Electronic Supplementary Information

Enzymatic Synthesis of ω-hydroxydodecanoic acid employing a Cytochrome P450 from *Limnobacter* sp. 105 MED

Sung- yeon ju^{1,2*}

Hee-Wang Yoo^{1,2*}

Sharad Sarak¹

Byung-Gee Kim²

Hyungdon Yun¹

¹Department of Systems Biotechnology, Konkuk University, Seoul, South Korea ²School of Chemical and Biological Engineering, Seoul National University, Seoul, South Korea

*These authors contributed equally

Correspondence: Prof. Yun Hyungdon, Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul-050-29, South Korea **E-mail**: <u>hyungdon@konkuk.ac.kr</u>

Table S1

Plasmids/Strains	Description	Refference		
Plasmids				
pET24ma	P15A ori lacI T7 promoter, KmR	[1]		
pETDuet-1	pBR322 ori lacI T7 promoter, AmpR	Novagen		
pCDFDuet-1 CDF	CDF ori lacI T7 promoter, SmR	Novagen		
pCamAB	pETDuet-1 encoding CamA/B	[2]		
$pRedox_{L.m}$	pETDuet-1 encoding LimA/B	This study		
pAM.aq	pCDFDuet-1 CDF encoding fadL and	This study		
	CYP153AM.aq			
pAA.d	pCDFDuet-1 CDF encoding fadL and	This study		
	CYP153AA.d			
pAS.f	pCDFDuet-1 CDF encoding fadL and	This study		
	CYP153AS.f			
pAL.m	pCDFDuet-1 CDF encoding fadL and	This study		
	CYP153AL.m			
pCYP153A _{M.aq}	pET28a encoding CYP153A _{M.aq}	[1]		
pCamA	pET28a encoding CamA	[1]		
pCamB	pET28a encoding CamB	[1]		
pCYP153A _{L.m}	<u>p</u> ET24ma encoding CYP153A _{L.m}	This study		
pLimA	pet24ma encoding LimA	This study		
pLimB	pet24ma encoding LimB	This study		

Plasmids and strains used in this study

Strains		
BW25113(DE3)	rrnB3 ΔlacZ4787 hsdR514 Δ(araBAD)567 Δ(rhaBAD)568	[2]
	rph-1 λ(DE3)	
DL	BW25113(DE3) ∆fadD	[2]
МС	DL carrying pAM.aq and pCamAB	This study
DC	DL carrying pAA.d and pCamAB	This study
SC	DL carrying pAS.f and pCamAB	This study
LC	DL carrying pCYP153AL.m and pCamAB	This study
LL	DL carrying pCYP153AL.m and pRedox $_{L.m}$	This study
DLM	DL carrying pCYP153 M.aq	This study
DLCA	DL carrying pCamA	This study
DLCB	DL carrying pCamB	This study
DLL	DL carrying pCYP153L.m	This study
DLLA	DL carrying pLimA	This study
DLLB	DL carrying pLimB	This study

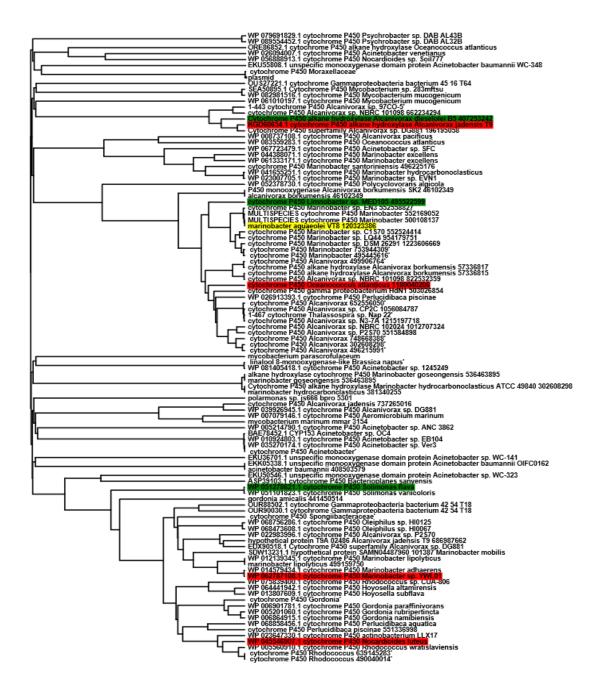


Figure S1. Phylogenetic tree used in this study

The phylogenetic tree was constructed through Maximum like hood tree algorithm in software MEGA7. Initially, 100 candidates were obtained by Blastp [http://blast.ncbi.nlm.nih.gov], using maqu_0600 sequence. Yellow color: CYP153AM.aq, green color: expressed P450s and Red color: not expressed P450.

