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Abstract: Acyltransferases are enzymes that are capable of catalyzing the transesterification of
non-activated esters in an aqueous environment and therefore represent interesting catalysts for
applications in various fields. However, only a few acyltransferases have been identified so far,
which can be explained by the lack of a simple, broadly applicable high-throughput assay for the
identification of these enzymes from large libraries. Here, we present the development of such an
assay that is based on the enzymatic formation of oligocarbonates from dimethyl carbonate and
1,6-hexanediol. In contrast to the monomers used as substrates, the oligomers are not soluble in the
aqueous environment and form a precipitate which is used to detect enzyme activity by the naked
eye, by absorbance or by fluorescence measurements. With activity detected and thus confirmed for
the enzymes Est8 and MsAcT, the assay enabled the first identification of acyltransferases that act on
carbonates. It will thus allow for the discovery of further efficient acyltransferases or of more efficient
variants via enzyme engineering.

Keywords: acyltransferase; lipase; esterase; enzyme; transesterification; oligocarbonate;
high-throughput screening; dimethyl carbonate; polycondensation; biocatalysis

1. Introduction

Esterases and lipases catalyze the hydrolysis of esters under physiological conditions. However,
their popularity as biocatalysts for the chemical industry is also based on their ability to catalyze
transesterification reactions in anhydrous organic solvents. While lipases are activated at the
interface of water-insoluble substrates like triglycerides, esterases tend to hydrolyze soluble esters.
The availability of a large number of esterases and lipases is based on the presence of various
high-throughput assays, which enable their discovery in metagenome libraries or optimization via
enzyme engineering. These assays target the natural hydrolase activity and are based on e.g., halo
formation in agar plates, detection of the carboxylic acid released, or formation of a chromophore or
fluorophore [1,2]. Furthermore, the large number of characterized esterases and lipases allows for
the reliable in silico prediction of novel hydrolases from the steadily growing number of sequenced
organisms and metagenomes.

Until now only a few hydrolases, so-called acyltransferases, were shown to catalyze the
transesterification of non-activated esters in an aqueous environment. Most of the characterized
acyltransferases belong to the group related to Pseudozyma antarctica lipase A, formerly known as Candida
antarctica lipase A (CAL-A) [3]. As the hydrolysis reaction is thermodynamically favored, the accumulation
of a transesterified product is only transient (Scheme 1). Acyltransferases enable a higher increase
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in the reaction rate of the transesterification reaction compared to the hydrolysis reaction. Efficient
acyltransferases catalyze transesterification more than 1000 times faster than hydrolysis [4].
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Scheme 1. Acyltransferase/hydrolase reaction. The acyltransferase activity allows for the
transesterification of an ester with an alcohol in an aqueous environment. The hydrolase activity,
which is also present to a certain degree in these enzymes, can lead to direct hydrolysis of the starting
ester or the transesterification product. The carboxylic acid produced is deprotonated at neutral pH
in the aqueous phase. As the hydrolysis is thermodynamically favored, the accumulation of the
transesterification product is only transient.

As acyltransferases allow for the direct transesterification reaction in aqueous media, they enable
novel reaction concepts in biocatalysis. Transesterification steps can be included in enzyme cascades
that demand the use of aqueous media due to the involvement of other enzymes [5]. Furthermore,
transesterifications with highly polar compounds e.g., sugars, that are not sufficiently soluble in the
typical non-polar organic solvents, could be established. Toxic organic solvents like toluene, which are
frequently used in lipase-catalyzed transesterification reactions, could be replaced by water.

The few currently known acyltransferases were identified from a pool of known hydrolases,
as homologs thereof or discovered by accident [6–8]. Direct screening for novel acyltransferases from
large libraries, e.g., from metagenome libraries, is unfeasible as typical acyltransferase assays are
laborious and time-consuming, and thereby limit throughput [4,9]. If a collection of pre-selected
hydrolases is screened to reduce library size, the identified acyltransferases will by definition have
substantial hydrolase activity. This fact complicates the discovery of very efficient acyltransferases,
which should exhibit very low or no hydrolase activity, and also explains the limited number of
acyltransferases known today. These drawbacks could be overcome by a high-throughput assay
suitable for the identification of new acyltransferases from large libraries. Such an acyltransferase
assay could enable the identification of acyltransferases with very low or even no detectable hydrolase
activity, also leading to the discovery of acyltransferases that are not related to the CAL-A group.

