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Abstract: Enzymatic halogenation and haloperoxidation are unusual processes in biology; however, a
range of halogenases and haloperoxidases exist that are able to transfer an aliphatic or aromatic C–H
bond into C–Cl/C–Br. Haloperoxidases utilize hydrogen peroxide, and in a reaction with halides
(Cl−/Br−), they react to form hypohalides (OCl−/OBr−) that subsequently react with substrate by
halide transfer. There are three types of haloperoxidases, namely the iron-heme, nonheme vanadium,
and flavin-dependent haloperoxidases that are reviewed here. In addition, there are the nonheme
iron halogenases that show structural and functional similarity to the nonheme iron hydroxylases
and form an iron(IV)-oxo active species from a reaction of molecular oxygen with α-ketoglutarate
on an iron(II) center. They subsequently transfer a halide (Cl−/Br−) to an aliphatic C–H bond.
We review the mechanism and function of nonheme iron halogenases and hydroxylases and show
recent computational modelling studies of our group on the hectochlorin biosynthesis enzyme and
prolyl-4-hydroxylase as examples of nonheme iron halogenases and hydroxylases. These studies
have established the catalytic mechanism of these enzymes and show the importance of substrate
and oxidant positioning on the stereo-, chemo- and regioselectivity of the reaction that takes place.

Keywords: inorganic reaction mechanisms; density functional theory; computational modelling;
enzyme catalysis; quantum mechanics/molecular mechanics

1. Introduction

Nature utilizes enzymes for essential biochemical transformations, whereby compounds that
cannot be taken in from food are synthesized. In addition, enzymatic processes often involve the
biodegradation of toxic compounds, and as such, they contribute to vital biochemical mechanisms
in the body. Structurally, enzymes are built up from proteins and contain an active site, where
substrate and oxidant are brought together to initiate a chemical reaction. Although not specifically
common in nature, there are a number of enzymes linked to halogenation and haloperoxidase reaction
mechanisms, whereby an aliphatic or aromatic C–H bond is replaced by C–X (X = Cl, Br, I). This review
will cover recent advances in the understanding of halogenases and haloperoxidases and specifically
highlight how computational modelling can assist in elucidating the catalytic reaction mechanism
of these enzymes. In the first few sections, we will cover the structure and catalytic cycles of typical
halogenases and haloperoxidases in nature, while in the second part of this review, recent studies from
our group on nonheme iron halogenases and hydroxylases are discussed.

Incorporating halogen atoms (fluoride, chloride, bromide, and iodide) into various natural product
scaffolds is made possible through enzymes called halogenases, which are found in several marine and
terrestrial organisms. Halogenases found in marine organisms typically use bromide as their halogen
source, whereas those found in terrestrial organisms utilize chloride more commonly. This is despite

Catalysts 2018, 8, 314; doi:10.3390/catal8080314 www.mdpi.com/journal/catalysts

http://www.mdpi.com/journal/catalysts
http://www.mdpi.com
https://orcid.org/0000-0002-2620-8788
http://dx.doi.org/10.3390/catal8080314
http://www.mdpi.com/journal/catalysts
http://www.mdpi.com/2073-4344/8/8/314?type=check_update&version=2


Catalysts 2018, 8, 314 2 of 25

there being larger concentrations of chloride than bromide in seawater [1–3]. The biosynthesized
halogenated compounds (organohalogens) in these organisms have a range of biochemical functions,
including growth, reproduction and defense [1,3–6]. Furthermore, organohalogens have been
shown to have many biological and medical properties, such as antibacterial, antifungal, antiviral,
anti-inflammatory, anti-proliferative, anti-fouling, anti-feedant, cytotoxic, ichthyotoxic, and insecticidal
activity [7] and as a result, many of today’s best-selling herbicides, pesticides, and insecticides contain
halogen atoms [8,9]. Importantly, often the biological and medical properties are lost when the halide
substituent is removed. Thus, vancomycin loses its antibiotic activity when the aryl chloride functional
groups are substituted for styryl groups [10].

The biological and medical properties of halogenated natural products, as previously stated,
are often associated with the properties of the C–H bond itself. In the past, the role of the halogen
in organohalogens was thought to only modulate the lipophilicity. In addition, in organohalogen
compounds the halogen atom can form weak hydrogen bonding interactions with protein residues or
alternatively function as a nucleophile. These halogen bonds may have importance for protein stability
and folding as they have been shown to form through intermolecular interactions with proteins,
similar to hydrogen bonds [11,12]. Consequently, it is a well-established practice within medicinal
chemistry to introduce halogens into compounds because they are electron-withdrawing groups that
do not significantly disrupt the size and shape of the molecule, and hence can bind as inhibitors easily.
One halogen atom of great significance to the pharmaceutical industry is fluorine, because of its small
size and its large electronegativity value. In fact, the combination of those two factors, plus their
influence on lipophilicity, has resulted in some of the bestselling pharmaceuticals containing fluorine,
as shown in Figure 1.
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natural products with known biological activities.

Additionally, the materials industry is interested in halogen-containing compounds as polymers,
as they appear particularly well-suited for the design of smart devices, the development of
nanotechnologies, organic semi-conductors, and lithium-ion batteries [13–15]. These developments are
paving the way for next-generation materials. Given the increasing importance to selectively install
halogens onto compounds for the pharmaceutical, agrochemical, and materials industries, several
methods, rooted in organic chemistry, have been created. Traditionally, however, these methods require
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materials which are toxic to the environment and result in poor selectivity, and despite steps taken
to address these issues, for example, using directing groups to control the selectivity by controlling
the position of functionalization, there is still a need to develop more sustainable ways of selectively
halogenating compounds. One attractive method of doing this is to use halogenases, which are
enzymes which selectively halogenate compounds during the production of secondary metabolites,
to install halogens onto natural and synthetic scaffolds. Therefore, understanding the specific factors
relating to their regio-, stereo-, and chemoselectivity of halogenases will open them up to applications
in biotechnology and drug development, providing a greener and more selective process to the creation
of organohalogens.

