its symmetry for
spatial organization and thus helps to produce chiral MOFs. Such a type of self-resolution process is
very common and contains both types of enantiomers, resulting in a racemic mixture.

Aoyama and co-workers [73] were the first to establish that homochiral MOFs can be achieved
through self-crystallization. They reported an enantiomerically pure MOF, [Cd(L8)(NO3)2(H2O)(EtOH)]
(17) (L8 = 5-(9-anthracenyl)pyrimidine), created due to the twisted arrangement of the pyrimidine
group with respect to the anthracene moiety during crystallization. Li et al. [74] reported a chiral
porous MOF, [Co6(µ3-OH)2(IN)4(HCOO)6]·4DMF·5H2O (18), from the solvo(hydro) thermal reactions
of achiral isonicotinic acid (HIN) (HL9) with Co(NO3)2·6H2O. The IN- ligands associated with the
adjacent 1D secondary building units (SBUs) resulted in a three-dimensional (3D) chiral MOF with a pcu
framework containing irregular channels. A few more new studies on spontaneous resolution have been
reported [75–79].

Bharadwaj and co-workers [80] recently designed a thermally stable cadmium-based chiral
MOF from an achiral v-shaped ligand by spontaneous resolution. The synthesis of bis[4-(3,5-
dicarboxyphenyl)-1H-3,5-dimethylpyrazolyl] methane (L10) was accomplished in five steps using
acetylacetone as the starting material. The solvothermal reaction of Cd(NO3)2 with L10 in DMF/water
led to the formation of [Cd2(L10)(H2O)(DMF)]·3DMF·2H2O (19) with a unique 3,6-conn topology. The
authors stated that the metal ions coordinate with the ligand L10, which restricts the rotation of the
ligands and results in the chiral network from the selective and directional coordination of metal ions.
Moreover, the synthesized chiral MOF was applied as a catalyst in a three-component Strecker reaction
with a high conversion yield.

2.2.4. Chiral Induction

An approach to synthesize chiral MOFs is the use of chiral additives that are capable of inducing
achiral precursors to generate homochiral MOFs. Common chiral additives are chiral ionic liquid,
chiral co-agents, and chiral spectators, which are usually not the building blocks of the MOFs, but
assist the MOFs to be chiral. Such chiral induction remains unstated, but the greatest advantage is
that the method is cost-effective and not limited to any linkers. The key step for this approach is the
selection of chiral induction agents for a given set of precursors.
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Morris and co-workers [81] primarily revealed the induction of homochirality in the MOF
(BMIm)2[Ni(Hbtc)2(H2O)2] (20) by a chiral ionic solvent used as a reaction medium containing
1-butyl-3-methylimidazolium L-aspartate (BMIm-L-asp). A further study of this mode of synthesis
lead to the growth of the concept of using chiral co-agents during the synthesis of MOFs [82–84].

In 2015, Zaworotko and associates [85] demonstrated that MOF-5 can be easily changed to the
chiral variants Λ-CMOF-5 (21a) and ∆-CMOF-5 (21b) through chiral induction by using additive
L-proline or D-proline during synthesis. The alteration of the backbone of the MOF-5 leads to the
formation of CMOF-5, which further crystallizes in the chiral cubic space group P213. A new achiral
compound, [Zn(BDC)(NMP)], was formed in absence of L-proline or D-proline, indicating that the
presence of proline is vital for the crystallization of Λ-CMOF-5 or ∆-CMOF-5. The authors also verified
the post-synthetic activity of the achiral solvent N-methyl-2-pyrrolidone (NMP), and surprisingly
found that in both cases of CMOF-5 as well as MOF-5, the presence of NMP offered a racemic
conglomerate of CMOF-5, whereas other organic solvents transformed CMOF-5 into MOF-5 (Figure 9).
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Figure 9. Synthesis of CMOF-5 in the presence of L- or D-proline additives induces chirality and
post-synthetic activity of the achiral solvent N-methyl-2-pyrrolidone (NMP). Reproduced from [85]
with permission from the American Chemical Society.

