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Abstract: Pt-Au nanostructures are important and well-studied fuel cell catalysts for their promising
catalytic performance. However, a detailed quantitative local structure analysis, using extended
X-ray absorption fine structure (EXAFS) spectroscopy, have been inhibited by interference between Pt
and Au L3-edges. In this paper, Pt L3-edge XAFS analysis, free of Au L3 edge, is demonstrated for a
Pt-Au reference sample using a low-cost log–spiral bent crystal Laue analyzer (BCLA). This method
facilitates the EXAFS structural analysis of Pt-Au catalysts, which are important to improve fuel
cell catalysts.

Keywords: Pt-Au; XAFS; BCLA

1. Introduction

Platinum is one of the key elements for catalytic reactions in fuel cells. Although there are many
studies in which authors suggest different methodologies to replace Pt with others low-cost metals, it is
still difficult to substitute the catalytic performance of Pt. A practical approach, combining different
metals with Pt have widely been adopted to reduce the amount of Pt and improve its activity and
durability. Among those, Au is one of the interesting metals due to its superior oxygen-reduction-reaction
activity and durability reported in Pt-Au nanostructures, where the Pt (shell)-Au (core) structures and the
effect of Au decoration on the edges of Pt surfaces are used as a fuel cell catalyst [1–5]. Hence, it is essential
to understand the local structures of both Pt and Au in an atomic scale to elucidate the mechanism of
the catalytic reactions in Pt-Au nanostructures. Extended X-ray absorption fine structure (extended
XAFS or EXAFS) spectroscopy is a suitable and widely-used method to investigate the local atomic
structures of fuel-cell catalysts because of its atomic selectivity and applicability to nanoparticles
under electrochemical environments [6]. However, in case of Pt-Au system, it is difficult to obtain a Pt
L3-edge EXAFS sufficient for its analysis due to the interference between Pt and Au, which are only
separated by ~350 eV, so that Au L3-edge appears at ~9.6 Å−1 in Pt L3-edge EXAFS [7,8]. Although
the problem can be solved by measuring K-edge XAFS, where Pt and Au K-edges are separated by
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~2300 eV [9,10], the information in the long-range order is limited by the lifetime broadening, and Pt
L3-edge EXAFS measurement is preferable.

Glatzel et al. first demonstrated that EXAFS spectra sufficient for analysis under the existence of
interfering absorption edges, called range-extended EXAFS, could be obtained by taking advantage of
high-energy-resolution fluorescence detected XAFS (HERFD-XAFS) using crystal analyzers with an
energy resolution of ~1 eV [11,12]. It was shown that HERFD-XAFS was not only useful for capturing
the detailed structures of the X-ray absorption near edge structure spectra but also capable of obtaining
the range extended EXAFS. Recently, this method was applied to the feasibility study of Pt L3-edge
EXAFS in the presence of Au [13]. In this paper, we demonstrated that range-extended Pt L3-edge
EXAFS can also be obtained under the existence of Au using a log–spiral bent crystal Laue analyzer
(BCLA) [14]. Although the energy resolution of BCLA (>10 eV [15]) is generally less than the resolution
of crystal analyzers used in HERFD-XAFS (~1 eV), the energy reolution of the BCLA is sufficiently
small for discriminating Au fluorescence from Pt. On the other hand, adopting BCLA, one can expect
a lower cost for experimental arrangement compared to HERFD-XAFS. Moreover, the emission energy
scan of BCLA can be achieved by a vertical scan because it approximately corresponds to the change
in the incident angle of the X-ray against the crystal face. These characteristics may facilitate the
application of the BCLA to the range-extended EXAFS of Pt-Au catalysts.

2. Results

Figure 1 shows the emission X-ray intensity from a diluted Pt-Au reference sample measured
through a BCLA moved to the vertical direction. The incident X-ray energy was 12.1 keV, which was
corresponding to the energy above the Au L3-edge. All four fluorescent peaks (Pt Lα2, Pt Lα1, Au Lα2,
Au Lα1) were well resolved, and it is confirmed that there was a clear correspondence between the
accepted X-ray fluorescent energy and the vertical position of the BCLA. Au fluorescent peaks were
smaller compared to the expected molar ratio of the sample (Pt/Au = ~1/10); a solid-state detector
(SSD) was used within the range of interest, only including the entire Pt Lα peaks. According to
the full width half maximum (FWHM) of the Pt Lα1 peak, the energy resolution is ~30 eV for this
experimental arrangement.

Catalysts 2018, 8, x FOR PEER REVIEW  2 of 6 

 

information in the long-range order is limited by the lifetime broadening, and Pt L3-edge EXAFS 

measurement is preferable. 