1.1. Classification of Halogenases

There are five different types of halogenases/haloperoxidases known in the literature that all
have been discovered over the past 50 years. They are grouped according to the nature of their active
halogenating agents, and are further subdivided based on the nature of their mechanism, co-factor,
and substrate, as represented in Table 1. Thus, there are three haloperoxidase-types that react through
electrophilic mechanisms, namely the heme-, vanadium-, and flavin-dependent haloperoxidases.
The S-adenosyl-L-methionine (SAM) fluorinases react via nucleophilic pathways, while the nonheme
iron/α-ketoglutarate (αKG)-dependent halogenases react via radical pathways. In the next few
sections, we will give a brief overview of these individual halogenases/haloperoxidases and how they
differ in their active site structures and reactivities.

Table 1. Classification of the halogenases according to the nature of their active halogenating agent.

Electrophilic Nucleophilic Radical

Heme-dependent SAM fluorinases Nonheme iron/αKG-dependent halogenase
Vanadium-dependent

Flavin-dependent

1.1.1. Heme Haloperoxidases

The first heme-dependent haloperoxidase was discovered from Caldariomyce fumago in 1966,
the fungus that synthesizes caldariomycin (Figure 2). The link between this haloperoxidase and the
biosynthesis of caldariomycin was made from the observation δ-chlorolevulinic acid from β-ketoadipic
acid and chloride. The enzyme shows a versatile catalytic ability, but key functions exist that relate
to the oxidation of halide ions (iodide, bromide, and chloride) in the presence of hydrogen peroxide
to form hypohalous acids. The latter then react non-specifically with electron-rich substrates such as
aromatic rings, through chloride transfer, and hence are called chloroperoxidases (CPO).
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Structurally, CPO shares many of its features with cytochrome P450 enzymes and peroxidases,
as outlined with the active site geometries in Figure 3 [16–18]. The P450s are heme monoxygenases
that utilize molecular oxygen on a heme center and hydroxylate substrates [19–21]. They tend to
bind the heme to the protein via a proximal cysteine ligand, whereas the substrate binds onto the
distal site. In heme peroxidases that typically have a histidine proximal ligand, the substrate binding
pocket is small and is lined up with polar residues, such as His and Arg amino acids (Figure 3B) [22].
By contrast, on the distal site in CPO, the histidine is missing and its position is taken by a glutamic
acid (Glu183), while the distal arginine residue in peroxidases is also not present in CPO. An axial
cysteinate versus histidine has a profound effect on the chemical properties of the heme as cysteinate
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is anionic whereas histidine is neutral. This implies that cysteinate donates electrons to the heme
(push-effect), whereas histidine withdraws electron density from the heme [23–27], and consequently
CPO/P450 have a much smaller reduction potential than peroxidases and therefore react faster with
substrates. Indeed, a series of computational studies on the mechanism and reactivity of P450 versus
peroxidases and catalases showed enhanced reactivity of the P450 models [28–33].
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Figure 3. Comparison of the active sites in (A) chloroperoxidase (PDB 1CPO [16]), (B) peroxidase (PDB
2GHC [17]) and (C) cytochrome P450 (PDB 1FAG [18]) enzymes.

The structural differences between CPO, peroxidase, and cytochrome P450 are the result of their
functional changes and make CPO specific for chloroperoxidase catalysis. The general mechanism of
CPO is shown in Figure 4 and starts from the resting state A, which is a water-bound iron(III)-heme.
Upon entering of substrate hydrogen peroxide into the distal binding pocket, water is displaced and
transforms structure A to B. Then, Glu183 participates in the heterolytic cleavage of the peroxide
O–O bond to form the reactive intermediate, Compound I (C) by protonation of the hydroperoxo
intermediate, Fe(III)-OOH. The latter is termed Compound 0, and has been studied extensively using
various computational models [22,34–40]. Interestingly, mutation of the glutamic acid residue to a
histidine greatly hampers its halogenation activity [41]. Compound I then oxidizes a halide anion (X−)
to produce the electrophilic hypohalous acid (XOH) (D) which is then released, and with the addition
of water the iron(III) resting state is regenerated [42]. Furthermore, CPO is a crucial model for studying
the reaction intermediates of P450 enzymes, and many of the short-lived intermediates of CPO have
been characterized by a wide range of spectroscopic methods.Catalysts 2018, 8, 314 5 of 26 
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One of these intermediates is compound I, which has been both spectroscopically
characterized [43–45], and studied by computational modelling [46–52]. Furthermore, a variety
of spectroscopic techniques have studied short-lived intermediates of CPO through ultraviolet-visible
(UV-Vis) absorption [53], resonance Raman [54], electron paramagnetic resonance (EPR) [55,56],
and Mössbauer [55] spectroscopic measurements. At the same time, computational studies using
density functional theory (DFT) as well as quantum mechanics/molecular mechanics (QM/MM) has
given insight into the structure and activity of Compound I [38,50–52,57–60]. Thus, Compound I
of CPO reacts with halide anions, typically Cl− or Br−, to form hypohalous products in a one-step
reaction mechanism [61,62].

In general, heme haloperoxidases activate a broad range of substrates, albeit often
unselectively [12,16,63,64] and, therefore, the hypohalous acid is thought to freely diffuse into solution
where it reacts with substrates with little selectivity. Currently, there are very few industrial applications
of haloperoxidases, due to their low selectivity and stability. In addition, few biomimetic models of
halogenases and haloperoxidases have been reported [65–69].