Li et al. [86] showed the effect of ionic liquid on the synthesis of chiral MOFs, where they
designed two 3D MOFs, [Th(TPO)(OH)(H2O)]·8H2O (22a) and [C9H17N2][Th(TPO)Cl2] (22b), from
the same achiral starting materials by applying solvothermal and ionothermal methods, respectively.
The solvothermal method resulted in a centrosymmetric MOF 22a, whereas, in the ionothermal
reaction, chiral MOF 22b was obtained by using the ionic liquid 1-butyl-2,3-dimethylimidazolium
chloride. Recently, Su and co-workers [87] constructed an enantiomeric pair of three-dimensional
MOFs [Cu4(L11)3(NO3)]·3H2O (23) from the achiral ligand L11 (L11 = 3,5-diisopropyl-1,2,4-triazolate)
by using L-amino acid and D-amino acid as the chiral catalysts, respectively. From a crystallographic
study and elemental analysis, it was found that the enantiopure amino acids were not anchored into
the final crystal structures of the MOFs. By exchanging L-/D-amino acids with lactic acid or mandelic
acid, the authors successfully proved the mechanism of chirality induction. It was noted that lactic
acid and mandelic acid were inefficient chiral inducers for this set of precursors, which illustrates that
the OH groups of lactic acid and mandelic acid have a weaker affinity to Cu ions than do the NH2

groups of L-/D-amino acids. NH2 groups of L-/D- amino acids firstly bind with Cu ions and are
further substituted by achiral ligands to arrange themselves in 3D chiral frameworks (Figure 10).
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An exciting report was presented by Wu et al. [88], where a chiral MOF, [Cu-(succinate)(4,4′-
bipyridine)]·4H2O (24), was constructed from achiral precursors and the chirality in the MOF was
initiated by using the irradiation of circularly polarized light (CPL) during the crystallization. After
investigating 92 samples, the authors concluded that CPL irradiation can provide enantiomeric excess
and a left-handed helical structure was attained by left-handed CPL irradiation during the reaction or
crystallization, and a right-handed helical structure was achieved with right-handed CPL irradiation.

Thus, we have described several new approaches recently explored for the construction of
chiral MOFs, which will certainly offer new opportunities to researchers for synthesizing bulk
homochiral MOFs.

3. Applications of Chiral MOFs

3.1. Asymmetric Catalysis

In the field of heterogeneous catalysis, chiral MOFs can be used as outstanding solid catalysts for
many organic reactions, including enantioselective reactions, which cannot be accomplished by the
conventional heterogeneous catalysts. The porosity, structural stability, and reusability of chiral MOFs
make them highly demanded chiral catalysts for large-scale organic transformations. Some of the
recent innovative works on enantioselective reactions are endorsed by chiral MOFs and will be briefly
described in the review. This part is subdivided based on the reactions catalyzed by chiral MOFs.

3.1.1. 1,4-, 1,2-, and Cyclo-Addition Reactions

Lin and co-workers [89] extensively explored the catalytic activities of metal-based homochiral
MOFs in a varied range of asymmetric organic transformations. The post-synthetically prepared Rh-
and Ru-complex-based BINAP-derived chiral MOFs offered high enantioselectivity for a variety of
asymmetric reactions. The BINAP-derived dicarboxylic acid, H2L12, was prepared by a multistep
reaction starting from 4,4′-I2-BINAP (Figure 11a). The chiral Zr-MOF was prepared from H2L12 and
its post-synthetic metalation was done by treating [Zr6O4(OH)4(L12)6] (25) with [Rh(nbd)2(BF4)]
to afford [Zr6O4(OH)4(L12)6]·Rh (25a) and with Ru(cod)(2-Me-allyl)2 followed by HBr to afford
[Zr6O4(OH)4(L12)6]·Ru (25b), respectively (Figure 11b). A 1 mol % volume of catalyst (25a) exhibited
excellent enantioselectivity—up to >99%—in the 1,4-addition of aryl boronic acids to 2-cyclohexanone.
Similarly, outstanding activity was showed by the same catalyst in 1,2-addition of AlMe3 to
α,β-unsaturated ketones to afford chiral allylic alcohols. Ru-functionalized MOF (25b) showed high
activity in the hydrogenation of β-keto esters and substituted alkenes, with an ee of up to 97% and
91%, respectively.
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Later, the same group [90] extended the scope of the BINAP-MOF.Rh catalyst and
demonstrated good yield with high enantioselectivity—up to 99%—towards the asymmetric
reductive cyclization and Alder-ene cyclo isomerization of 1,6-enynes for constructing cyclized
products. The catalyst presented 4–7 times higher catalytic activity and enantioselectivity
compared to the conventional homogeneous catalysts. However, the recovered BINAP-MOF.Rh
catalyst showed low or no catalytic recyclability. The catalyst exhibited no activity towards
sterically hindered asymmetric Pauson–Khand-type reactions. To overcome this problem, Lin and
co-workers introduced a mixed ligand concept, for expanding the space near the catalytic sites, to
accommodate the intermediates of the reaction, and successfully demonstrated Pauson–Khand-type
reactions with 87% ee. The synthesized chiral MOF [Zr6(OH)4O4(L12)0.78(L13)5.22] (26) (H2L13 =
4,4′-((2-nitro-[1,1′-binaphthalene]-4,4′-diyl)bis(ethyne-2,1-diyl))dibenzoic acid) with mixed linkers
was subsequently treated with [RhCl(nbd)]2 to form [Zr6(OH)4O4(L12)0.78(L13)5.22]·RhCl (26a).
The modified catalyst (26a) showed 10 times higher catalytic activity than the homogeneous control
catalyst. Scheme 2 summarizes the catalytic activities of BINAP-MOFs explored recently for
organic transformation.