In this contribution, a new high-throughput screening method for acyltransferases, based on
the enzymatic synthesis of insoluble poly/oligoesters from water-soluble monomers is envisioned.
Acyltransferase activity would lead to product precipitation, which was demonstrated previously
and is easily detectable [10]. When the formation of insoluble oligomers is used as an indicator
for acyltransferase activity, the complete solubility of a suitable starting monomer in an aqueous
environment is required. The use of a monophasic system is also important as it was shown that
typical lipases such as CAL-B can exhibit strong acyltransferase activity in aqueous environments
when a second phase is present [11–13]. There are several options for monomers to realize the
envisioned oligomer formation assay. Besides small lactones for ring-opening-polymerization, also
a polycondensation approach with diesters and diols seemed possible. However, a drawback in the
formation of oligoesters is that an undesired hydrolysis event would split the growing oligoester chain
and generate a carboxylic acid end which can potentially acidify the reaction medium. As this is the
thermodynamically favored reaction, the chains will not be joined again. The formation of these ‘dead
ends’ can be prevented by the use of a carbonate-based system where highly water-soluble dimethyl
carbonate (DMC) is transesterified with a water-soluble diol like 1,6-hexanediol (HD) to form insoluble
oligocarbonate particles (Scheme 2). If a carbonate group within a growing oligomer is hydrolyzed,
the carbonic acid monoester formed rapidly decomposes to CO2 and the alcohol ends. The two
terminal alcohol groups (OH ends) can subsequently be joined together by an additional acyl transfer
step with another DMC molecule (Scheme S1). Therefore, this system is more likely to also detect
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acyltransferases despite some degree of hydrolase activity. The lipase-catalyzed transesterification of
DMC with diols has already been demonstrated under anhydrous conditions [14].

Here, we describe the first high-throughput assay for acyltransferases that is based on the formation of
insoluble oligocarbonate particles from a monophasic aqueous system. The applicability is demonstrated
by the first identification of a novel acyltransferase capable of forming oligocarbonates in water.
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Scheme 2. Different oligocarbonates potentially produced by acyltransferases. The transesterification
of dimethyl carbonate with 1,6-hexanediol could generally produce several oligocarbonates with
different end groups. These oligomers exhibit low solubility in the aqueous environment and form a
precipitate which is detected as an indication for acyltransferase activity.

2. Results

2.1. Initial Screening

To establish the high-throughput acyltransferase assay, a 96-well microtiter plate format was
chosen. This allows many enzymes to be screened in parallel and the formation of insoluble oligomers
is easily monitored by eye, by absorbance or by light scattering measurements in a plate reader. In a
first trial, known hydrolases from our collection were screened for the formation of oligocarbonates,
using DMC and HD as monomers. To verify that the precipitate formed was indeed produced by
transesterification, controls omitting either of the two substrates were included. One previously
characterized esterase from a metagenome (Est8) [15,16] led to the significant formation of white
precipitate that was not produced when either DMC or HD was omitted from the reaction (Figure 1).
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Figure 1. Initial acyltransferase screening. Several hydrolases from our collection were screened for the
transesterification of dimethyl carbonate and 1,6-hexanediol in 50 mM NaPi, pH 7.4. Both substrates
were used at a final concentration of 8% (v/v) or (w/v), respectively. At these concentrations the
monomers were completely soluble in the buffer. Enzyme preparations were first dissolved in reaction
buffer and insoluble particles were removed by centrifugation prior to the addition of the substrate
solution. Negative controls omitting either DMC (rows C and D) or HD (rows E and F) were included.
The plate was sealed with a transparent plastic film and photographed after 2 h incubation at room
temperature. Oligocarbonate formation by Est8 can be seen in well B10.
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2.2. Analysis of the Carbonate Product