1.1.2. Vanadium Haloperoxidases

Vanadium is the second most common transition metal found in the ocean (after molybdenum),
and is usually solvated as vanadate oxyanion at pH 7 [70–72]. Surprisingly, there are only two known
enzymes that use vanadium as a co-factor; namely, nitrogenases and vanadium haloperoxidases
(V-HPO) [73]. The V-HPOs are found in macroalgae, fungi and bacteria, and are further classified
in accordance with the most electronegative halide that they react with. As such, vanadium
chloroperoxidases (V-ClPO) can react with chloride, bromide, and iodide, whereas vanadium
bromoperoxidases (V-BrPO) react with bromide and iodide only. Finally, the iodoperoxidases (V-IPO)
react with iodide alone [74–76]. Together, they exhibit a variety of biological functions and, for example,
synthesize several secondary metabolites [77,78] such as sestertepenes. In addition, neomangicols A–C
isolated from the marine fungus Fusarium are biosynthesized by V-HPOs. Neomangicols A and B have
been shown to display cytotoxic effects toward the HCT-116 human colon tumor cell-line in vitro [79].
Furthermore, in algae, they disrupt bacterial quorum sensing [80], and fungi use them to degrade
plant cell walls [81].

The V-HPOs have an activity that is similar to the CPOs mentioned in Section 1.1.1, namely
they convert a halide anion to a hypohalous acid. This then reacts as an electrophilic intermediate
with electron rich substrates. However, the main difference between the V-HPOs and CPOs is that
the oxidation state of vanadium does not change during the catalytic cycle. Therefore, it is not
possible for V-HPOs to suffer from oxidative inactivation [2,82–84]. As such the V-HPOs are of
great interest from the pharmaceutical industry as potential sources for the synthesis of halogenating
compounds. The V-HPOs are also known for their tolerance to organic solvents and resistance
against high temperature [85,86] and their ability to oxidize organic sulfides in the absence of
halides [87,88]. Furthermore, V-HPOs are thought to be similar to CPO with regards to their low
regio- and stereoselectiviy. However, two recently discovered V-HPOs show high selectivity in
halogenation of their indole substrates [73,89].

Currently, there are crystal structure coordinates from three V-HPOs, namely a V-ClPO from
the fungus C. inaequalis [76,90,91], V-BrPO from the brown alga A. nodosum [92] and V-BrPO from
the red algae C. officinalis [93]. Despite the fact that the various V-HPO structures share less than a
30% sequence similarity, they all have a common active site structure consisting of two side-by-side
four-α-helix bundles with the vanadium core located at the bottom, see Figure 5 [90,92–94]. In addition,
they all have an identical arrangement of amino acid residues in the active site, whereby the vanadate
oxyanion cofactor is ligated to a histidine residue at the bottom of the four-α-helix bundle that anchors
it to the protein [90,92,93].



Catalysts 2018, 8, 314 6 of 25

Catalysts 2018, 8, 314 6 of 26 

 

they all have an identical arrangement of amino acid residues in the active site, whereby the vanadate 

oxyanion cofactor is ligated to a histidine residue at the bottom of the four-α-helix bundle that 

anchors it to the protein [90,92,93]. 

 

Figure 5. Crystal structure of the vanadium chloroperoxidase from C. inaequalis (PDB 1VNC) where 

we highlight the side-by-side four α-helix loops common to all vanadium haloperoxidases. The 

vanadium cofactor (blue) is anchored at the bottom of this channel. The structure is shown in the 

cartoon representation with the secondary structure highlighted; red are α-helixes, green are loops, 

and yellow are β-sheets. 

There is still debate about the catalytic mechanism of vanadium haloperoxidases, with questions 

relating to the nature of the resting state, possible intermediates, and how the co-factor is regenerated. 

However, computational and experimental studies (mutational and steady state kinetics) on the V-

ClPO from C. inaequalis have proposed a catalytic mechanism, as shown in Figure 6 [91,93,95–106]. 

The resting state is thought to be vanadium(V)-dioxo-dihydroxo with one oxo group equatorial and 

one hydroxo group axial that hydrogen bonds to a protonated histidine residue (His404). Research has 

suggested that as hydrogen peroxide binds, a series of proton transfers occur involving this histidine 

residue, resulting in the release of water and the generation of vanadium(V)-peroxo(oxo)-hydroxo 

intermediate [107]. Once the peroxide binds side-on, the vanadium site is distorted from a trigonal 

bipyramidal to tetragonal bipyramidal [91]. His404 then loses its hydrogen bonding interactions to 

oxygen substituents of vanadium, and instead, Lys153 makes direct contact with one of the peroxide 

oxygen atoms. This is believed to activate the bound peroxide further through charge separation. The 

vanadium(V)-peroxo(oxo)-hydroxo intermediate then picks up a halide anion to form a 

vanadium(V)-hypohalide-dioxo(hydroxo) complex. The latter reacts with substrates containing 

functional groups such as hydrocarbons, sulfides, and olefins. Finally, restoration of the cofactor to 

its initial resting state is thought to occur again after a series of protonation steps, enabling the 

hypohalide to leave the active site as hypohalous acid [95]. 

side-view top-view

Figure 5. Crystal structure of the vanadium chloroperoxidase from C. inaequalis (PDB 1VNC) where we
highlight the side-by-side four α-helix loops common to all vanadium haloperoxidases. The vanadium
cofactor (blue) is anchored at the bottom of this channel. The structure is shown in the cartoon
representation with the secondary structure highlighted; red are α-helixes, green are loops, and yellow
are β-sheets.

