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Abstract: ZnO nanostructures decorated with gold nanoparticles (Au-NPs) were synthesized by
thermal decomposition of ZnO2 powders and their subsequent impregnation of metal nanoparticles
using either the Direct Turkevich Method, the Inverse Turkevich Method, or the Progressive Heating
Method. It was found that the impregnation approach influences the resulting microstructure and
photocatalytic activity of the obtained materials. While the Direct Turkevich approach gave the
highest yield of metal loading, the smallest Au-NPs were obtained by Inverse Turkevich and the
Progressive Heating Method. The photocatalytic activity of the pristine support and gold-loaded
samples was studied in the decolorization of Rhodamine B solutions using UV- and pure visible-light
illumination. All Au-NPs/ZnO samples showed higher photocatalytic activity than the bare support
when UV-light was used. This effect is attributed to a charge carrier separation due to electron transfer
from ZnO to the metal nanoparticles and the built-in electric field at the interfaces. Contrarily to most
reports, visible-light sensitization using plasmonic nanoparticles was not observed. The experimental
evidence points against hot-electron injection from Au-NPs to the semiconductor component.
This behavior is associated with the height of the Schottky barrier at the metal-semiconductor
junctions. The differences in the photocatalytic performance among the samples under UV- and
visible-light are explained in terms of the characteristics of the Au-NPs driven by the growth
mechanism involved in each impregnation method and the physicochemical properties of the
generated interfaces.

Keywords: photocatalysis; nanocomposites; metal-semiconductor interface; impregnation method;
gold nanoparticles
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1. Introduction

During the last decades, the water demand associated with anthropogenic activities has increased
notoriously. At the same time, the concentration and diversity of pollutants contained in wastewaters
have reached alarming levels. This situation is compromising the potable water availability worldwide;
thus, the development of wastewater treatment technologies capable of handling large volumes
at lower time and cost has become a priority. In this regard, heterogeneous photocatalysis using
semiconductor compounds has proven to be an efficient approach for eliminating recalcitrant pollutants
that cannot be removed by other physical, chemical, or biological methods [1–3]. Among the most
extensively studied photocatalytic semiconductor compounds is zinc oxide (ZnO). This is mainly
because the redox potentials to produce O2

•− and OH• radicals lie between its valence and conduction
bands levels [4]. Nevertheless, due to its large band gap energy (~3.3 eV), only a limited fraction
of sun-light can be used to activate it. In general, two different approaches have been explored to
overcome this difficulty: (1) modifying the overall composition to introduce allowed states in the
forbidden band gap (doping) or even reduce it (solid solutions); and (2) generating heterojunctions with
a visible light-harvesting component (e.g., quantum-dots, plasmonic nanoparticles, narrow band gap
semiconductors, or dyes) [5,6]. In this sense, a notorious increase of the photocatalytic activity of ZnO
structures by decorating its surface with gold nanoparticles (Au-NPs) has been reported widely [7,8].
Under ultraviolet (UV) illumination, this effect is attributed to an enhanced charge carrier separation
due to electron transfer from the ZnO support to Au-NPs, as well as to the built-in electric field
generated at the metal-semiconductor interface (Schottky junction) [9,10]. Similarly, when white-light
sources (e.g., Xe lamps) are used, again, better performances of the decorated catalysts than their bare
counterparts have been observed. However, in this case, and regardless of the fact that the height of the
potential barrier at the interface might impede the electron injection [11], the enhancement is commonly
attributed to electron transfer from Au-NPs to the semiconductor component [12–15]. Careful revision
of the typical experimental set-ups using white-light sources suggests the possibility that the observed
photocatalytic activity can be associated merely with a non-filtered UV-light instead of visible light
sensitization [16–18]. Moreover, the assignment of electron tunneling as the actual photocatalytic
mechanism in Au-NPs/ZnO systems under unfiltered white-light is even more questionable [19–21].
Simply put, the absence of the emission spectrum of the light source does not allow one to assess the
photocatalytic mechanism unambiguously.

