

Supplementary Materials

The PT/S-Box of Modular Cellulase AcCel12B Plays a Key Role in the Hydrolysis of Insoluble Cellulose

Yuwei Li ^{1,2}, Junling Wang ^{1,3}, Limei Wang ¹, Hao Tong ¹, Mingwei Bu ¹, Gui Gao ¹, Weiwei Han ¹ and Zuoming Zhang ^{1,*}

- ¹ Key Laboratory for Molecular Enzymology & Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun 130012, China; ywli14@mails.jlu.edu.cn (Y.L.); wangjl09@mails.jlu.edu.cn (J.W.); wanglm16@mails.jlu.edu.cn (L.W.); tonghao16@mails.jlu.edu.cn (H.T.); bumw15@mails.jlu.edu.cn (M.B.); gaogui@jlu.edu.cn (G.G.); weiweihan@jlu.edu.cn (W.H.)
- ² State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
- ³ Department of Bioengineering, Jilin Agricultural Science and Technology University, Jilin 132101, China
- * Correspondence: zmzhang@jlu.edu.cn; Tel.: +86-431-8515-5218

Enzyme	Number	Sequence	Direction
AcCel12B-wt	1	GCAATTCATATGTCAACGTGTTCACCTACCG	Forward
	2	TGAGACCTCGAGGCAGGTGAGTGTGGGTGGGGTGTTA	Reverse
AcCel12B-PT0	3	ACCACCAGACGACGATGTGCTGGACGTGCCGCTCGTCAC	Forward
	4	ACGAGCGGCACGTCCAGCACATCGTCGTCGGTGGTG	Reverse
AcCel12B-PT1	5	GCGCCCAGCCCGTCCCCGAGCCCGAGCCCAACGCCCACGTCCAGCCCGACATCGTCGTCGGTGGTGT	Forward
	6	ACATCGTCGTCGGTGGTG	Reverse
AcCel12B-PT3	7	CCGACACCGACACCGTCTCCAAGCCCATCCCCGAGCCCCGCGACATCGTCGTCTGGTGGT	Forward
	8	GCTGGACGTGCCGCTCGT	Reverse

Table S1 Oligonucleotides used as primers in PCR.

Figure S1. Effects of pH and temperature on activity of AcCel12B-wt (\blacksquare) and mutant AcCel12B-PT0 (\bigcirc) toward substrate CMC and substrate RAC. (A) (B): The optimum pH of AcCel12B-wt (\blacksquare) and mutant AcCel12B-PT0 (\circ) toward CMC (A) and RAC (B) under conditions of 50 mM sodium acetate buffer (pH 3.0-6.0) and 50 mM phosphate buffer (pH 6.0-7.0) at 70 °C. The optimum temperature of AcCel12B-wt (\blacksquare) and mutant AcCel12B-PT0 (\circ) toward CMC (C) and RAC (D) under conditions of 50 mM sodium acetate buffer (pH 4.5). AcCel12B toward 1% (w / v) CMC or 0.5% (w / v) RAC were reacted in 5 or 15 min.

Figure S2. Thermal stability of AcCel12B and its mutants in at 60°C. The enzyme was incubated at 60 °C for various times under conditions of 50 mM sodium acetate buffer (pH 4.5). The residual activity of cellulases toward CMC was determined. All were described as AcCel12B-PT3 (solid line and \blacksquare), AcCel12B-wt (dash line and \circ), AcCel12B-PT1 (dot line and \blacktriangle) and AcCel12B-PT0 (dast dot line and \diamond).

Figure S3. SDS-Polyacrylamide gel electrophoresis of AcCel12B-PT3 and AcCel12B-wt desorbing from RAC. Lane M: Protein Marker. Lane 1-6: AcCel12B-PT3 desorbing from Avicel under gradually increasing concentration SDS condition. Lane 7-12: AcCel12B-wt desorbing from Avicel under gradually increasing concentration SDS condition.

Figure S4. SDS-Polyacrylamide gel electrophoresis of AcCel12B-PT0 and AcCel12B-PT1 desorbing from Avicel. Lane M: Protein Marker. Lane 1-6: AcCel12B-PT0 desorbing from Avicel under gradually increasing concentration SDS condition. Lane 7-12: AcCel12B-PT1 desorbing from Avicel under gradually increasing concentration SDS condition.