The chiral diene-based MOF catalyst E2-MOF (Zr6(µ3-O)4(µ3-OH)4(L14)6·143DMF·109H2O (27))
was used to create two efficient catalysts, E2-MOF·RhCl and E2-MOF·Rh(acac), by post-synthetic
metalation with Rh(I) complexes, which subsequently demonstrated high catalytic activity and
enantioselectivity for 1,4-additions of arylboronic acids to α, β-unsaturated ketones and asymmetric
1,2-additions of arylboronic acids to aldimines (Figure 12) [91]. Both of the reactions were successful for
a broad range of substrate moieties under identical reaction conditions. The catalyst E2-MOF·Rh(acac)
was reused seven times without the loss of yield, ee, and crystallinity.
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Jeong and co-workers [92] also described an Alder-ene cyclization reaction of 3,3,7-trimethyloct-6-
enal facilitated by Zn/(R)-KUMOF-1 (28) with a high yield of 92% and 50% ee, respectively. The
authors proved, with the experimental data, that the optical purity of the product depended on the
crystal size and chiral environment of the voids of chiral MOFs.

3.1.2. Diels–Alder Reaction

In 2016, Tanaka et al. [93] designed a novel homochiral biphenol-based MOF (29) from the
solvothermal reaction of chiral organic ligand (R)-2,2’-dihydroxy-1,1’-binaphthyl-4,4’-dibenzoic acid
(H2L15) and Cu(NO3)2·3H2O in a mixed solvent (DMF–H2O) at 55 ◦C for 4 days. The MOF crystallizes
in the trigonal space group R32. The ligand H2L15 was synthesized by Suzuki cross-coupling reaction
of 4-methoxycarbonyl phenylboronic acid and (R)-4,4’-dibromo-2,2’-diacetyl-1,1’-binaphthyl followed
by hydrolysis and acidification, respectively. The synthesized chiral MOF (29) was found to be an
effective asymmetric catalyst in the Diels–Alder reaction between isoprene and N-ethyl maleimide,
with up to 81% yield and 75% ee (Scheme 3). The optimized conditions for the reaction were explored
and it was found that the best yield was obtained when the reaction was performed at 0 ◦C for 48 h in
EtOAc solvent. The scope of the reaction was further studied with various N-substituted maleimides
with isoprene, and lower reactivity and enantioselectivity were observed for bulky substrates due to
their weak interactions with the synthesized chiral MOF.
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Cui and co-workers [94] designed a Cr(salen)-based MOF [Na5Cd2(Cr-salen)4(OH)2(O2CCH3)
(O2CH)2(H2O)7(CH3OH)3]·12H2O (30) and demonstrated its significant application as a catalyst for a
variety of asymmetric organic transformations. The Diels–Alder reaction was explored with a range of
methyl-substituted dienes, which successfully reacted with the substituted acrolein in the presence
of 5 mol% of the synthesized MOF, affording the corresponding products in moderate conversions
with an ee up to 91% (Scheme 4a). Similarly, the catalytic activity of the synthesized Cr(salen)-based
MOF (30) in hetero-Diels–Alder reactions was also evaluated. The reactions proceeded smoothly with
the substituted benzaldehydes and Danishefsky dienes, and the desired products were obtained with
a conversion of 77–89% and 72–79% enantioselectivity after 48 h (Scheme 4b). The reaction afforded
<5% conversion when a sterically hindered group was attached to the benzaldehyde moiety, indicating
that a bulky substrate could not enter inside the MOF pores where the heterogeneous catalysis mainly
occurred. Recently, the same group [65] described a Diels–Alder reaction with identical reactants using
the MTV-MOF catalyst (R)-10CuCo, which successfully afforded 88–94% ee of the cycloadducts.
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3.1.3. Cyanosilylation of Aldehydes