Although metal-semiconductor photocatalysts based in plasmonic nanoparticles have proven to
be potential materials for the development of water treatment technologies, their fabrication methods
should attain several attributes prior to being considered in large scale applications. For example,
they should produce materials with controlled morphology and large specific surface area; the
optical properties of the plasmonic nanoparticles can be tuned to maximize the absorption of the
incident light, and a negligible amount of unintegrated metallic phase must result. In this sense,
several methods for obtaining photocatalytic nanostructures have been reported [22], and frequently,
through a second step, they are decorated with metallic nanoparticles using the well-known Turkevich
method [23,24]. As expected, the studies concerning these metal-semiconductor systems demonstrate
that their photocatalytic activity is strongly influenced by the characteristic of the metal nanoparticles,
e.g., amount, particle size distribution (PSD), morphology, etc. [25–29]. Although the effect to introduce
variations in the standard Turkevich protocol in the properties of gold colloids has been extensively
explored [30], analogous studies describing the effect of the nucleation sites introduced by an additional
interface (support-reaction medium) have not been systematically studied. Specifically, since the
growth mechanism of Au-NPs, and thus, their characteristics, could be strongly influenced by the
number and kind of interfaces, as well as slight changes in the synthesis protocol, the availability
of information concerning their effect should contribute to tuning the actual methods for obtaining
metal-semiconductor catalysts with controlled properties.

In this sense, the aim of this work is to study the effect of the impregnation method, namely,
Direct Turkevich (standard method), Inverse Turkevich, and the Progressive Heating Method, in the



Catalysts 2018, 8, 161 3 of 14

photocatalytic activity of metal-semiconductor photocatalysts based in ZnO supports decorated with
Au-NPs, the latter in terms of the characteristics of the metallic component and its performance in the
degradation of Rhodamine B (RhB) solutions under UV- and pure visible-light illumination.

2. Results and Discussion

2.1. Microstructure and Optical Properties

Figure 1 shows photographs of the synthesized ZnO support, Au-NPs/ZnO samples, and the
supernatant obtained after gold loading using each impregnation method.
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Figure 1. Photographs of the ZnO powder used as photocatalytic support and the supernatant obtained
after gold loading using each impregnation method. Insets: Obtained Au-NPs/ZnO powders.

The X-ray diffraction (XRD) patterns of the support and Au-NPs/ZnO samples are shown in
Figure 2. In the case of the pristine support, all the diffraction peaks correspond to wurtzite zinc oxide
(w-ZnO; JCPSD # 36-1451); no additional reflection associated with a minority phase was detected.
Using the Scherrer equation [31], the average crystallite size of the w-ZnO phase was determined
to be ~17 nm. The X-ray reflections associated with w-ZnO appear also in the patterns of the three
gold-loaded samples. However, neither peak broadening nor diffraction angle shift was observed.
This indicates that the methods used for metal loading do not induce any significant change in the
microstructure of the ZnO support. As can be noted, several X-ray peaks corresponding to cubic gold
(c-Au; JCPDS # 04-0784) appear in the diffractograms of the three Au-NPs/ZnO samples. The average
crystallite size of the c-Au phase was estimated to be 12, 9, and 7 nm for the samples obtained using
Direct Turkevich Method, Inverse Turkevich Method, and Progressive Heating Method, respectively.
It is worth noting that the relative intensity of X-rays associated with c-Au phase varies among the
samples. This feature indicates that the amount of gold loading depends on the used impregnation
method. Qualitatively, the sample obtained using Direct Turkevich Method has the highest gold
loading. This result agrees with the chemical analysis and the nearly transparent appearance of the
supernatant generated when this method is used (see Figure 1). Table 1 summarizes the intensity
ratio of the strongest c-Au and w-ZnO X-ray peaks, the average crystallite sizes, and the gold content
determined by inductively coupled plasma-optical emission spectrometry (ICP-OES) for each sample.