There is still debate about the catalytic mechanism of vanadium haloperoxidases, with questions
relating to the nature of the resting state, possible intermediates, and how the co-factor is regenerated.
However, computational and experimental studies (mutational and steady state kinetics) on the
V-ClPO from C. inaequalis have proposed a catalytic mechanism, as shown in Figure 6 [91,93,95–106].
The resting state is thought to be vanadium(V)-dioxo-dihydroxo with one oxo group equatorial and
one hydroxo group axial that hydrogen bonds to a protonated histidine residue (His404). Research has
suggested that as hydrogen peroxide binds, a series of proton transfers occur involving this histidine
residue, resulting in the release of water and the generation of vanadium(V)-peroxo(oxo)-hydroxo
intermediate [107]. Once the peroxide binds side-on, the vanadium site is distorted from a trigonal
bipyramidal to tetragonal bipyramidal [91]. His404 then loses its hydrogen bonding interactions
to oxygen substituents of vanadium, and instead, Lys153 makes direct contact with one of the
peroxide oxygen atoms. This is believed to activate the bound peroxide further through charge
separation. The vanadium(V)-peroxo(oxo)-hydroxo intermediate then picks up a halide anion to form
a vanadium(V)-hypohalide-dioxo(hydroxo) complex. The latter reacts with substrates containing
functional groups such as hydrocarbons, sulfides, and olefins. Finally, restoration of the cofactor to its
initial resting state is thought to occur again after a series of protonation steps, enabling the hypohalide
to leave the active site as hypohalous acid [95].

1.1.3. Flavin Adenine Dinucleotide Haloperoxidases

The flavin adenine dinucleotide (FAD) haloperoxidases were discovered in the 1990s, and were
the first halogenases thought to be involved in the regioselective and stereoselective synthesis of
halogenated natural products [108]. For example, the first FAD-haloperoxidase was discovered from
the biosynthetic gene cluster, responsible for the generation of 7-chlorotetracycline [108]. Subsequently,
the enzyme was expressed and characterized both structurally and biochemically [109–122]. Further
studies on this group of enzymes has revealed two FAD-haloperoxidase sub-groups, namely those that
work on free substrates and ones where the substrate is tethered to a thiolate domain of a non-ribosomal
polypeptide synthase system [121]. Despite these differences, they both require reduced flavin (FADH2)
to activate molecular oxygen and to generate C4a-hydroperoxy flavin.



Catalysts 2018, 8, 314 7 of 25
Catalysts 2018, 8, 314 7 of 26 

 

 

Figure 6. Proposed catalytic cycle of V-XPO. 

1.1.3. Flavin Adenine Dinucleotide Haloperoxidases 

The flavin adenine dinucleotide (FAD) haloperoxidases were discovered in the 1990s, and were 

the first halogenases thought to be involved in the regioselective and stereoselective synthesis of 

halogenated natural products [108]. For example, the first FAD-haloperoxidase was discovered from 

the biosynthetic gene cluster, responsible for the generation of 7-chlorotetracycline [108]. 

Subsequently, the enzyme was expressed and characterized both structurally and biochemically 

[109–122]. Further studies on this group of enzymes has revealed two FAD-haloperoxidase sub-

groups, namely those that work on free substrates and ones where the substrate is tethered to a 

thiolate domain of a non-ribosomal polypeptide synthase system [121]. Despite these differences, 

they both require reduced flavin (FADH2) to activate molecular oxygen and to generate C4a-

hydroperoxy flavin. 

Originally, the FAD halogenase mechanism was thought to resemble the mechanism of FAD 

mono-oxygenases; however, structural and biochemical studies in PrnA, a tryptophan halogenase, 

have proven that this was not the case [110,123]. These studies identified that the substrate binding 

pocket and flavin binding pocket were 10 Å apart and that the C4a-hydroperoxy flavin was generated 

before halogenation and in the absence of substrate. Furthermore, the research identified a long-lived 

enzyme-chloride adduct that was proposed to be a covalent chloramine adduct or a hydrogen bonded 

lysine-hypochlorous acid species, after identifying that a conserved lysine residue in the active site 

was highly important. 

1.1.4. S-Adenosyl-L-Methionine Fluorinase 

All of the halogenases described above in Sections 1.1.1, 1.1.2, and 1.1.3, can use chloride, 

bromide, and iodide; however, none of those can actually use fluoride. The reasons for this are due 

to the low bioavailability of fluoride, its high oxidative potential and toxicity. Moreover, because of 

the high electronegativity of fluoride, it binds polar solvent molecules, such as water, very strongly, 

which makes it difficult to desolvate fluoride prior to catalysis [2]. Surprisingly, one class of 

halogenases, namely F1A from Streptomyces cattleya, is able fluorinate substrates using an S-adenosyl-

L-methionine (SAM) co-factor to 5′-fluorodeoxyadenosine and L-methionine via a nucleophilic 

substitution [124,125]. Since then, genome mining has discovered several other SAM fluorinases [126] 

and further study has elucidated part of its mechanism. 

Figure 6. Proposed catalytic cycle of V-XPO.

Originally, the FAD halogenase mechanism was thought to resemble the mechanism of FAD
mono-oxygenases; however, structural and biochemical studies in PrnA, a tryptophan halogenase,
have proven that this was not the case [110,123]. These studies identified that the substrate binding
pocket and flavin binding pocket were 10 Å apart and that the C4a-hydroperoxy flavin was generated
before halogenation and in the absence of substrate. Furthermore, the research identified a long-lived
enzyme-chloride adduct that was proposed to be a covalent chloramine adduct or a hydrogen bonded
lysine-hypochlorous acid species, after identifying that a conserved lysine residue in the active site
was highly important.

1.1.4. S-Adenosyl-L-Methionine Fluorinase

All of the halogenases described above in Section 1.1.1, Section 1.1.2, and Section 1.1.3, can use
chloride, bromide, and iodide; however, none of those can actually use fluoride. The reasons for this are
due to the low bioavailability of fluoride, its high oxidative potential and toxicity. Moreover, because
of the high electronegativity of fluoride, it binds polar solvent molecules, such as water, very strongly,
which makes it difficult to desolvate fluoride prior to catalysis [2]. Surprisingly, one class of halogenases,
namely F1A from Streptomyces cattleya, is able fluorinate substrates using an S-adenosyl-L-methionine
(SAM) co-factor to 5′-fluorodeoxyadenosine and L-methionine via a nucleophilic substitution [124,125].
Since then, genome mining has discovered several other SAM fluorinases [126] and further study has
elucidated part of its mechanism.