Cui and co-workers [95] exemplified a homochiral biphenol-based MOF (31) with chiral
dihydroxyl auxiliaries. These chiral dihydroxyl auxiliaries were partially exchanged by Li+ ions
and converted to a highly efficient and recyclable heterogeneous catalyst for the asymmetric cyanation
of aldehydes with up to >99% ee (Scheme 5).
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Later, the same group [96] illustrated the cyanation of aldehydes with two new chiral MOFs
that were constructed from pairs of VO(salen) ligand for 32a, and VO(salen) and Cu(salen) mixed
ligands for 32b. After oxidation with (NH4)2Ce(NO3)6, V(IV) centers in the pairs of VO(salen)-MOF
(32a) were transformed to V(V) and the MOF became an effective catalyst for catalytic reactions,
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with stereoselectivity up to >99%. The reaction offered better results with respect to conversion and
enantioselectivity when the electron-donating group was attached with benzaldehydes compared to the
presence of an electron-withdrawing group on the ring. Less than 5% conversion was obtained when a
bulky aldehyde was used as a substrate. The MOF (32b) decorated with both VO(salen) and Cu(salen)
units showed much lower reactivity and stereoselectivity compared to the VO(salen)-MOF (32a).
This was due to the monometallic activation pathway that was observed in the MOF (32b), whereas a
VO-VO cooperative activation mechanistic pathway was evidenced in the pairs of VO(salen)-MOF
(32a) (Figure 13).Catalysts 2018, 8, x FOR PEER REVIEW  15 of 26 
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In 2017, Li et al. [97] constructed a novel porphyrin-salen-based chiral MOF by judiciously
combining metalloporphyrin (tetra-(4-carboxyphenyl) porphyrin (H6L16)) and metallosalen
((R,R)-N,N’-bis(3-tertbutyl-5-(4-pyridyl)salicylidene)-1,2-diphenyldiamine nickel(II) (NiL17)) struts
into a chiral MOF structure of [Cd2(NiL17)(CdL16)][Cd2(NiL17)(H2L16)]·6DMF·5MeOH (33).
The synthesized MOF acted as an efficient heterogeneous catalyst in the asymmetric cyanosilylation
of aldehydes, and the reactions afforded excellent conversions of 81–96% and enantioselectivities
of 55–98% for benzaldehyde and other aromatic aldehydes bearing electron-donating as well as
electron-withdrawing groups. The conversion was radically decreased in the case of a bulky moiety,
such as 9-anthraldehyde, suggesting that the selectivity and catalytic activity occurred inside the
channels of the catalyst (33). The use of (S-) catalyst (33) afforded (S-) enantiomers as a product, which
verified that the stereoselectivity of the products was directly controlled by the fundamental chiral
nature of the catalyst.

3.1.4. Epoxidation of Alkenes and Cleavage of Epoxide Ring

The asymmetric epoxidation of alkenes and the corresponding ring opening of epoxides by
MTV-MOFs were enlightened by Cui and co-workers [65]. The binary MTV-MOFs 10CuMn and 10CuFe