The morphology, particle size, and elemental distribution of the obtained samples were
studied using field-emission scanning electron microscopy/energy dispersive X-ray spectroscopy
(FE-SEM/EDS) and transmission electron microscopy (TEM). Figure 3a shows a FE-SEM micrograph
of the pristine ZnO sample. It reveals that the support is constituted by agglomerates of quasi-spherical
nanoparticles of around 90 nm in diameter. After metal impregnation, the morphology of the catalytic
support did not change significantly (see Figure 3b). Moreover, EDS elemental mapping suggests that
Au-NPs are homogeneously distributed throughout the support (see Figure 3c). Figure 3d–f presents
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representative TEM images of the gold loaded samples and their corresponding histogram of Au-NPs.
From them, it can be seen that the ZnO particles observed by FE-SEM are nanostructures formed
by aggregates of smaller particles of around 15 nm in size and quasi-spherical Au-NPs attached to
them (darker particles). The mean particle size (Dm) of Au-NPs was 11.7 ± 2.4 nm, 10.8 ± 1.6 nm,
and 9.7 ± 1.8 nm for Direct Turkevich Method, Inverse Turkevich Method, and Progressive Heating
Method, respectively. The trend of Dm agrees with the calculated crystallite size determined by XRD.
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Figure 2. X-ray patterns of (a) the ZnO support and those Au-NPs/ZnO samples obtained using
(b) Direct Turkevich; (c) Inverse Turkevich and (d) Progressive Heating as impregnation method.
Below: JCPDS # 36-1451 (w-ZnO) and JCPDS # 04-0784 (c-Au) cards are shown for reference.

Table 1. Intensity ratio of the strongest c-Au and w-ZnO X-ray reflections [(I111)Au/(I101)ZnO)], gold
loading (Au wt.%), crystallite size (τ), mean particle size of Au-NPs (Dm-Au-NPs), wavelength at the
maximum absorbance of the surface plasmon resonance band (SPR-λmax), BET surface area (SBET),
decolorization efficiency (η), and apparent rate constant (k) of the obtained catalysts.

ZnO
Support

Au-NPs/ZnO
Direct Turkevich

Au-NPs/ZnO
Inverse Turkevich

Au-NPs/ZnO
Progressive Heating

(I111)Au/(I101)ZnO (a.u.) 0.00 0.19 0.07 0.10
Gold loading (Au wt.%) — 5.3 1.9 3.8

τ ZnO:τ Au (XRD) (nm:nm) 17:— 18:12 18:9 18:7
Dm-Au-NPs (TEM) (nm) — 11.7 ± 2.4 10.8 ± 1.6 9.7 ± 1.8

SPR-λmax (nm) —:— 534 519 518
SBET (m2 g−1) 19.9 21.3 24.6 26.7

UV η (t = 60 min):k
(%: × 10−3 min−1) 56.4:18.8 97.4:101.1 63.3:23.7 99.9:115.9

Vis η (t = 60 min):k
(%: × 10−3 min−1) 16.7:2.9 11.3:2.4 9.7:1.3 10.3:2.1

The formation of Au-NPs was further confirmed by diffuse reflectance spectroscopy (DRS).
Figure 4 presents the diffuse reflectance spectra (shown as absorbance) of the pristine support and
the Au-NPs/ZnO samples. The main feature of the spectrum corresponding to the bare support
is a sharp absorption edge around 390 nm. It is associated with the band-gap excitation of ZnO.
Using the Kubelka-Munk formalism [32], the apparent band gap energy (Eg) for the semiconductor
support was determined to be 3.16 eV (392 nm). The same value was obtained for the Au-NPs/ZnO
samples, indicating that metal doping of ZnO did not occur. In the case of the Au-NPs loaded samples,
although the adsorption-edge associated with the semiconducting constituent is still recognized,
their spectra are dominated by a visible band attributed to the surface plasmon resonance (SPR) of
Au-NPs. It is worth noting that the profile, position, and intensity of the SPR-band is different for each
sample, indicating that the impregnation method determines the characteristics of the metallic phase.
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For instance, the sample obtained using Direct Turkevich Method has the strongest visible absorption
among the Au-NPs/ZnO samples. It indicates that this method allows the largest metal loading.
Specifically, the gold content for this sample is 5.3 wt.%; being 6.0 wt.% the theoretical maximum
yield. The latter agrees with XRD results and the appearance of the supernatant obtained after Au-NPs
impregnation. Applying similar arguments to the other Au-NPs/ZnO samples, it is concluded that
Inverse Turkevich Method gives the lowest gold loading among the Used Impregnation Methods,
in correspondence with the previous results.
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Method and their corresponding particle size histogram of Au-NPs.
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samples obtained through different impregnation methods.

