catalysts ]

Article

Supplementary Materials: Single-Atom Mn Active
Site in Triol-Stabilized B-Anderson
Manganohexamolybdate for Enhanced Catalytic
Activity towards Adipic Acid Production

Jianhui Luo 2+, Yichao Huang 3+, Bin Ding 12, Pingmei Wang 12, Xiangfei Geng 1?2, Jiangwei
Zhang *>* and Yongge Wei 3*

1 Research Institute of Petroleum Exploration & Development (RIPED), Petro China, Beijing 100083, China;
luojh@petrochina.com.cn (J.L.); dingb@petrochina.com.cn (B.D.); wangpm@petrochina.com.cn (P.W.);
gengxf@petrochina.com.cn (X.G.)

2 Key Laboratory of Nano Chemistry (KLNC), CNPC, Beijing 100083, China

Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of

Chemistry, Tsinghua University, Beijing 100084, China; yichaoh@126.com

Correspondence: jwzhang@dicp.ac.cn (J.Z.); yonggewei@mail.tsinghua.edu.cn (Y.W.); Tel.: +86-010-627-

97852

+ Y.H. and J.L. contributed equally to this work.

Table S1. Crystallographic data for compound 1.

Identification code 1
Empirical formula CsH22NsMnMosO24
Formula weight 1174.87
Temperature (K) 293 (2)
Crystal system monoclinic
Space group C2/c
a(A) 27.164(3)
b (A) 18.061(2)
c (A) 16.099(2)
a (°) 90.00
B 110.120(14)
v (°) 90.00
Volume (A3) 7416.4(15)
Z 8
Density (g.cm) 2.097
K (mm-t) 2.369
Crystal size (mm?) 0.55x0.50%0.40
Reflections collected 7199
Independent reflections 5784
F (000) 4448.0
GOF 1.084

Final R indices [I>20(I)] Ri=0.0535, wR2=0.0974
Rindices (all data)  Ri=0.0596, wR>=0.1012
aRi =X | |Fol-IFcl |/ IFol
bewR2 ={ L [w(Fo2-F2)2]/Zao(Fo?)2)12
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Table S2. Selected bond lengths (A) of cluster 1.

2 0f 10

Selected bond lengths (A) of cluster 1

Mn1-0O1
Mn1-O2
Mn1-O5
Mn1-O6
Mn1-O7
Mn1-O8
Mo1-0O1
Mo1-O3
Mo1-O8
Mo1-O9
Mo1-013
Mo1-0O14
Mo2-0O1
Mo2-O7
Mo2-09
Mo2-010
Mo2-015
Mo2-016
Mo3-0O4
Mo3-O5
Mo3-0O7

1.986
1.942
1.936
1.983
1.969
1.961
2.276
2.054
2.156
1.877
1.735
1.719
2.319
2.221
1.933
1.979
1.677
1.730
2.107
2.180
2.178

Mo3-010
Mo3-017
Mo3-018
Mo4-O4
Mo4-06
Mo4-O7
Mo4-011
Mo4-019
Mo4-020
Mo5-06
Mo5-08
Mo5-011
Mo5-012
Mo5-021
Mo5-022
Mo6-02
Mo6-0O3
Mo6-08
Mo6-012
Mo6-023
Mo6-024

1.904
1.698
1.728
2.098
2.280
2.160
1.882
1.693
1.722
2.315
2.262
1.914
1.944
1.691
1.701
2.189
2.145
2.169
1.899
1.712
1.732
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Table S3. Experimental hydrogen bonding interactions of compound 1.

Bond H-Bonds D-A [A] A-HI[A] D-H-A [°]
1 N3-H3Ceee014 2.897 2.247 138.52
N3-H3De 011 2.900 2.206 145.00
N3-H3Ee 015 2.992 2211 168.11
N3-H3Feee019 2.719 2.468 99.54
N2-H2Ce ¢ 016 3.483 2.959 119.46
N2-H2Ce ¢ e024 3.453 2.793 132.19