Computational and structural studies [127,128] revealed that conformational changes in the
protein upon binding fluoride and SAM are important for reactivity. As such, lining the fluoride
binding pocket is charged residues which upon fluoride binding help with the assistance of others to
exclude the majority of the water from the active site, thereby, increasing the nucleophilicity of fluoride.

1.1.5. Nonheme Iron/α-Ketoglutarate Halogenases

The investigation into the synthesis of barbamide, a trichlorinated compound, from the marine
cyanobacterium Lyngbya majuscule, led to the conclusion that there was another class of halogenases
not yet catalogued which could regiospecifically and stereospecifically halogenate a substrate other
than the FAD halogenases [63]. Further investigation identified that they required iron(II), molecular
oxygen, α-ketoglutarate (αKG), a halogen (chloride or bromide) and an aliphatic substrate. These
enzymes were found to be similar in structure to the nonheme iron/αKG dependent hydroxylases
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(NHFeHy), and therefore, were named the nonheme iron/αKG dependent halogenases (NHFeHa).
So far, seven known NHFeHa proteins have been identified and characterized, namely BarB1, BarB2,
SyrB2, CytC3, CmaB, HctB, and WelO5. Although most of these proteins show considerable differences
in structure and reactivity all efficiently activate aliphatic substrates and convert a C–H bond to a C–X
(X = Br, Cl) bond. Of the set of NHFeHas, the most extensively studied one is SyrB2 because it was the
first to be purified for biochemical characterization [2].

Common to all NHFeHas and NHFeHys is the 8-stranded anti-parallel β-jelly roll motif which
binds the iron necessary for the catalytic activity to occur through the facial triad residues consisting
of Asp(Glu)/His/His in NHFeHys and His/His in NHFeHas. Figure 7 highlights the comparisons
and differences of the tertiary protein structure in NHFeHy and NHFeHa enzymes. As can be clearly
seen from A-1 and B-1 the fold is very similar with helices in almost the same position. A close up of
the active site with its environment is then compared in parts A-2 and B-2 in Figure 7, which shows
almost identical protein active site structure. In the final parts (A-3 and B-3) the metal coordination is
highlighted that has the typical 2-His/1-Asp in the hydroxylases and the 2-His/1-Cl binding pattern
in halogenases. In NHFeHas the aspartate/glutamate residue is substituted for an alanine which
creates space for halide to coordinate to the iron [127] (Figure 7). There are several NHFeHy enzymes;
however, that bind the metal through three histidine residues. Most of these enzymes are associated
with cysteinate binding and catalysis. For instance, cysteine dioxygenase binds cysteinate and converts
it into cysteine sulfinic acid on a NHFeHy active site with three facial His residues [129–133]. Another
NHFeHy with a 3-His ligand coordination is the sulfoxide synthase enzyme EgtB that is involved in
the biosynthesis of ergotheinine [134].Catalysts 2018, 8, 314 9 of 26 
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Figure 7. Basic components and comparison between the nonheme iron halogenase, SyrB2 (A) from
Pseudomonas syringae (PDB 2FCT) and the nonheme iron hydroxylase, prolyl-4-hydroxylase (B) from
Clamydomonas reinhardtii (PDB 2JIG). A-1 & B-1 show similarities in tertiary structure. A-2 & B-2
show the similarities in each 8-stranded anti-parallel β-Jelly roll motif common to most nonheme iron
enzymes. A-3 shows the facial triad typical of halogenases in contrast to B-3 showing the facial triad
typical of hydroxylases.

Originally, substituting the aspartate/glutamate in NHFeHys by glycine was thought to be
the governing reason defining halogenation. However, recent studies on active site mutants of
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both NHFeHas and NHFeHys failed to convert the halogenase into a hydroxylase and vice versa.
Therefore, the reasons governing the catalytic difference of halogenases versus hydroxylases are more
complex than first thought [64,127,135] and have triggered further detailed mechanistic computational
and experimental work. Specifically, most NHFeHas require their substrate be tethered to a
phosphopantetheine arm (PPT) associated with an acyl-carrier protein (ACP) [136,137], whereas
the hydroxylases tend to have free substrates, although they are often bound tightly in a substrate
binding pocket. For example, the prolyl-4-hydroxylase from Clamydomonas reinhardtii tightly binds the
substrate through selective hydrogen bonding involving amino acids in two loops (β3-β4 loop and
the βII-βIII) which cover the substrate [138,139]. The only halogenase that forms an exception to this
rule appears to be WelO5, whose recent discovery revealed that it did not require a PPT arm to deliver
its substrate into the active site. Instead, it uses a free substrate, 12-epi-fischerindole U [140–142].
The variation in substrate scope and the ability to introduce a halogen to an aliphatic carbon make
the NHFeHas desirable biotechnological targets, and thus their mechanism and reasons governing
halogenation vs. hydroxylation must be understood.