The precipitate formed by Est8 (Figure 2a) could be stained with Nile Red (Figure 2b), indicating
the hydrophobic character of the product, which is characteristic for oligocarbonates. This fluorescent
staining allows an alternative detection, as the Nile Red becomes highly fluorescent upon binding to
a hydrophobic phase. The absorbance and fluorescence spectra of Nile Red vary depending on the
hydrophobicity of the environment [17]. This is revealed by the blue color of Nile Red dissolved in
the aqueous phase of a negative control without Est8, which changes to pink when binding to the
Est8-generated product particles (Figure 2b). Fluorescence microscopy revealed that the precipitate
consists of small droplets of a second liquid phase that has a strong tendency to absorb Nile Red
(Figure 2d). Shortly after the addition of Est8 to the substrate solution, small spheres start to form,
which grow in size and merge to larger droplets over time. This is not observed in the control without
an enzyme (Figure 2c) and is a clear indication of oligocarbonate formation. To test if the precipitation
was indeed caused by the expected oligocarbonate, the reaction was repeated in larger scale to isolate
the product. It was analyzed by APCI-MS showing the expected m/z values for oligocarbonates
of different lengths (Figure 3). The detection of all possible linear carbonate intermediates up to a
degree of polymerization of seven demonstrates that Est8 is capable of extending the ends of various
oligocarbonates until their solubility in the aqueous medium is exceeded, leading to precipitation.
The isolated product was also analyzed by 1H-NMR showing a new signal at 4.14 ppm, which is
typical for the -CH2-OC(O)O- group in carbonate diesters [18] (Figure S1). This is, to the best of our
knowledge, the first demonstration of enzymatic oligocarbonate formation in an aqueous environment.
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Figure 2. Formation of insoluble oligocarbonate particles. Est8 was used to produce oligocarbonate
from dimethyl carbonate and 1,6-hexanediol in 50 mM NaPi, pH 7.4. Both substrates were used at
8% (v/v) or (w/v), respectively. At these concentrations the monomers were completely soluble in the
buffer. Samples without the addition of an enzyme were used as negative control. Picture (a) shows
the reactions after 1 hour at room temperature while picture (b) shows the same samples after Nile
Red staining for 30 min. Fluorescence microscopic images (540–580 nm excitation LED; 605/70 nm
emission filter) of the Nile Red-stained samples without addition of enzyme (c) and with Est8 (d) were
taken after 1 hour of incubation. In the enzyme reaction, it was observed that the fluorescent spheres
grow over time and tend to merge after longer incubation.
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Figure 3. APCI-MS of the oligocarbonates formed by Est8. The products were extracted with
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as the protonated form. For the structures of the different forms (A, B, C) see Scheme 2.
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2.3. Optimization of Assay Conditions

After it was shown that the transesterification of DMC with HD is suitable as a screening assay
for the identification of novel acyltransferases, the influence of the substrate concentrations on the
absorbance signal intensity was evaluated. While DMC was varied from 0 to 10% (v/v), HD was
used from 0 to 14% (w/v). The newly identified acyltransferase Est8 was used as a model enzyme for
optimizing the assay conditions for precipitate formation, and the reaction was monitored over time.
Already 30 min after the addition of the enzyme, heavy precipitate formation was observed in the wells
with the highest DMC concentrations (Figure S2). While reactions at 8% (v/v) DMC still produced a
significant amount of precipitate, lower concentrations were not suitable for generating a substantial
amount of insoluble oligocarbonate. In contrast to DMC, HD showed the best results when applied at
lower concentrations (Figure S2). While 4% HD led to a faster onset of precipitate formation, 6% HD
generated precipitate with a higher stability over time. The optimal substrate ratio for fast precipitation
(10% (v/v) DMC and 4% (w/v) HD) is expected to favor the synthesis of oligocarbonates with terminal
carbonate groups (product B in Scheme 2) [18]. As these products are more hydrophobic than their
OH end counterparts, they would tend to precipitate earlier, perhaps explaining the above-mentioned
optimal substrate ratio.

As all known acyltransferases, including Est8, also show hydrolase activity to some extent,
the transesterification product will be hydrolyzed after a longer reaction time (Scheme 1). When a
carbonate moiety is hydrolyzed, CO2 is generated, which was evident by the noticeable buildup
of pressure when the Est8 reactions were performed in closed tubes. Besides CO2 formation,
the disappearance of the precipitated oligocarbonate after longer incubation times is also a sign of
hydrolase activity. The time courses for reactions at optimal HD or DMC concentration are displayed
in Figure S3. While the absorbance increases relatively fast over the first hour, the oligocarbonate is
slowly hydrolyzed afterwards, reaching almost the turbidity level of the negative controls after 5 h
of incubation.

Furthermore, we tested if the assay could also be adapted for product detection by fluorescence
measurement. As shown in Figure 2, the oligocarbonate product can be stained with Nile Red
and the dye changes its spectral properties upon binding to the oligocarbonate. To identify
the optimal wavelength for the planned measurements, excitation and emission spectra of the
oligocarbonate-bound Nile Red were measured (Figure S4). The optimal excitation wavelength
was determined to be 560 nm while the optimal emission wavelength was 630 nm. It was also shown
that the Nile Red-stained controls, without the addition of Est8, exhibited much lower fluorescence,
making it possible to detect the Est8-catalyzed formation of insoluble oligocarbonates by Nile Red
staining. The increase in fluorescence in the Est8 reaction with Nile Red was compared to the increase
in absorbance (Figure 4a). The fluorescence signal already starts to increase before the onset of the
absorbance increase. Very small oligocarbonate particles that are formed at the beginning will bind Nile
Red from the aqueous environment and activate its fluorescence. While this represents an advantage
for the sensitivity at lower product concentrations, the fluorescence decreases over time, which is likely
caused by photobleaching of Nile Red.