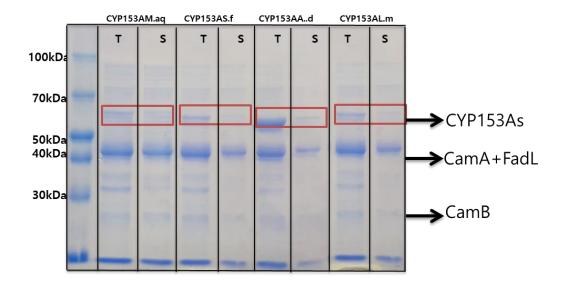
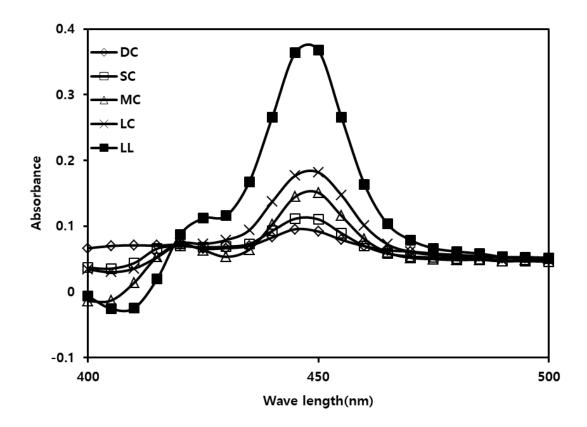
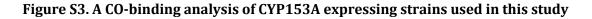




Figure S2. A SDS-PAGE analysis of protein expression of CYP153As

E. coli BW25113 (Δ*fadD*, DE3) was used, Protein expression was carried out using 0.01 mM IPTG, 0.5 mM 5-ALA and trace mineral mixtures (2.5 mL/L) at 30 °C temp. CamB (12.75 kDa), CamA (47 kDa), FadL(48.8kDa), CYP153As (52.28 kDa)

MC= *E. coli* BW25113 ($\Delta fadD$, DE3) having CYP153AM.aq+CamA+CamB+FadL DC= *E. coli* BW25113 ($\Delta fadD$, DE3) having CYP153AA.d+CamA+CamB+FadL SC= *E. coli* BW25113 ($\Delta fadD$, DE3) having CYP153AS.f +CamA+CamB+FadL LC= *E. coli* BW25113 ($\Delta fadD$, DE3) having CYP153AL.m+ CamA+CamB+FadL LL= *E. coli* BW25113 ($\Delta fadD$, DE3) having CYP153AL.m+LimA+LimB+FadL

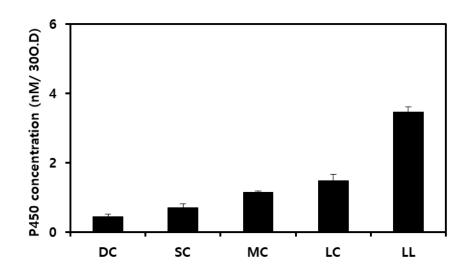


Figure S4. An active P450 concentration used in this study.

The concentration of P450 was measured using an extinction coefficient of 91.9 mM $^{-1}$ cm $^{-1}$ at 450 nm.

MC= *E. coli* BW25113 ($\Delta fadD$, DE3) having CYP153AM.aq+CamA+CamB+FadL DC= *E. coli* BW25113 ($\Delta fadD$, DE3) having CYP153AA.d+CamA+CamB+FadL SC= *E. coli* BW25113 ($\Delta fadD$, DE3) having CYP153AS.f +CamA+CamB+FadL LC= *E. coli* BW25113 ($\Delta fadD$, DE3) having CYP153AL.m+ CamA+CamB+FadL LL= *E. coli* BW25113 ($\Delta fadD$, DE3) having CYP153AL.m+LimA+LimB+FadL

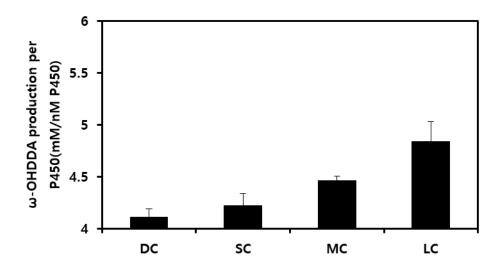
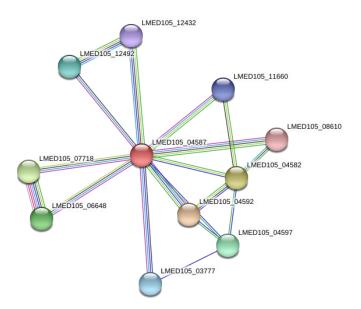



Figure S5. ω -OHDDA production normalized by amount of active P450s.