Further analysis of the SPR-band gives relevant information related to the PSD of the Au-NPs.
While Dm determines the wavelength at the maximum absorbance, the size distribution influences the
profile band [33]. From Figure 4, it is seen that the features of the SPR-band of the samples synthesized
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using the Inverse Turkevich and Progressive Heating Method are quite similar. This suggests that
although both approaches result in different gold loading, the obtained Au-NPs have comparable PSD.
On the other side, the SPR-band of the sample obtained by Direct Turkevich Method is considerably
broader, and its position is red-shifted by ~15 nm (λmax = 534 nm). These differences indicate that this
approach produces metal nanoparticles bigger in size and with wider PSD than the previous ones. It is
worth mentioning that a wide PSD could be an advantageous feature when full range visible light
absorption is sought. It is worth noting also that the SPR-band features agree with the TEM particle
size analysis described above.

The specific surface area of the different samples was determined using the Brunauer-Emmett-Teller
(BET) method. The results are summarized in Table 1. In general, the specific surface area increases
after Au-NPs loading. It is attributed to the additional surface accounted by the metal nanoparticles.
In this regard, nonetheless, the sample obtained using Direct Turkevich has the highest amount of
gold loading, the sample with the largest specific surface area is that synthesized through Progressive
Heating Method. It can be understood in terms of the dependence of the surface-volume ratio with
particle size. The following rough model illustrates this argument. The specific surface area, S, of a set
of solid spheres with particle size distribution, n(D), and density, ρ, is given by

S =
6
ρ

f (D), (1)

in which

f (D) =

Dmax∫
Dmin

D2n(D)dD

Dmax∫
Dmin

D3n(D)dD

(2)

Equations (1) and (2) show that the specific surface area of the spheres is determined by their
particle size distribution but not their mass. Moreover, it can be proved that f (D) approaches to 1/Dm

as the PSD gets narrow and/or the Dm increases. Certainly, our case is more complex; the samples
are nanocomposites having Au-NPs as minority phase. Nonetheless, the latter assumption suggests
that, at moderate metal loadings, the PSD of metal nanoparticles determines the increase of S rather
than their total amount. It is in correspondence with the position of the SPR-band, BET surface area,
and gold content of the Au-NPs/ZnO samples (see Table 1).

2.2. Reaction and Growth Mechanism of Au-NPs

The reaction and growth mechanisms of the ZnO nanostructures used as catalytic supports have
been described in our previous work [34]. On the other hand, the methods used to decorate them
with Au-NPs are variants of those developed by Turkevich et al. in the 1950s [23]. This method
is based in the reduction of gold salts using sodium citrate (Na3Ct), a weak base that acts as
stabilizer as well. Two decades later, Frens [24] reported on the effect of Na3Ct:HAuCl4 ratio in
the resulting particle size of Au-NPs. In general, he established that on increasing it, the mean particle
size decreases. Nevertheless, Ji et al. [35] found experimental evidence against the validity of this
statement at high Na3Ct:HAuCl4 ratios (>3.5). Moreover, in a series of experiments using equimolar
Na3Ct:HAuCl4 solutions with different concentrations, they demonstrated the role of Na3Ct as pH
mediator and proposed that the preponderant reactive gold species depends on the pH, i.e., the Na3Ct
concentration. In this respect, the highly reactive [AuCl3(OH)]− species is formed at pH’s below 6.2,
whereas the less reactive species, [AuCl2(OH)2]− and [AuCl(OH)3]−, are favored at higher pH values.
Hence, the reaction is faster in the former case. According with these findings, the Na3Ct:HAuCl4
ratio used in the experiments herein presented (6.8) gave the reaction conditions (pH ≈ 7.2) for
moderate nucleation and slow growth rates. It agrees with the change in the appearance of the
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reaction medium during the experiment using Direct Turkevich method. Since the concentration and
Na3Ct:HAuCl4 ratio were the same in all the impregnation approaches, one would expect that the
nucleation and growth rates of Au-NPs were nearly equal. However, the obtained results do not match
this assumption. Figure 5 shows the evolution of the appearance of the reaction medium during each
impregnation process.
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As was discussed in the previous section, the sample obtained using Direct Turkevich Method
has the broadest PSD of Au-NPs. From Figure 5, it can be noted that the overall transformation rate
of Au-NPs using this approach is very slow in comparison with the other two methods. It suggests
that, in the case of Direct Turkevich Method, nucleation and growth processes of Au-NPs can occur
simultaneously, resulting in a broad PSD. Conversely, nearly instantaneous change is observed in the
case of Inverse Turkevich Method and Progressive Heating Method, indicating that high nucleation
rates occur, which promote smaller particles with narrow PSD [36].