2.4. Investigation of Known Acyltransferases with the New Assay

Finally, we tested whether previously identified acyltransferases also show activity in the newly
developed assay. Together with the CAL-A-related acyltransferases originating from yeasts [4]
and the acyltransferase from Mycobacterium smegmatis (MsAcT) [19], the esterases from Bacillus
stearothermophilus (BsteE) [20] and Pseudomonas fluorescens (PFEQ) [21] were tested as controls. Besides
Est8, MsAcT also shows detectable formation of oligocarbonates, revealing that the assay is not limited
to detecting the acyltransferase activity of Est8 (Figure 4b). Compared to Est8, the onset of precipitate
formation with MsAcT is observed later and only half of the absorbance intensity is reached. On the
other hand, the precipitate seems to be stable over the whole measurement while the precipitate
formed by Est8 is almost completely hydrolyzed after 8 h. This shows that it is necessary to monitor
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the oligocarbonate formation periodically over a longer time in order to not miss the transient product
formation that can occur with some enzymes.
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fluorescence measurements. Est8 was used to produce oligocarbonate from 10% (v/v) dimethyl
carbonate and 4% (w/v) 1,6-hexanediol in 50 mM NaPi, pH 7.4 with 1 µg mL−1 Nile Red.
The absorbance was measured at 600 nm while Nile Red fluorescence was measured at 630 nm
(excitation at 560 nm). Measurements were performed in triplicates and error bars represent standard
deviation. (b) Screening of known acyltransferases. Several acyltransferases from our collection were
tested in duplicates in the newly developed assay with 10% (v/v) dimethyl carbonate and 4% (w/v)
1,6-hexanediol in 50 mM NaPi, pH 7.4. The absorbance at 600 nm was monitored over time. The uneven
absorbance course in the reaction with MsAcT likely results from uneven precipitate sedimentation
and bubble formation. For all assays, a final concentration of 1 g L−1 enzyme preparation was used.

3. Discussion

While previously described acyltransferase assays demand time-consuming gas chromatography
(GC) measurements to detect the carboxylic acid esters formed [22] or depend on the use of an
additional enzyme reporter system [9], the herein described screening method can be applied in
microtiter plates and active enzymes can be identified by the naked eye or by absorbance and
fluorescence measurements. This new concept enables the direct detection of acyltransferase activity
from larger libraries. The assay is based on the formation of oligocarbonates which precipitate
from an aqueous solution and can also be easily adapted to fluorescence readout by staining of the
oligocarbonates with Nile Red. The reaction conditions were optimized with the newly identified
acyltransferase Est8 as a model enzyme. This enzyme was previously only known for its esterase
activity [16,23] which is in agreement with the observed disappearance of the transesterification
product after longer incubation times and the formation of CO2 in these reactions. As the presented
assay allows continuous measurement of product formation, in contrast to previously reported
end-point measurements, e.g. by GC, the chance of missing the potentially short time span of transient
product accumulation is greatly reduced. Finally, it was demonstrated that the assay is also applicable
to other acyltransferases.

While previously described acyltransferase assays utilize carboxylic acid esters [4,19], this study
presents the first example of an aqueous acyltransferase reaction involving a carbonate moiety. Besides
extending the scope of acyltransferase-generated products, the use of carbonates has advantages for
screening approaches. An undesired hydrolysis step during the oligocarbonate synthesis results in the
formation of CO2, which easily escapes the reaction, instead of forming a carboxylic acid, which would
strongly acidify the medium, potentially leading to enzyme inactivation. Another advantage is the
possibility to again combine two OH ends generated by an unwanted hydrolysis event within the
carbonate chain (Scheme S1). These characteristics of the oligocarbonate-based assay allow for the
identification of acyltransferases spanning a range of residual hydrolase activity. This is desired for an
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initial screening where only a few hits are expected and identified acyltransferases will be analyzed in
detail afterwards.