were found to be active catalysts for the asymmetric epoxidation of alkenes, affording up to 93%
and 90% ee of the epoxides with 89% and 94% conversion, respectively. After the success of the
catalytic activity of binary MTV-MOFs, the tripartite MTV-MOFs (R)-10CuMnCr and (R)-10CuMnCo were
also explored for the epoxidation of 2,2-dimethyl-2H-chromene and its derivatives, and the products
were obtained with good conversion rates and high enantioselectivities. Similarly, the catalysts were
further verified for the ring opening reaction of epoxides by the nucleophile aniline and water, but the
enantioselectivities were less than 25% in both cases. Next, the consecutive reaction of the asymmetric
epoxidation of alkene followed by ring-opening reactions of epoxides by various nucleophiles, such as
aniline, TMSN3, and ArCH2SH, was explored successfully by employing the catalyst (R)-10CuMnCr.
The various substituents on anilines had a slight effect on both the conversion and selectivity of the
reactions, and overall the conversions obtained were 78–95% with an ee of 86–96%. A satisfactory
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conversion (74–92%) with high enantioselectivity (84–99%) was achieved for azido alcohols derived
from TMSN3. Similarly, a variation with benzyl mercaptan derivatives was also accompanied by
suitable conversions (74–94%) and good to high enantioselectivities (86–99% ee). The heterogeneous
catalyst (R)-10CuMnCo confirmed its efficiency in the sequential reaction of epoxidation and cleavage of
epoxide by nucleophile H2O, alcohol, and ArCOOH. Later, the same group [98] constructed two other
new binary MOFs by the cocrystallization of dipyridine and dicarboxylate-functionalized M(salen)
complexes and demonstrated their efficiency as heterogeneous catalysts in the asymmetric sequential
epoxidation of alkenes and epoxide ring-opening reactions.

Duan and associates [54] exemplified the fruitful catalytic activity of chiral ZnW-PYI (2) in the
epoxidation of substituted styrenes with excellent yields (76–92%) and enantioselectivities (75–79%).
After an effective transformation, the coupling of CO2 to an (R) or (S)-styrene oxide was examined
and showed an outstanding efficiency of conversion of >99% and high enantioselectivity of >90%.
Chiral ZnW-PYI (2) proved its efficiency in the sequential one-pot transformation of olefins to cyclic
carbonates via epoxide: 72–92% conversions and 55–80% enantioselectivities were obtained for
sequential reactions with different substituted styrene derivatives. The author revealed that the
hydrogen-bonding interactions between pyrrolidine-2-yl-imidazole (PYI) and the oxidation catalyst
ZnW12O40

6− and the π-π interactions between the benzene rings of styrene oxide and the imidazole
rings of PYI prompted the smooth conversion of olefins into epoxides. In the case of cinnamaldehyde,
only 25% conversion was obtained with zero ee under the same reaction conditions, which is due
to the fact that the interactions of aldehyde groups with the NH2 moieties deactivated sites for the
activation of CO2 molecules (Figure 14).
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The chiral MOF, (R,R)-salen(Co(III))@IRMOF-3-AM (13), was explored as a heterogeneous
asymmetric catalyst in the one-pot synthesis of optically active cyclic carbonates from racemic epoxides.
The reactions were studied with various epoxides, but the conversion, as well as the enantioselectivity,
was reported to be quite low. In the case of styrene oxide, only 8% conversion and less than 1% ee were
obtained, which implied that the bulky substituent reduced the rate of diffusion over the catalyst and
thereby decreased the catalytic activity [71].
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3.1.5. Aldol Condensation

In 2015, Bonnefoy et al. [70] scrutinized the asymmetric aldol condensation reaction between
acetone and 4-nitrobenzaldehyde by employing peptide-based chiral MOFs as catalysts. The authors
specified that an Al-MIL-101-NH-Gly-Pro (11aa) loading with 15 mol% of proline afforded an aldol
product of 26% yield with 25% ee, and, likewise, Al-MIL-101-NH-Pro (11ab) showed an ee of 18%;
whereas 100 mol% of proline moieties in Al-MIL-101-NH-Gly-Pro (11aa) increased the yield of product
to 80%, but no significant change in enantioselectivity (only 27% ee) was observed.