An analysis of the amount of gold loading achieved by the different impregnation methods reveals
further information concerning the growth mechanism. In the case of Direct Turkevich Method, it is
5.3 wt.%, suggesting that most of the Au-NPs form at the solid-liquid interface through heterogeneous
nucleation and subsequent growth. It is noticed that the amount of gold loading decreases up to 1.9 and
3.8 wt.% for the Inverse Turkevich Method and Progressive Heating Method, respectively. It follows
that, in the former case, a large percentage of Au-NPs remains in the volume of the reaction solution
(see Figure 1) instead of the ZnO surface, i.e., homogeneous nucleation dominates over heterogeneous.

Although fundamentally qualitative, the previous analysis demonstrates that the addition order
of reagents influences the resulting characteristics of the Au-NPs decorating the surface of the catalytic
supports. Ojea et al. [30] have reported an analogous effect in gold colloids. They observed that
on reversing the order of reagents in the standard Turkevich protocol (Inverse Turkevich), smaller
particles with narrower PSD are obtained. This result was attributed to an increase of the nucleation
and growth rate promoted by formation of a strong reducing medium before adding of gold precursor.
This medium is generated by the oxidation of Na3Ct to dicarboxy acetone in heat water, producing
chemical intermediates capable of reducing gold species [37]. The same effect seems to apply for
our synthesized samples. Thus, it is proposed that the differences in the SPR-band features and gold
loading among Au-NPs/ZnO samples can be explained in terms of the growth mechanism for each
case. (1) Direct Turkevich Method: The existence of a support-reaction medium interface along with
low concentration of reducing species favors heterogeneous nucleation and lead low nucleation rate;
thus, bigger Au-NPs with broad PSD are produced [38]; (2) Inverse Turkevich Method: In spite of the
nucleation sites at the ZnO surface, the high concentration of reducing species privileges homogeneous
nucleation; hence, smaller Au-NPs with narrow PSD result (most as colloid) [39]; however, poor gold
loading is achieved; (3) Progressive Heating Method: This method paves the way for intermediate
physicochemical conditions in which homogeneous and heterogeneous nucleation compete.
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2.3. Photocatalytic Activity

The influence of the impregnation method in the photocatalytic activity of the synthesized samples
was studied via their performance in decolorizing RhB solutions under UV- and pure visible-light
illumination, using the apparent rate constant k as the comparative parameter. Figure 6 shows the
emission spectra of the UV-lamp and sunlight-LED used as light sources. The decolorization curves
corresponding to the different photocatalysts are presented in Figure 7.