The color of this Anderson {3 isomer triol functionalized derivative single crystal is different
compared with Anderson a isomer triol functionalized derivative, because the color of the Anderson
a isomer triol functionalized derivative was nearly the same as the normal « parent Anderson. The
color of [Mn(OH)sMosO1s]*~ anion is orange while Anderson 3 isomer derivative (compound 1) is
dark orange. UV-Vis was applied for LMCT absorption and d-d transition absorption investigation.
It should be noted that the UV-Vis spectra of such Anderson 3 isomer triol functionalized derivatives
actually should be compared with the parent Anderson 3 isomer cluster, however such conjectured
reaction intermediate has not yet been successfully obtained. As a compromise, we first compared
them with the LMCT absorption band of the parent “Anderson-Evans”, [Mn(OH)sMosO1s]>-, locating
around 230 nm which primarily corresponds to ligand centered p3-OH 7 to metal-centered Mo®* f2¢*
charge transfer transition (LMCT), these LMCT bands of compound 1 show hypsochromic shift to
212 (ewmer = 5.31x105 L-mol”-cm, 7.42x105 L-mol”-cm! for parent Anderson cluster, compound 1,
respectively) It is due to the increase of crystal field splitting energy since the u-OCH: is stronger field
ligand than that us-OH. The d-d transition absorption band of the parent [Mn(OH)sMosO:s]?>- locating
around 478 nm is assigned to the metal centered lowest energy electronic transition from HOMO tx*
to LUMO e;* transition of Mn3. Similar hypsochromic shift phenomenon is observed in compound 1
at 461 nm, respectively (edd=6.14x10? L-mol'-cm, 8.53x10? L-mol"-cm! for parent Anderson cluster,
compound 1, respectively). The hypsochromic shift is assigned to the reduction of charge density in
u-O when triol ligands anchored on. It is worthy to point out that in our previous work, similar range
of hypsochromic shift was also observed in Anderson o isomer triol functionalized derivative,
however, the ewmcr and eaq is quite smaller. In fact, the ervcr and €44 of Anderson o isomer triol
functionalized derivative is not much different from the parent Anderson o isomer
[Mn(OH)sMo6O1s]*- anion. Thus, the color of the Anderson a isomer triol functionalized derivative
and the corresponding parent cluster was nearly the same. Perhaps it is the total change of u-O
coordination environment in Anderson [3 isomer triol functionalized derivative skeleton that leads to
the remarkable increase of ermcr and e+« and the related obvious color change.
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Figure S1. (a) UV/Vis LMCT spectra of compound 1 and the flat Anderson-type POMs Cluster,
[MnMosO15(OH)e]*. (b) UV/Vis d-d transition spectra of compound 1 and the flat Anderson-type
POMs Cluster, [MnMosO18(OH)s]*.
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Considering one of the obvious structure features in triol functionalized Anderson 3 isomer
derivative is that there exist one type of u3-O and two types of u2-O, where triol ligand is anchored
on their surface. Hence, there should be three different types of (u-O-) C atoms where each carbon
atom has different chemical shifts based on different electronegative environment according to
dissimilar charge density of these u-O atoms. In fact, the electronegative sequence of these u-O atoms
from stronger to weaker is as follows: u2-O (coordinated one molybdenum atom and the central
hetero atom) > 12-O (coordinated with two molybdenum atoms) > u3-O (coordinated with two
molybdenum atoms and the central hetero atom). The *C NMR spectrum is another effective choice
to verify such structure from another aspect. Thus, the *C NMR spectrum of compound 1 was
conducted and all the peaks were clearly assigned to confirm the structure (Figure S2).
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Figure S2. 3C NMR spectrum of compound 1.
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The ESI-MS spectra of compound 1 was conducted and all the peaks the main peak with highest
intensity and other identifiable peaks were clearly assigned to confirm the structure.
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Figure S3. (a) ESI-MS of compound 1 with TBA* cations. (b) ESI-MS of compound 1 with TBA* cations

(100% intensity peak in original size).
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Figure S4. (a) The ESI-MS of white crystalline products generated from cyclohexanone in the presence of
catalyst 1. (b)The HPLC retention time of white crystalline products dissolved in methanol. (c) The GC-MS

of reaction solution dissolved in ethanol before catalytic reaction. (d) The GC-MS of reaction solution
dissolved in ethanol after catalytic reaction.
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Figure S5. (a) '"H NMR spectrum of white crystalline product. (b) ®C NMR spectrum of white

crystalline product.
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Topology analysis of Catalysis Species
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Figure S6.Topology analysis and comparison of Catalysis Species.
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Figure S7. (a) The reaction selectivity and conversion versus reaction temperature, reaction condition
catalyst (0.02 mol %), 30% H20: (100 mmuol), DMSO (1 mmol), and cyclohexanone (30 mmol) at 2h. (b)
The reaction selectivity and conversion versus time, reaction condition catalyst (0.02 mol %), 30%
H202 (100 mmol), DMSO (1 mmol), and cyclohexanone (30 mmol) at 25°Cin cyclohexanone oxidation

catalytic reaction.
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Figure S8. The ESI-MS of products from the catalytic oxidation of cyclohexanol at room

temperature.
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Figure S9. The ESI-MS of white crystalline products generated from cyclohexanol with DMSO.
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