Glatzel et al. first demonstrated that EXAFS spectra sufficient for analysis under the existence 

of interfering absorption edges, called range-extended EXAFS, could be obtained by taking 

advantage of high-energy-resolution fluorescence detected XAFS (HERFD-XAFS) using crystal 

analyzers with an energy resolution of ~1 eV [11,12]. It was shown that HERFD-XAFS was not only 

useful for capturing the detailed structures of the X-ray absorption near edge structure spectra but 

also capable of obtaining the range extended EXAFS. Recently, this method was applied to the 

feasibility study of Pt L3-edge EXAFS in the presence of Au [13]. In this paper, we demonstrated 

that range-extended Pt L3-edge EXAFS can also be obtained under the existence of Au using a 

log–spiral bent crystal Laue analyzer (BCLA) [14]. Although the energy resolution of BCLA (>10 eV 

[15]) is generally less than the resolution of crystal analyzers used in HERFD-XAFS (~1 eV), the 

energy reolution of the BCLA is sufficiently small for discriminating Au fluorescence from Pt. On 

the other hand, adopting BCLA, one can expect a lower cost for experimental arrangement 

compared to HERFD-XAFS. Moreover, the emission energy scan of BCLA can be achieved by a 

vertical scan because it approximately corresponds to the change in the incident angle of the X-ray 

against the crystal face. These characteristics may facilitate the application of the BCLA to the 

range-extended EXAFS of Pt-Au catalysts. 

2. Results 

Figure 1 shows the emission X-ray intensity from a diluted Pt-Au reference sample measured 

through a BCLA moved to the vertical direction. The incident X-ray energy was 12.1 keV, which 

was corresponding to the energy above the Au L3-edge. All four fluorescent peaks (Pt Lα2, Pt Lα1, Au 

Lα2, Au Lα1) were well resolved, and it is confirmed that there was a clear correspondence between 

the accepted X-ray fluorescent energy and the vertical position of the BCLA. Au fluorescent peaks 

were smaller compared to the expected molar ratio of the sample (Pt/Au = ~1/10); a solid-state 

detector (SSD) was used within the range of interest, only including the entire Pt Lα peaks. 

According to the full width half maximum (FWHM) of the Pt Lα1 peak, the energy resolution is ~30 

eV for this experimental arrangement. 

 

Figure 1. Emission X-ray intensity from a diluted Pt-Au sample measured through a BCLA moved to 

the vertical direction. Four peaks were assigned as Pt Lα2, Pt Lα1, Au Lα2, Au Lα1, from lower to 

higher positions of the BCLA. 

Figure 2 shows the normalized XAFS spectra of a concentrated Pt-Au reference sample 

measured in a transmission mode and a fluorescence mode with the BCLA. The edge heights of the 

raw spectrum were 1 and 7.31.1 for Pt and Au, respectively. It was clearly observed by the 

transmission spectrum that the sample contained ~10 times more Au than Pt. In the fluorescence 

Figure 1. Emission X-ray intensity from a diluted Pt-Au sample measured through a BCLA moved
to the vertical direction. Four peaks were assigned as Pt Lα2, Pt Lα1, Au Lα2, Au Lα1, from lower to
higher positions of the BCLA.

Figure 2 shows the normalized XAFS spectra of a concentrated Pt-Au reference sample measured
in a transmission mode and a fluorescence mode with the BCLA. The edge heights of the raw spectrum
were 1 and 7.31.1 for Pt and Au, respectively. It was clearly observed by the transmission spectrum
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that the sample contained ~10 times more Au than Pt. In the fluorescence mode, apparently, no Au
signal was observed due to the BCLA. However, the Pt fluorescence signal abruptly decreased at the
Au L3-edge; the incident X-rays were absorbed by the abundant Au atoms. Consequently, Pt atoms
were less excited [11,16]. This effect can be avoided by a sufficient dilution of the sample.
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Figure 2. XAFS spectra of the concentrated Pt-Au reference sample measured in transmission (solid
line) and fluorescence mode (dashed line) with the BCLA. The spectrum was normalized by the edge
height of Pt = 1.