In agreement with previous reports, under UV illumination, gold loading enhances the photocatalytic
performance of the ZnO support. Nonetheless, it is worth noting that the value of k does not increase
monotonously with the gold content (Au wt.%) (see Table 1). This behavior has been observed earlier
by several authors [40,41], which implies that the catalytic activity of the Au-NPs/ZnO samples is
influenced by other aspects of their microstructure. For instance, an increase of the catalytic activity
has been reported in metal-semiconductor nanocomposites as the size of the Au-NPs decreases.
This effect is attributed to a shifting of the Fermi level towards more negative potentials [25,42].
Additionally, we propose that a greater interaction between the photogenerated charge carriers and the
built-in electric field at the metal-semiconductor interfaces contributes to the observed enhancement.
To illustrate this idea, consider a set of metal particles with particle size distribution, n(D), and density, ρ.
These particles are deposited on a semiconductor surface. The total metal-semiconductor interface
area, Aint, is then obtained by accounting the interface area formed by each metal particle. Analogously,
the total mass of the metallic component, mT, is obtained by adding the mass of every metal particle.
For simplicity, consider hemispherical particles deposited on a flat surface (see inset of Figure 7). In this
case, Aint is given by

Aint =
3mT

ρ
f (D) (3)

Under this scheme, Aint is determined by both PSD and the amount of metal loading. Because the
electric fields responsible for the charge carrier separation are located at the Schottky junctions,
to extend the Aint might increase the interaction probability among it and the photogenerated carriers,
reducing the electron-hole recombination rate.
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Based on the previous argument, the differences of the photocatalytic activity among the
Au-NPs/ZnO samples can be explained in terms of Aint. First, the sample obtained using Progressive
Heating Method shows the highest photocatalytic activity. Although this sample has an intermediate
gold loading (3.8 wt.%), it has the smallest Au-NPs (~9.7 nm) and, in consequence, the largest Aint.
Second, the sample synthesized using Inverse Turkevich Method shows the lowest photocatalytic
activity. This sample has an intermediate Au-NPs size (~10.8 nm) but the lowest gold content (1.9 wt.%),
resulting in the smallest Aint. Third, the sample obtained using Direct Turkevich Method has the
largest Au-NPs size (~11.7 nm) and the highest gold loading (5.3 wt.%), which compensates the total
interface area; thus, an intermediate catalytic performance results.

Contrary to the results discussed above, when pure visible-light is used, all the gold-loaded
samples showed less catalytic activity than the bare ZnO support. Under visible-light, the photocatalytic
activity of Au-NPs/semiconductor catalysts has been attributed to electron transfer from the plasmonic
particles to the conduction band (CB) of the semiconductor support [43]. The injected electrons, called
hot-electrons, result from the decay process of excited plasmons. In our samples, since the plasmon
energy (~2.4 eV) is larger than the interband threshold of gold (~2 eV), direct intraband transitions
dominates as the plasmon decay mechanism. In gold, the generated hot-electrons and -holes locate
at states in the sp-band (~0.5 eV above the Fermi level) and d-band (~2.5 eV below the Fermi level),
respectively [44]. Thus, the injection of hot-electrons into ZnO depends on whether they have enough
energy to overcome the Schottky barrier [45]. The value of the potential barrier of Au-ZnO junctions has
been reported as large as 1.2 eV [46]. We propose that the Schottky barrier in our Au-NPs/ZnO samples is
sufficiently high that hot-electrons are reflected at the metal-semiconductor interfaces. As consequence,
gold-loaded samples do not exhibit higher photocatalytic activity than the bare support. In this regard,
since the shortest wavelength of the sunlight-LED is still below the ZnO absorption edge (see Figure 6),
transfer of photogenerated electrons from the CB of ZnO to the Fermi level of Au-NPs cannot be
the involved in the catalytic mechanism. Nevertheless, given that decolorization of RhB solution is
yet observed when the bare support is used as catalyst, dye sensitization is proposed as the actual
mechanism, i.e., electrons are transferred from the excited RhB molecules (RhB*) to the CB of ZnO,
allowing formation of O2

•− species [47]. However, degradation of organic pollutants is mainly due to
OH• radicals produced by water oxidation rather than O2

•− species [48]. In agreement, under pure
visible-light illumination, the overall photocatalytic activity of all the samples decreases.
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In analyzing the catalytic activity of the samples under pure visible-light, the results may at first
sight seem to be self-contradictory; this is because any gold-loaded sample has less activity than the
bare support, but among them, a monotonic increase is observed with gold content. To explain this
behavior, we propose that Au-NPs have a dual role, one as hinderer of the pathway mediated by RhB
molecules to generate O2