The catalytic cycle of nonheme iron halogenases is split into two parts: the generation of the
iron(IV)-oxo oxidant and the production of the halogenated product as shown in Figure 8. The catalytic
cycles of NHFeHa and NHFeHy are identical from the resting state unto the formation of the
iron(III)-hydroxo complex G, but bifurcate thereafter [143–154]. The cycle starts from the resting
state (A) that consists of an iron(II) atom bound to three water molecules, and which is linked to the
protein via two His residues. The final coordination site on the iron is occupied by a carboxylate
of an Asp/Glu residue in NHFeHys, but a halide is present in the NHFeHas. With the addition
of αKG, two water molecules are displaced and αKG binds to iron as a bidentate ligand (B). As the
substrate binds into the enzyme, it does not coordinate to iron(II) directly, but displaces the last water
ligand (C), and molecular oxygen fills its position, thereby forming the iron(III)-superoxo species (D).
The terminal oxygen atom of superoxo then attacks αKG at the nucleophilic carbon atom of the
keto moiety producing a peroxy-succinate bicyclic ring intermediate (E). As the reaction proceeds,
this bicyclic ring structure decomposes, producing the iron(IV)-oxo, succinate and carbon dioxide (F).
The iron(IV)-oxo has been spectroscopically characterized and is a powerful oxidant in NHFe enzymes.
In NHFeHys and NHFeHas the iron(IV)-oxo performs a rate-determining hydrogen atom abstraction
reaction from bound substrate producing iron(III)-hydroxy(halide) and a radical on the substrate
(G) [155,156]. At this point, the reaction mechanism bifurcates, and the chloride radical species
rebounds to the radical substrate forming the final halogenated product in the halogenases, whereas
OH rebound gives alcohol products for the hydroxylases. Restoration to the resting state (A) in
halogenases occurs when three water molecules displace the hydroxyl group and succinate bound
to iron, and an additional chloride atom binds; however, these steps are yet to be eluded [157–159].

Computational and experimental studies of biological and biomimetic systems have helped to
elucidate this general mechanism [143–154]. However, variations in biological systems are being
identified, which are helping to shed further light on the differences and factors relating to the
bifurcation of these systems, leading to either halogenated or hydroxylated products. Some of the
differences between halogenases and hydroxylases relate to the generation of the iron(IV)-oxo oxidant
and how the products are formed, which will be discussed in more detail in the following sections.

Due to the nature of the short-lived intermediates formed in the generation of the iron(IV)-oxo,
their observation using experimental techniques is challenging. Therefore, computational
methods have been at the heart of understanding these steps. Much of the work has focused
on NHFeHys [103,145,148,158–167]; however, the mechanism is believed to be similar in the
NHFeHas [168,169]. Results from six computational studies have suggested various additional
intermediates for the mechanism linked to the production of the iron(IV)-oxo [169–174]. As mentioned
above, the catalytic cycle of NHFeHys and NHFeHas is largely similar; however, post-hydrogen atom
abstraction from the substrate, the systems bifurcate. In the NHFeHys, a hydroxyl radical rebounds,
forming the hydroxylated product [138,139,148,149], in contrast to NHFeHas, whereby, a chloride
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radical relay gives the halogenated product. The factors related to bifurcation have been the subject of
study for many years, ever since the discovery of NHFeHas, and has created a number of controversies
and mechanistic possibilities. Thus, the origin of the substrate halogenation pathway were found to be
dependent on: (i) substrate placement [168–171], (ii) protonation of the axial Fe(III)-OH post hydrogen
abstraction [172], (iii) the bond dissociation energy of chloride vs. hydroxyl [173], (iv) reaction of
liberated CO2 fromαKG with Fe(III)-OH [174], (v) the reduction potential of chloride vs. hydroxyl [175],
(vi) concomitant hydrogen atom transfer and radical chlorination [173], (vii) isomerization of the
Cl-Fe(IV)=O intermediate [176], (viii) isomerization of the Cl-Fe(III)-OH [177] and (ix) the perturbations
of the protein [177,178].
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The positioning of the substrate relative to the iron(IV)-oxo has gained the most theoretical and
experimental support [168–171,178]; however, it may not be the sole factor responsible, but rather a
combination of factors. Nevertheless, the substrate placement hypothesis states that the substrate
C–H bond must be held away from the iron(IV)-oxo, with bond vectors close the perpendicular,
thereby directing hydrogen atom abstraction through the π-pathway [179]. Most NHFeHas have their
substrate attached to a PPT arm which is tethered to an acyl carrier protein (ACP) [180,181], and all
three are required for proper activation of the enzyme. Interestingly, WelO5 binds its substrate in the
absence of this extra machinery [140–142]. In a study on NHFeHas the effects of substrate placement
on product outcome is difficult as no crystal structure has been resolved yet with substrate bound
(not including WelO5). Several spectroscopic techniques and computational methods were used with
deuterium-labeled substrates that have given insight into substrate positioning and reactivity patterns.

2. Computational Studies on Nonheme Iron Hydroxylases and Halogenases

In this section, some examples of recent studies of our group are presented, which have focused
on the mechanistic features of nonheme iron halogenases and hydroxylases. Thus, both NHFeHa
and NHFeHy have a catalytic cycle similar to the one in Figure 8, which starts from a resting state A.
After the substrate, α-ketoglutarate and dioxygen binding is converted into an iron(IV)-oxo species (F).
The latter abstracts a hydrogen atom from substrate to form an iron(III)-hydroxo species and a substrate
radical. From that point onwards, there are different pathways for halogenases and hydroxylases,
Figure 9. Thus, the halogenases rebound the halide atom to form halogenated substrate, whereas the
hydroxylases form alcohol products.

In the next few sections, examples of computational studies on nonheme iron halogenases and
hydroxylases from our group will be presented. In particular, a recent extensive QM/MM study on the
hectochlorin biosynthesis enzyme (HctB) [178] established insight into the effect of the protein on the
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bifurcation pathways leading to halogenation and hydroxylation (Section 2.1). In Section 2.2 we will
review recent work on the nonheme iron hydroxylase prolyl-4-hydroxylase (P4H), which is involved
in the biosynthesis of 4-hydroxy-proline in the body. These studies use computational modelling and
particularly focus on the QM/MM technique, which we will describe briefly first.
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The QM/MM method considers a complete enzyme that is fully solvated and contains a substrate,
a co-factor, co-substrates, and counter ions [182]. These chemical systems, therefore, mimic the
environment of the real system and often put restrictions on the mobility of the substrate in the pocket.
QM/MM studies, in contrast to small model complexes, therefore, often reproduce experimental
regio- and stereoselectivities and product distributions as a result of substrate positioning and the
interactions of the protein [182–186].