Figure 3a shows the XAFS spectrum of the diluted Pt-Au reference sample (see Materials and
Methods) measured in the fluorescence mode with the BCLA. The edge heights of the raw data for
this diluted sample measured in transmission mode was 0.007 for Pt and 0.05 for Au, respectively.
As expected, no clear anomaly was observed near the region of Au L3-edge, when the interference
of Auand Pt L3-edge EXAFS could be removed. Figure 3b shows the k3χ plot with an accumulation
time of less than 30 min. For comparison, the Pt L3 transmission XAFS spectrum of a standard sample
(PtCl4) measured at Beam line (BL)14B2 in Super Photon ring-8 GeV (SPring-8) was overlaid as a red
dashed line (see Figure 3b). There is a good agreement up to ~12 Å−1. No clear edge was found even
in this k3χ plot. Here, we demonstrated that Pt L3-edge EXAFS spectra, free of Au L3-edge, could be
obtained using a considerable amount of Au in BCLA.
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Figure 3. (a): Fluorescence XAFS spectrum of the diluted Pt-Au reference sample measured with the
BCLA. The spectrum was normalized by the edge height of Pt = 1; (b): k3χ EXAFS spectra of the diluted
Pt-Au reference sample measured at BL36XU (black solid line) and of the standard sample PtCl4 (red
dashed line) measured at BL14B2.
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3. Discussion

Previously, range-extended EXAFS was only achieved in HERFD-XAFS. In this work, we have
successfully demonstrated the range-extended EXAFS analysis using BCLA is possible. BCLA has
several advantages mentioned above compared to HERFD-XAFS method. In addition, the crystal
alignment is quite simple. It is mainly achieved by a vertical scan followed by a precise
two-dimensional linear scan of the BCLA [15,17]. The only constraint is the vertical size of the
incident X-ray beam. In this study, it was ~50 µm, though this condition is not fixed, depending on the
energy difference between the measuring (Pt) and interfering (Au) fluorescent X-rays (see Figure 1).

HERFD-XAFS is, in general, a powerful technique to detect the subtle spectral changes in X-ray
absorption near to edge regions. By applying this technique to Pt catalysts in fuel cells, various
adsorbates on Pt and its oxidation states have been discussed [18–20]. HERFD-XAFS can not be
achieved by using the BCLA because of their moderate energy resolution larger than the core-hole
lifetime broadening. However, this is preferable in case of direct comparison between the spectra
measured in the transmission and the fluorescence mode using BCLA; which should have the same
energy resolutions.

4. Materials and Methods

The concentrated Pt-Au reference sample was made by mixing PtCl4 and AuCl powder.
The mixture was then ground in a mortar and pestle together with BN (boron nitride) powder and
pressed into a pellet with a size of 1 mm thick and 10 mm diameter. The Pt and Au concentration was
Pt/Au ~ 1/10 and the Pt L3-edge step (∆µt) was ~0.1. The diluted Pt-Au reference sample was made
diluting the concentrated Pt-Au pellet by ~1/20 with additional BN powder.

The XAFS measurements were performed at BL36XU in SPring-8 (JASRI, Koto, Japan). The beam
size of the incident X-rays was focused to ~50 µm (vertical) × ~500 µm (horizontal) by using 4 focusing
mirrors equipped in the beamline. The photon flux was ~2 × 1013 photons/s, but it was reduced to
~2 × 1012 photons/s for the diluted Pt-Au sample using an Al attenuator. Ion chambers were used for
the transmission measurement. A commercial BCLA (0095, FMB Oxford, UK) and a 25-element Ge SSD
(Canberra, Coneticcut , USA) or a pixel-array detector (PILATUS 300K-W; Dectris, Baden-Daettwil,
Switzerland) were used for detecting fluorescent X-rays. The sample and the BCLA/SSD (or PILATUS)
were placed in the 45◦/45◦ arrangement. The shaping time of the SSD was set to 0.5 µs, which resulted
in an SSD energy resolution of 400 eV. The region of interest in the SSD was 9.09–9.76 keV. Thus, the Au
fluorescence effect cannot fully suppress after the Au L3-edge. The commercial BCLA was linearly
scanned in two dimensions to find their optimum position so that the Pt Lα1 fluorescent X-ray intensity
became maximum in the multi-element SSD. Only the detector of elements in the multi-element SSD,
which sufficiently suppressed Au Lα fluorescent X-rays, was used for the spectral analyses [21].

5. Conclusions

Pt L3-edge XAFS analysis, free from Au L3-edge, was demonstrated here for the first time using
BCLA; a low-cost and high-sensitive crystal analyzers, which facilitates detail EXAFS analyses for
Pt-Au fuel cell catalysts. Our results confirm the feasibility of the range-extended EXAFS using
BCLA, we apply this technique to two interesting fuel cell models containing Pt and Au; Au-Pt-Co-N
nanoparticles deposited on a highly oriented pyrolytic graphite [22] and monolayer Pt deposited on
Au thin film with 60 nm thickness on a Si (100) substrate [23]. We will soon report these results.
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