Fröba and associates [47] synthesized a series of UHM-25 MOFs by introducing chiral amino
acid substituents in diisophthalate linkers. Out of these synthesized chiral MOFs, the asymmetric
catalytic activity of UHM-25-Pro (34) on aldol condensation was examined, over which the
self-directed aldol condensation of acetaldehyde and the subsequent conversion of 3-hydroxybutanal to
1,1-Dimethoxy-3-hydroxybutane was scrutinized (Scheme 6). The yield obtained over both steps was
45% with the (R)-enantiomer as the major product, and the enantiomeric ratio of the products was 70:30.Catalysts 2018, 8, x FOR PEER REVIEW  17 of 26 
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3.1.6. Imine Reduction

Recently, Zhang and associates [99] designed a chiral MOF, CMIL-101 (35), by grafting chiral
pyridyl-modified N-formyl-L-proline derivatives with MIL-101(Cr), which were further explored for
the reduction of ketimine derivatives. The yield of the reaction was good when the reaction was
performed at room temperature, and the ee was moderate (only 37%) but higher compared to the
corresponding homogeneous catalyst.

3.2. Enantioselective Separation

The enantioselective separation of analytes is an alternative significant field of application for
homochiral MOFs. Discovery of chiral adsorbents leads to the development of the rapid separation
of individual enantiomers in a cost-effective manner. The method is especially in demand in
pharmaceutical, agrochemical, and biomedical research for the enantiopure separation of numerous
drugs, as the enantiomers always possess different physiological and pharmacological activities [100].
Homochiral MOFs can be easily designed with chiral channels which are accessible to the analytes
along with the ability to change the size and shape of the MOF pores to hold compounds with
precise dimensions and assist in separating the isomers. This part of the review describes recent
examples of enantiopure separation of racemates by applying chiral MOFs as a stationary phase for
high-performance liquid chromatography (HPLC) and high-resolution gas chromatography (GC).

3.2.1. High-performance Liquid Chromatographic (HPLC) Analysis

Nuzhdin et al. [101] were the first to report the liquid chromatographic separation of racemic
mixtures of chiral alkyl aryl sulfoxides by employing the chiral MOF, [Zn2(bdc)(L-lac)(dmf)]·DMF (36),
as a stationary phase. Cui group [102] presented two thermally stable and homochiral 1,10-biphenol-based
MOFs having chiral dihydroxyl and dimethoxy groups, respectively. An MOF containing chiral
dihydroxyl auxiliaries was employed as a chiral stationary phase of HPLC for the enantioseparation of
racemic amines. Parallel to these works, numerous other chiral MOFs, such as [Cu2(d-Cam)2(4,4’-bpy)]
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(37), [ZnL18Br]·H2O (38) (L18·HBr = N-(4-Pyridylmethyl)-L-leucine·HBr), [Co2(D-cam)2(TMDPy)]
(39) (D-cam = D-camphorates; TMDPy = 4,4’-trimethylenedipyridine), DUT-32-NHProBoc (40), and
[ZnL19]2(NMF)2]·NMF (41) (L19 = (R)-2,2’-dihydroxy-1,1’-binaphthalene-6,6’-dicarboxylic acid; NMF
= N-methylformamide) were synthesized and used for the enantioselective separation of various
racemates [33,103–106]. Some of the currently published chiral MOFs, with their remarkable abilities for
the separation of the chiral compounds, are discussed below.

In 2016, Yuan and associates [107] designed a homochiral MOF, [Cd2(d-cam)3]·2Hdma·4dma (42),
and applied it as a novel chiral stationary phase in HPLC. Nine racemates, including 1-(1-naphthyl)
ethanol, 1-(4-chlorophenyl) ethanol, 1-(9-anthryl)-2,2,2-trifluoroethanol, 1,1’-bi-2-naphthol, benzoin,
hydrobenzoin, trans-stilbene oxide, praziquantel, and warfarin sodium, were well-separated on the
Cd-MOF column and the highest resolution value obtained was for 1-(1-naphthyl) ethanol (RS = 4.55).
The same group [108] recently synthesized six amino-acid-based chiral MOFs, [Zn(L-tyr)]n(L-tyrZn)
(43a), [Zn4(btc)2(Hbtc)(L-His)2(H2O)4]·1.5H2O (43b), [Zn2(Ltrp)2(bpe)2(H2O)2](NO3)2·2H2O (43c),
[Co2(L-Trp)(INT)2(H2O)2(ClO4)] (43d), [Co2(sdba)(L-Trp)2] (43e), and [Co(L-Glu)(H2O)·H2O] (43f).
Employing these MOFs as a chiral stationary phase in HPLC, several chiral compounds were
well-separated in their enantiopure form. Hartlieb et al. [109] reported a CD-MOF (44) built from
alkali metal salts and γ-cyclodextrin (γ-CD), which has 40 stereo genic centers. The chirality of γ-CD
was induced throughout the structure of CD-MOF (44) and assisted the framework to accomplish
the separation of a wide variety of compounds, including alkyl-, vinyl-, and haloaromatics, saturated
and unsaturated alicyclic compounds, and chiral compounds, such as limonene and 1-phenylethanol.
In the case of the structural isomers of pinene and terpinine, it was observed that the isomer with
the exocyclic double bond can be gripped by the CD-MOF for a longer time compared to another
isomer possessing an endocyclic double bond. In the case of the separation of haloaromatics, molecular
simulations established that both the size of the substituted halogen and the strength of the noncovalent
bonding interactions between the analyte and the CD-MOF affect the separation process. Cui and
co-workers [110] constructed two novel chiral porous MOFs, [M3L2