In QM/MM, the computational model set up usually starts from crystal structure coordinates,
which are then modified to the required starting position. For instance, a resting state enzyme is
converted into the active site structure manually. In some cases, a substrate is missing that will need
to be docked in, or mutations need to be undone. Finally, some crystal structure coordinates have
chains, co-factors or amino acids missing that will need to be inserted as well. After these initial
corrections and modifications, hydrogen atoms are added, which is not a straightforward process,
as some amino acid residues are weak acids and are in present different protonation states depending
on their environment. Key amino acid residues, such as histidine groups will need to be visually
checked for their correct protonation state assignment. In the final stage of the set-up, solvent (water) is
added by fixing the protein. This can be done iteratively to enable the solvent to enter the protein. After
the model is completed a molecular dynamics simulation is run for a minimum of 1000 ps at room
temperature conditions. From the relaxed simulation part, some low energy structures (snapshots) are
selected for the actual QM/MM calculations.

In QM/MM, the inner region of the protein—i.e., the active site with substrate and key
residues—is calculated with QM or DFT methods, whereas the rest of the protein is calculated with
cheap MM methods. This enables studies on full proteins that keep the orientation and constraints of
the enzyme in the model. These studies are reasonably accurate, and recent benchmark and calibration
studies that compare a range of density functional theory methods versus experimental rate constants,
kinetic isotope effects, and spectroscopic parameters are in good agreement [187–193].

2.1. Hectochlorin Biosynthesis Enzyme

Early density functional theory calculations of our group [174] showed that the hydrogen atom
abstraction is the rate-determining step, leading to an iron(III)-hydroxo(chloride) complex that can
either do hydroxo or chloride rebound to form products. For small model complexes the barriers
for OH rebound were found to be substantially smaller than those for halide transfer in contrast
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to experimental observation. Therefore, a detailed QM/MM study was performed [178]. In this
particular case, a model of the hectochlorin biosynthesis enzyme (HctB) that generated a nonheme
iron(IV)-oxo(chloride) species (the reactant Re) was investigated (Figure 10). It is linked to the protein
through two histidine amino acids and also binds succinate. The substrate is a fatty-acyl tethered
substrate linked to an acyl-carrier domain.
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Figure 10. Protein structure of the halogenase domain of HctB with substrate, chloride, and succinate
bound. Protein strands in wine-red, chloride in green, succinate in light blue, iron in amber, and oxo
group in red.

Subsequently, we investigated substrate halogenation and hydroxylation from the model in
Figure 10 using QM/MM, and the obtained halogenation and hydroxylation mechanism of the
(ω-1)-position of substrate is shown in Figure 11. In principle, we tested the mechanism on four
low-lying spin states (singlet, triplet, quintet, and sextet), but the quintet was considerably lower in
energy than the other spin states, and hence we will focus on the quintet spin results only. As the
spin-state ordering of iron complexes is sometimes dependent on the density functional method and on
the fact that B3LYP tends to overstabilize high-spin states [194], we tested alternative density functional
methods as well. The spin state ordering is the same regardless of the density functional method
chosen for the calculations, and shows little variation. We initially did a geometry optimization of the
reactant complexes after a detailed set-up that included a 10 ns molecular dynamics simulation.

The reaction is stepwise, starting with a hydrogen atom abstraction leading to an
iron(III)-hydroxo(chloro) intermediate (5IHA) via a hydrogen atom abstraction barrier (5TSHA).
Subsequently, either chloro rebinds via 5TSCl leads to chlorinated products (5PCl), or hydroxo
rebinds via 5TSOH to form hydroxylated products (5POH). As such the reaction, is stepwise via
a radical intermediate. This mechanism is reminiscent of substrate hydroxylation that often shows a
rate-determining hydrogen atom abstraction via a radical intermediate [195–204]. Initially, a number
of geometry scans were performed for the hydrogen atom abstraction pathways, which gave us
starting points for the hydrogen atom abstraction transition states. The hydrogen atom abstraction
is rate-determining with a barrier of ∆E + ZPE = 20.8 kcal mol−1 on the quintet spin state surface.
Consequently, the lifetime of the intermediate (5IHA) will be dependent on the subsequent barrier
leading to products. The hydrogen atom abstraction transition state (Figure 11) has a relatively
long O–H bond of 1.452 Å and a somewhat shorter C–H distance of 1.221 Å. Often, these types of
reactant-like transition states with shorter C–H than O–H distances, correspond to higher barriers than
product-like transition states [195,205]. The imaginary frequency in the transition state is relatively
low (i551 cm−1), although it still should lead to a significant kinetic isotope effect upon replacement of
the transferring hydrogen atom by deuterium [206–208].

Previously, using small model complexes, we found that the substrate hydroxylation pathway is
more exothermic and has smaller barriers than the halogenation pathway [66,174]. As such, the protein
affects the mechanism of the reaction dramatically and drives the reaction toward the unfavorable
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halogenation pathway. Clearly, the protein environment positions the substrate in the ideal orientation
for halide transfer. This comes at a cost, as the hydrogen atom abstraction is relatively high in energy.
Consequently, substrate positioning makes hydrogen atom abstraction more difficult, but prevents
direct OH rebound and enables halogen rebound instead.
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Figure 11. Quantum mechanics/molecular mechanics (QM/MM)-calculated reaction mechanism of
substrate chlorination and hydroxylation by an iron(IV)-oxo oxidant in HctB. Energies (in kcal mol−1)
obtained at UB3LYP/SV(P) with zero-point corrections included. Hydrogen atom abstraction transition
state with bond lengths in angstroms and the imaginary frequency in wave numbers.