As the new assay allows for the direct screening of large libraries for acyltransferase activity, it has
the potential to identify novel enzymes e.g., from metagenomes. Since the enzymes identified from
metagenome libraries would not have been previously identified by hydrolase activity assays, it might
be possible to identify very efficient acyltransferases with very low hydrolase activity.

It has been shown that our new assay is also applicable to other acyltransferases as MsAcT also led
to oligocarbonate formation. Interestingly, none of the CAL-A-related enzymes were active (as judged
by precipitate formation) under the conditions tested. The reason for this could be their typical activity
on large hydrophobic substrates such as fatty acid esters or triglycerides [4,9]. As these substrates
are poorly soluble in aqueous media, they form a second organic phase that is known to strongly
promote acyltransferase activity [11,13]. This potential activating phase was intentionally avoided in
our screening, perhaps explaining the lack of activity using the CAL-A-related enzymes. Furthermore,
in our assay the comparably small acyl donor DMC is transesterified with the larger alcohol HD,
which is different from the typical reaction system for CAL-A-related acyltransferases where larger acyl
donors (fatty acid esters) are combined with smaller alcohols (like methanol or ethanol) [4]. On this
background it is not surprising that for MsAcT, which was previously demonstrated to utilize smaller
acyl donors like ethyl acetate [19], activity could indeed be detected in our assay.

The enzymatic formation of oligocarbonates in aqueous environments could also have broader
applications in other research areas. As the oligomers precipitate, they are easily separated from
the bulk aqueous phase. These oligomers represent a prime starting material for further water-free,
enzymatic polymerization which is described in the literature [18]. This pre-polymerization will
remove most of the co-product methanol that would reduce the molecular weight of the following
polymerization step. This could replace the typically used two-step polymerization where the
high-boiling oligomers need to be produced in an initial step before the final polymerization under
lower pressure can be performed.

4. Materials and Methods

4.1. Chemicals

Extra dry dimethyl carbonate (>99%) was obtained from Acros (Schwerte, Germany),
1,6-hexanediol (99%) was bought from Aldrich (Darmstadt, Germany) and Nile Red (pure) was
bought from Roth (Karlsruhe, Germany). Solvents used were HPLC grade. CAL-A and CAL-B
lyophilizate were obtained from c-LEcta (Leipzig, Germany).

4.2. Acyltransferase Assay

For the initial screening, the enzyme preparations were dissolved at a concentration of around
10 g L−1 in 50 mM NaPi, pH 7.4. Insoluble particles were removed by centrifugation at 12,000 g. Fifty
microliters of the enzyme solutions were added to a 200 µL substrate solution which consisted of
10% (v/v) DMC and 10% (w/v) HD in the same buffer. The plates were sealed with a transparent plastic
film and incubated at room temperature. Controls either without DMC or without HD were conducted.

Later, the formation of insoluble oligocarbonate was monitored by absorbance measurement
at 600 nm. All reactions were carried out in 50 mM NaPi, pH 7.4 at room temperature if not stated
otherwise. Continuous absorbance or fluorescence measurements in a plate reader could only be
performed between 24 ◦C and 28 ◦C due to the heat generated by the reader during the measurement.
Reactions in 96-well plates consisted of 270 µL reaction mixture to which 30 µL of enzyme solution
(10 g L−1) was added to start the reaction. The given substrate concentrations refer to the concentrations
in the substrate mixture before enzyme addition if not stated otherwise.
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4.3. Production of Enzymes

Est8 was heterologously expressed in Escherichia coli BL21(DE3) from pET26_Est8. The overnight
culture was grown at 37 ◦C in LB with 50 mg L−1 kanamycin and 1% (w/v) glucose. TB medium
supplemented with 50 mg L−1 kanamycin was inoculated from the overnight culture and incubated
at 37 ◦C at 180 rpm until the culture reached an OD600 of 1.0. Then the culture was cooled to 20 ◦C
and induced with 0.5 mM IPTG for 24 h. Cells were harvested by centrifugation at 4,500 g and 4 ◦C
for 1 h. Cells were washed with 50 mM NaPi, pH 7.4 before they were resuspended in the same
buffer containing 5 mg L−1 DNase and lysed by one passage through a French press. Insolubles were
removed by centrifugation at 10,000 g and 4 ◦C for 30 min, and the lysate was passed through a 0.45 µm
filter before it was frozen and lyophilized. MsAcT was expressed as described in the literature [19].
The clarified and lyophilized lysate was stored at 4 ◦C.