•− species (dye sensitization) and another as charge-separation promoter.
On the one hand, is proposed that the negative effect is related to a combination of three distinct
processes: (1) electron transfer form RhB* to Au-NPs instead of ZnO [49], in which they can reduce
RhB cations (RhB+) (the reverse direction has been demonstrated not to occur [50]); (2) desorption of
RhB molecules due to the heat released by non-radiative decay of plasmons; and (3) a competition
between Au-NPs and RhB for visible photons. On the other hand, the positive effect might be assigned
to a decrease of the recombination rate of the electrons injected from RhB* to the CB of ZnO by further
being transferred to Au-NPs, in which they combine with adsorbed O2 to produce superoxide radicals.
Figure 8 presents the proposed pathways for the generation of O2

•− and OH• radicals in which the
bare ZnO support and Au-NPs/ZnO catalysts are illuminated using UV- and visible-light.
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3. Materials and Methods

3.1. Synthesis of Materials

The obtained samples consist of ZnO nanostructures decorated with Au-NPs, using three different
approaches for this purpose. While the ZnO support was obtained using thermal decomposition of
ZnO2 powders [34], the metallic component was obtained through Direct Turkevich Method [23], Inverse
Turkevich Method [30], or Progressive Heating Method. The ZnO nanostructures were synthesized as
follows. Initially, a 33 mM zinc acetate solution was prepared by dissolving 0.987 g of zinc acetate
dihydrate (Zn(CH3COO)2·2H2O; 99.6%, J.T. Baker, Phillipsburg, NJ, USA) in 136.4 mL of deionized water
(18.2 MΩ cm) under magnetic stirring. After, 13.6 mL of hydrogen peroxide was added (H2O2, sol.
30%; J.T. Baker). At that point, it was introduced in a microwave oven (KOR-6LZB 540 W, Daewoo,
Seoul, South Korea) and heated up to 90 ± 2 ◦C; this temperature was maintained for 15 min. Then,
the reaction solution was cooled to room temperature. The precipitate was separated by centrifugation,
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washed with deionized water, and dried at 70 ◦C for 2 h. The obtained yellowish powder was then
placed in an alumina crucible, put at the center of an opened quartz tube, and heated for 2 h at 300 ◦C;
a white ZnO powder was obtained. Gold loading was carried out by following a second step. Briefly,
in a three-neck boiling flask fitted with reflux condenser, 600 mg of the ZnO powder was dispersed in
170 mL of deionized water (18.2 MΩ cm) under vigorous magnetic stirring. Previously, two aqueous
solutions containing the chemical precursors were prepared: (1) 12.3 mM gold (III) chloride trihydrate
(HAuCl4·3H2O, ≥99.9%, Sigma-Aldrich, St. Louis, MO, USA) solution (Sol. 1) and (2) 83.6 mM sodium
citrate tribasic dihydrate (Na3Ct; C6H5Na3O7·2H2O, ≥99.0%, Sigma-Aldrich) solution (Sol. 2). In all
the impregnation protocols, the Na3Ct:HAuCl4 molar ratio was fixed at 6.8. This value was selected
to set the surface plasmon resonance band of the Au-NPs around 520 nm [30], which lies within the
wavelength range with the highest intensity of the terrestrial solar spectrum [51]. In the case of the
Au-NPs/ZnO sample obtained through Direct Turkevich Method as impregnation method, first, 15 mL
of Sol. 1 was added to the ZnO suspension; then, the reaction temperature was increased to 100 ◦C.
Afterward, 15 mL of Sol. 2 was added, and the reaction temperature was sustained during 70 min.
Lastly, the solution was cooled in an ice-bath, and the obtained powder was extracted by centrifugation,
washed with distilled water and ethanol, and dried at 70 ◦C during 2 h. For the sample obtained using
Inverse Turkevich Method, merely, the addition sequence of Sol. 1 and Sol. 2 was reversed. In the case
of Progressive Heating Method, both Sol. 1 and Sol. 2 were added at the same time before heating the
reaction solution.