20 (BDC)3]·3H2O [M = Zn (45a)
and Cd (45b)], from a dipyridyl-functionalized DHIP ligand (L20 = 2,3-dihydroimidazo[1,2-a] pyridine
(DHIP)). The Zn-DHIP MOF (45a) showed moderate enantioseparation ability towards the racemic
sulfoxides because the N atoms of the imidazole moieties, which are the potential bonding sites,
are coordinated to the Zn ion, leading to inefficient interactions between chiral host–guest moieties
(Figure 15). Although the Cd-DHIP MOF (45b) showed almost no enantioselective adsorption ability
under identical conditions due to the small hole size of the interpenetrating network of the Cd-DHIP
MOF (45b), it was noted that electron-donating substituents attached to the aromatic rings of aromatic
sulfoxides afforded a higher ee compared to the electron-withdrawing substituents present in the rings,
and the highest ee of 46.8% was obtained in case of methyl phenyl sulfoxide.
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Hailili et al. [111] studied the enantioselective separation of the chiral compounds (±)-ibuprofen
and (±)-1-phenyl-1,2-ethanediol by the chiral MOF (Me2NH2)2[Mn4O(D-cam)4]·5H2O (46), which
acted as a stationary phase in HPLC. A hexane-isopropyl alcohol (96:4, v/v) system was used as
a mobile phase, which afforded a prominent baseline resolution for the separation of both pairs of
the compounds with high resolution. In case of (±)-ibuprofen, 80% valley separation with a good
selectivity factor (α = 6.48) and resolution (Rs = 2.02) was accomplished within only 12 min. The authors
stated that the calculated van der Waals energy for adsorbed (+)- and (−)-ibuprofen is −16.5 and −20.1
kcal mol−1, respectively, which indicates a stronger interaction with the chiral MOF resulting in a long
retention time of (−)-ibuprofen (Figure 16).Catalysts 2018, 8, x FOR PEER REVIEW  19 of 26 
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hydroxybenzyl)-L-alanine) in GC as a chiral stationary phase for the separation of a large number of 
chiral compounds in their enantiopure forms. Later, the same group designed two new chiral MOFs 
for upgraded GC separations of enantiomers by combining peramylated β-cyclodextrin with the 
MOFs [Co(dCam)1/2(bdc)1/2(tmdpy)] (49) and [InH(d-C10H14O4)2] (50) [114,115]. Numerous other chiral 
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carboxylic acid), and [Ni(pybz)2] (53) (pybz = 4-(4-pyridyl)benzoate). 

In 2016, Zhang and co-workers [119] constructed a homochiral MOF [CuI2CuII(L21)2(CN) 
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Figure 16. Possible interaction of the (−)-ibuprofen isomer and MOF (46) viewed along the c-axis
direction. Reproduced from [111] with permission from the American Chemical Society.