To understand the origin of the selectivity of the reaction, we did a detailed analysis of the
protein structure as compared to small active site models in the gas-phase. Figure 12 shows the
QM/MM-optimized geometry of the reactant complex, i.e., iron(IV)-oxo(chloride). The metal is
in pentacoordination with the oxo-group trans to His227, whereas the chloride is in the equatorial
plane together with the carboxylate of succinate and His111. Interestingly, on the same line as the
Fe-Cl axis, we find the carboxylate of Glu223. This implies that the negative charge from Glu223 will
push electron density away from the chloride group towards the iron and make the halide less anionic.
The charge-donation of Glu223 will make the halide lesser anionic, i.e., more radicalar, and hence easier
to transfer to substrates then the corresponding anion. Furthermore, the substrate is positioned in a
corner of the protein near to the halide. It appears, therefore, that nonheme iron halogenases have an
intricately designed structure where the oxidant and substrate are positioned in such a way that a
thermodynamically unfavorable reaction pathway can proceed.
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2.2. Prolyl-4-Hydroxylase

Prolyl-4-hydroxylase is a nonheme iron hydroxylase with importance for human health as it is
involved in the biosynthesis of R-4-hydroxyproline, an essential element in the collagen crosslinking
process in the body. This reaction is stereo- and regiospecific, and moreover, a thermodynamically
unfavorable reaction is catalyzed [149]. Thus, studies of small model complexes showed that it is
easier to hydroxylate the C5 position of proline than C4 position. Therefore, a QM/MM study [138,139]
was performed to establish the protein involvement in the reaction mechanism. The main results are
shown in Figure 13. Thus, the reaction is stepwise starting from an iron(IV)-oxo intermediate (Re) in
the quintet spin ground state. Subsequently, a hydrogen atom abstraction transition state (TSH) leads
to an iron(III)-hydroxo intermediate (IH) and a final rebound transition state (TSreb) results in alcohol
products (P).Catalysts 2018, 8, 314 15 of 26 
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hydroxylation at the C4-position. Energies contain zero-point corrections and are in kcal mol−1.
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The hydrogen atom abstraction has a barrier of 9.3 kcal mol−1 and is rate-determining.
Interestingly, we find a 1 kcal mol−1 higher barrier for hydrogen atom abstraction from the C5

position of proline [138], even though this should be thermodynamically easier. Hydrogen atom
abstraction from the other positions at C4 and C5, as well as from C3 (both positions) were studied
as well, and found to be considerably higher in energy. Therefore, prolyl-4-hydroxylase reacts with
proline residues stereo- and regioselectively and will give dominant R-4-hydroxyproline as products.
Clearly, the protein is designed in such a way for perfect fit of oxidant with substrate so that only the
4-position of substrate can be activated.

Note that in the reactant complex (structure in Figure 13) the iron(IV)-oxo group is stabilized
through hydrogen bonding interactions of the phenol group of Tyr140, and also via a water molecule to
the indole group of Trp243. As such, the active site will be very rigid. Furthermore, the substrate is also
in a tight orientation and is locked by the aromatic rings of Tyr140 and Trp243, but is also held in position
through hydrogen bonding interactions along the chain with, for instance, Glu127 and Arg161. Active
site mutations that replaced Arg161 with either Asp or Lys led to complete inactivity of the protein.
A similar effect was seen for the mutation of Glu127 with Lys. Mutations of Tyr140 and Trp243 by either
Phe or Gly led to loss of selectivity or complete loss of activity. Therefore, prolyl-4-hydroxylase has a
tightly controlled substrate and an oxidant binding orientation that enables close contact between the
oxidant and substrate at the C4 position. Disruption of the substrate binding position and orientation
leads to major shifts in the position of the substrate and its activation. Indeed, we tested several active
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site mutants, where, e.g., Trp140 and Trp243 were replaced by smaller residues. In all cases, loss of
stereo- and regioselectivity was observed, and in most of them, a complete loss of activity was found.

3. Conclusions

This paper reviews enzymatic halogenases and haloperoxidases, which comes in a range of
structural forms. Thus, haloperoxidases utilize dioxygen on a co-factor active site, and using a halide
anion (Cl−/Br−/I−), produce hypohalide anions (OCl−/OBr−/OI−) that transfer their halide to
substrates. The haloperoxidases come in three different forms, namely the heme-iron-dependent,
vanadium-dependent, and flavin-dependent structures that catalyze the same reaction but utilize a
different co-factor. Halogenases typically have a nonheme iron active site that is structurally and
functionally analogous to the nonheme iron hydroxylases, and bind the metal to two histidine amino
acids of the protein. In addition, the hydroxylases have a carboxylate of either Glu or Asp linked to
the iron co-factor, whereas in the halogenases, that position is occupied by a halogen. Both nonheme
iron halogenases and hydroxylases bind α-ketoglutarate and molecular oxygen on the iron(II) center
and form succinate, a nonheme iron(IV)-oxo species and CO2. Thereafter, they react via an aliphatic
hydrogen atom abstraction to form iron(III)-hydroxo and a substrate radical that recombines to form
the alcohol product in the hydroxylases. By contrast, in the halogenases, this step is prevented
and a halogen rebound takes place. How proteins manage to bypass thermodynamically favorable
pathways to catalyze a regio- and chemoselective reaction mechanisms is still under discussion,
and computational modelling can give insights into the pathways leading to products and by-products.
Examples are discussed on the origin of the regio- and chemoselectivity of the hectochlorin biosynthesis
enzyme in enzymatic halogenation, and prolyl-4-hydroxylase for stereoselective hydroxylation.
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