3.2. Materials Characterization

The obtained samples were characterized by X-ray diffraction (XRD; Advance D8 Discover
diffractometer equipped with a Ni-filtered Cu-Kα X-ray tube and a Lynx-Eye detector, Bruker
Co., Berlin, Germany), field-emission scanning electron microscopy (FE-SEM; MIRA3–LM FE-SEM,
TESCAN, Brno, Czech Republic, operating at 20 kV), transmission electron microscopy (TEM, JEM-2100,
JEOL, Tokyo, Japan, operating at 200 kV), elemental mapping using energy dispersive X-ray
spectroscopy (EDS; QUANTAX XFlash 6|30 EDS detector, Bruker Nano Analytics, Berlin, Germany),
diffuse reflectance spectroscopy (DRS; Cary 5000 UV-Vis-NIR spectrophotometer equipped with
a DRA-CA-30I accessory, Aligent, Santa Clara, CA, USA), nitrogen adsorption-desorption
(BELSORP Mini-II sorptometer, MicrotracBEL Corp., Osaka, Japan; the isotherms were recorded at
77 K, previously, the samples were degassed in vacuum during 5 h at 300 ◦C), and inductively coupled
plasma-optical emission spectrometry (ICP-OES, Optima 8300, Perkin-Elmer, Waltham, MA, USA).

3.3. Photocatalytic Experiments

The photocatalytic activity of the samples was studied by testing their performance in the
decolorization of Rhodamine B (RhB; C28H31ClN2O3, ~95%, Sigma-Aldrich) solutions irradiated
with either UV- or pure visible-light. An UV-lamp (UVP-XX-15S, 302 nm, 15 W) and a sunlight-LED
(BLC12W, 5500 K, CRI>83, 12 W) were used as light sources, respectively. Their emission spectra were
acquired using a NanoLog® spectrofluorometer equipped with a Hamamatsu R–928P photomultiplier
tube (Horiba Jobin Yvon Inc. Edison, NJ, USA). The catalytic experiments consisted of dispersing
150 mg of the catalyst in 150 mL of a 5.0 ppm RhB aqueous solution under magnetic stirring.
The temperature of the solution was sustained at 20 ◦C, and 400 sccm of air was bubbled throughout
the experiments. Before light irradiation, the dispersion was maintained in dark for 2 h to ensure
adsorption-desorption equilibrium. Aliquots were then taken at specific intervals to determine the
actual RhB concentration by UV-Vis spectrophotometry (λmax = 553 nm). Analogous experiments,
but without dispersing the catalyst, were performed to determine the stability of RhB under
illumination (photolysis).
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4. Conclusions

ZnO nanostructures were decorated with gold nanoparticles (Au-NPs) using three different
approaches, namely, the Direct Turkevich Method, the Inverse Turkevich Method, and the Progressive
Heating Method. The photocatalytic activity of the synthesized samples was tested toward decolorization
of rhodamine B (RhB) solutions. It was found that the catalytic activity of the Au-NPs/ZnO samples
depends on the used impregnation method. It is attributed to differences in the characteristics of the
metallic phase driven by the growth mechanism involved in each method. Under UV-light illumination,
all the Au-NPs/ZnO samples showed higher catalytic activity than the bare ZnO support. While this
effect is associated with a charge carrier separation mechanism, the observed differences among
gold-loaded samples are attributed to the total Au-ZnO interface area. Contrary to previous reports,
under visible-light, photocatalytic enhancement using Au-NPs was not observed. This result is
attributed to the condition that hot-electrons do not have enough energy to overcome the potential
barrier at metal-semiconductor interfaces. Therefore, the effectiveness of the visible sensitization using
Au-NPs might depend on how much the Schottky barrier is shortened. Finally, it is proposed that
under pure visible-light illumination and high Schottky barriers, Au-NPs have a dual role: one as
hinder of the dye sensitization mechanism and another as charge-separation promoter.
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