Martí-Gastaldo and co-workers [112] recently designed a chiral Cu(II) 3D MOF, [Cu(GHG)] (47),
based on the tripeptide Gly-L-His-Gly (GHG) for the enantioselective separation of the chiral polar
drugs metamphetamine and ephedrine. More than 50% of the (+)-ephedrine enantiomer was isolated
when MOF (47) was used as a chiral solid phase extraction holder (Figure 17).
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3.2.2. Gas Chromatographic (GC) Analysis

The selection of chromatographic methods is mainly dependent on the properties of the chiral
molecules. GC analysis is primarily done for those samples which are thermally stable and volatile.
Good resolution, sensitivity, reproducibility, good efficiency, fast analysis, and no need of liquid
mobile phases are some of the benefits of GC analysis compared to other chromatographic methods.
In 2011, Xie et al. [113] first reported the use of the chiral MOF [Cu(sala)2(H2O)] (48) (H2sala =
N-(2-hydroxybenzyl)-L-alanine) in GC as a chiral stationary phase for the separation of a large number
of chiral compounds in their enantiopure forms. Later, the same group designed two new chiral MOFs
for upgraded GC separations of enantiomers by combining peramylated β-cyclodextrin with the MOFs
[Co(dCam)1/2(bdc)1/2(tmdpy)] (49) and [InH(d-C10H14O4)2] (50) [114,115]. Numerous other chiral
MOFs [116–118] have been designed and successfully reported for the separation of racemates via GC
analysis, such as [Zn2(D-Cam)2(4,4′-bpy)] (51), [Cd(LTP)2] (52) (LTP = L(−)-thiazolidine-4-carboxylic
acid), and [Ni(pybz)2] (53) (pybz = 4-(4-pyridyl)benzoate).

In 2016, Zhang and co-workers [119] constructed a homochiral MOF
[CuI

2CuII(L21)2(CN)(H2O)](NO3)·DMF (54) (L21 = 5-eatz = (1S)-1-(5-tetrazolyl) ethylamine)
with rare ligand-unsupported Cu-Cu interactions. The synthesized MOF was applied in the
enantioselective separation of various racemic alcohols and it was found that the MOF (54) can
separate only aromatic alcohols rather than aliphatic alcohols. Two reasons for this unusual behavior
of the MOF (54) were stated by the authors: firstly, the entry of large molecules was quite impossible
through the 1D narrow network. Thus, enantioselective separation was likely to occur on the chiral
surface of the MOF, where aromatic alcohols could be separated more easily compared to aliphatic
alcohols. Secondly, enantiomeric separation of aromatic alcohols was possible due to the existence
of three types of interaction, i.e., the π-π interactions between the surface of the MOF and aromatic
alcohols, and H-bonding and stereochemical interactions with the chiral L20 ligands on the MOF
surface. In the case of aliphatic alcohols, only H-bonding interactions happened, which led to no
enantioselective separation. Figure 18 shows the possible mechanism of enantioselective separation by
the chiral MOF.
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Recently, Lang et al. [120] reported a homochiral MOF, Co-L-GG (55) (L-GG = dipeptide
H-Gly-L-Glu), as a stationary phase for the enantiomeric separation of racemates. Around 30 racemates,
including halohydrocarbons, ketones, esters, ethers, organic acids, epoxy alkanes, sulfoxides, alcohols,
and isomers, were studied and it was demonstrated that the column has significant ability towards
chiral recognition and the selective separation of enantiomers.

4. Conclusions and Prospects

This review summarizes the present progress of the synthesis of chiral MOFs and their applications
as catalysts in asymmetric reactions and chiral stationary phase in the enantioselective separation
of chiral molecules. Although the process is expensive, the synthesis of chiral MOFs has greatly
expanded from pre-synthesized chiral ligands. Other methods for the synthesis of chiral MOFs are
still in progress. The applications of chiral MOFs as heterogeneous catalysts in asymmetric reactions
have proved themselves to be outstanding catalysts by affording greater yields and enantioselectivities
of reactions compared to those of the homogeneous control catalysts. However, these MOF catalysts
are facing trouble in the case of sterically hindered reagents, which have been found to be futile for
proceeding with asymmetric reactions with good enantioselectivities. It was observed that numerous
organic transformations were done by post-metalated MOFs or MOFs prepared from salen ligands.
Chromatographic separation with chiral MOFs has expanded very rapidly in the last 10 years and
many more suitable chiral MOFs have been designed for the separation of various organic racemates.
Some of the promising results were elaborately discussed in this review to present the advancement of
the field. Besides the chiral MOFs, other alternative frameworks, such as covalent organic frameworks
(COFs) [121,122] and defect porous organic frameworks (dPOFs) [123], are newly emerging fields in
the chiral world. The present review hopefully benefits researchers to design chiral MOFs by various
methods and serves as a driving force for them to explore applications of the synthesized chiral MOFs
in various new fields.
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