(The final titer in Figure.2 was normalized by the amount of active P450s in Figure S3) $MC= E. \ coli \ BW25113 \ (\Delta fadD, DE3) \ having \ CYP153AA.aq+CamA+CamB+FadL$ $DC= E. \ coli \ BW25113 \ (\Delta fadD, DE3) \ having \ CYP153AA.d+CamA+CamB+FadL$ $SC= E. \ coli \ BW25113 \ (\Delta fadD, DE3) \ having \ CYP153AS.f +CamA+CamB+FadL$ $LC= E. \ coli \ BW25113 \ (\Delta fadD, DE3) \ having \ CYP153AL.m+ \ CamA+CamB+FadL$

Your Input:	pou	93	uo	ŝ			
LMED105_04587 Cytochrome P450 (470 aa)	orho	Trend	ressi	nen	nina	[vgo]	
Predicted Functional Partners:	Neighborhood	Cooccurence	Coexpression	Experiments	Latabases Textmining	[Homology]	2006
EMED105_04592 Ferredoxin, 2Fe-2S (115 aa)	•	٠		0	•		0.989
LMED105_04582 FAD-dependent oxidoreductase family protein (410 aa)		٠					0.899
EMED105_07718 Uncharacterized protein (396 aa)			0	•	•		0.876
LMED105_06648 Ubiquinone biosynthesis hydroxylase, UbiH/UbiF/VisC/COQ6 family protein (411 aa)			0	•	•	- 1	0.876
LMED105_04597 Transcriptional regulator, AraC family protein (352 aa)	۰					(0.854
LMED105_12492 Short chain dehydrogenase (661 aa)				•	•	(0.803
LMED105_03777 2-hydroxychromene-2-carboxylate isomerase, putative (424 aa)				0	•	(0.785
LMED105_11660 [2FE-2S] ferredoxin, electron carrer protein (112 aa)	0			0	•		0.781
LMED105_12432 Uncharacterized protein (589 aa)			0		•		0.748
LMED105_08610 Putative 8-amino-7-oxononanoate synthase (392 aa)	•			0	•	- (0.740
Your Current Organism:							
Limnobacter sp. MED105							
NCBI taxonomy Id: <u>391597</u>							
Other names: L. sp. MED105, Limnobacter, Limnobacter MED105, Limnobacter Spring et al. 2001, Limnobacter sp. MED105							

Figure S6. Protein-protein network of CYP153AL.m(LMED105_04587).

There are two 2Fe-2S ferredoxin in the network (LMED105_04592, LMED105_11660) having score 0.989 and 0.781 respectively. LMED105_04592(LimB) was used in this study as it has higher score than LMED105_11660 also LMED10504582(LimA) was used as its

corresponding reductase.

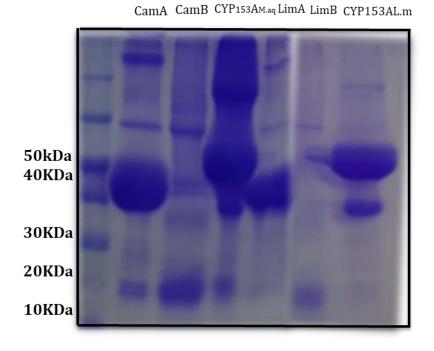


Figure S7. SDS-PAGE gel picture of purified protein of CamB (12.75 kDa), CamA (47 kDa), CYP153AM.aq (52.28 kDa) ,LimB (11.87 kDa), LimA (45.61 kDa), and CYP153AL.m (52.28 kDa).

Refference.

[1] Jung, E., Park, B. G., Ahsan, M. M., Kim, J., et al., Production of ω -hydroxy palmitic acid using CYP153A35 and comparison of cytochrome P450 electron transfer system in vivo. Applied microbiology and biotechnology 2016, 100, 10375-10384.

[2] Bae, J. H., Park, B. G., Jung, E., Lee, P.-G., Kim, B.-G., fadD deletion and fadL overexpression in Escherichia coli increase hydroxy long-chain fatty acid productivity. Applied microbiology and biotechnology 2014, 98, 8917-8925.

[3] Szklarczyk, D., Morris, J. H., Cook, H., Kuhn, M., *et al.*, The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. *Nucleic acids research* 2017, *45*, D362-D368.