The expression of the CAL-A-related acyltransferases was performed according to the literature [4].
Briefly, sequences of CaLIP4, CalLAc5 and CalLAc8 were obtained using accession numbers AF191317,
XP_717001.1 and XP_711685, respectively. For cloning into pPICZαB (via FastCloning), natural signal
peptides were replaced by Saccharomyces cerevisiae α-mating factor provided in the plasmid. After
transformation into Pichia pastoris X-33, colonies expressing active enzyme were selected via lipase
activity indicator plates. Five milliliters of YPD medium containing 100 mg L−1 zeocin were inoculated
with a Pichia pastoris strain harboring the expression plasmid. After 24 h at 30 ◦C, 50 mL BMGY
medium with 100 mg L−1 zeocin was inoculated and incubated for 24 h at 180 rpm and 30 ◦C. The cell
cultures were then centrifuged (10,000 g, 4 ◦C, 15 min) and the cell pellets were used to innoculate
50 mL BMMY media. The cells were cultured at 30 ◦C at 180 rpm for 120 h. One percent (v/v) methanol
was added every 24 h to induce protein expression. Later, cell cultures were centrifuged at 10,000 g
and 4 ◦C for 15 min to separate the cells from the supernatant. The supernatant, rich in the secreted
enzyme, was filtered through a 0.2 µm filter, frozen at −80 ◦C, and lyophilized.

4.4. Preparative Production of Oligocarbonate

To obtain the enzyme-generated oligocarbonates, the reaction was scaled up to 50 mL. DMC
(50 mmol) and HD (50 mmol) were dissolved in 50 mM NaPi, pH 7.4. Est8 lyophilizate was added to a
final concentration of 3.2 g L−1, and the reaction was performed for 23.5 h at room temperature. After
cooling at 4 ◦C for 3 h, the precipitate was collected by centrifugation. The raw product was extracted
four times with 4 mL dichloromethane, and the combined organic phases were dried over anhydrous
Na2SO4. After evaporation of the solvent, 443 mg of oligocarbonate was obtained as a slightly viscous
liquid which solidified at 4 ◦C.

The masses of the oligomers were determined using the Advion expressionL CMS. The direct
analysis probe, otherwise known as ASAP® (Atmospheric Solid Analysis Probe, Advion Ltd., Harlow,
UK) mode was used for the measurement. The analysis was performed under “high temperature
and low fragmentation” conditions to minimize the fragmentation of the oligomers. Vaporized
methanol was used as an additional running solvent to carry the organic compound. Firstly, the empty
ASAP® probe capillary was injected into the CMS to record the blank or background noise for 30–60 s.
Subsequently, the probe was immersed into the sample and injected into the CMS. The data was
analyzed using the Data Express software provided by Advion. The 1H-NMR spectrum of the isolated
oligocarbonates was recorded on a 300 MHz Avance II (Bruker Daltonik GmbH, Bremen, Germany)
in CDCl3.

4.5. Fluorescent Staining

Nile Red was used to fluorescently stain the enzymatically formed oligocarbonate particles.
As the emission and excitation wavelengths of Nile Red are highly variable depending on the
surrounding environment [17], spectral scans were performed to identify the optimal wavelengths for
oligocarbonate-bound Nile Red. Nile Red was added from a 1 mg mL−1 stock solution in DMSO. In the
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final reaction, the concentration was 1 µg mL−1. Excitation was realized at 560 nm, and emission was
recorded at 630 nm. Particles stained with Nile Red were also visualized by fluorescence microscopy
using a ZEISS Axio Vert.A1 inverted microscope with a 20x objective. For excitation, a 540-580 nm
LED module was used with a 545/25 nm bandpass filter, and emitted light was passed through a
605/70 nm bandpass filter. This combination of an LED module and filter set resembled the optics
used for fluorescence measurements in 96-well plates.

5. Conclusions

We here describe a screening method for the identification of novel acyltransferases. Unlike
previous methods, acyltransferases were identified directly by their transesterification activity and
not by hydrolysis activity. The assay method can be widely applied for high-throughput screening
of mutant or metagenome libraries. Using this method, esterase Est8 could be identified to have
substantial acyltransferase activity.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/9/1/64/s1,
Scheme S1: Acyltransferase/hydrolase activity with carbonate system, Figure S1: 1H-NMR-spectra of the isolated
oligocarbonate, Figure S2: Optimization of the substrate concentrations, Figure S3: Time course of the formation of
oligocarbonate at optimal substrate concentrations, Figure S4: Determination of optimal excitation and emission
wavelength for Nile Red bound to oligocarbonate particles.
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