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Abstract: Natural enzymes, such as biocatalysts, are widely used in biosensors, medicine and health,
the environmental field, and other fields. However, it is easy for natural enzymes to lose catalytic
activity due to their intrinsic shortcomings including a high purification cost, insufficient stability,
and difficulties of recycling, which limit their practical applications. The unexpected discovery of
the Fe3O4 nanozyme in 2007 has given rise to tremendous efforts for developing natural enzyme
substitutes. Nanozymes, which are nanomaterials with enzyme-mimetic catalytic activity, can serve
as ideal candidates for artificial mimic enzymes. Nanozymes possess superiorities due to their low
cost, high stability, and easy preparation. Although great progress has been made in the development
of nanozymes, the catalytic efficiency of existing nanozymes is relatively low compared with natural
enzymes. It is still a challenging task to develop nanozymes with a precise regulation of catalytic
activity. This review summarizes the classification and various strategies for modulating the activity
as well as research progress in the different application fields of nanozymes. Typical examples of the
recent research process of nanozymes will be presented and critically discussed.
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1. Introduction

All life phenomena in nature are related to enzymes. Almost all chemical reactions occurring
in living cells are catalyzed and controlled by enzymes. Enzymes are a type of biomacromolecule
with biocatalytic function, which can tune the metabolism of organic organisms, transmitting genetic
information, sustaining life activities, and catalyzing chemical reactions. Owing to their excellent
catalytic efficiency and strong substrate specificity, enzymes are widely used in biosensors, medicine
and health, environmental protection, and other fields. However, due to the shortcomings of most
natural enzymes, such as their poor stability, time-consuming preparation, and high preparation
costs, there is great significance for practical application to design and synthesize stable and low-cost
artificial mimetic enzymes to replace natural enzymes by full chemical synthesis or semi-synthetic
methods [1–5].

Artificial mimetic enzymes are also known as one of the important branches of bionics; they refer
to the use of artificial materials to simulate the structure and function of natural enzymes, and they
were first proposed by Ronald Breslow [1,2]. In the past decades, great progress has been made in
the field of mimetic enzymes [3,4]. A series of mimetic enzymes have been synthesized, such as
cyclodextrins, metal complexes, porphyrins, and biological molecules, and used as substitutes for
natural enzymes in various fields [5,6]. Compared with natural enzymes, these traditional mimetic
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enzymes have the advantages of simple structure, low molecular weight, and high stability (especially
at high temperature). However, their low catalytic activity and poor selectivity are common problems
of traditional mimetic enzymes.

Scrimin and Pasquato and their coworkers found that gold nanoparticles modified by azacrown
had a nuclease-like function and could catalyze the phosphodiester bonds of nucleic acids [7]. Then,
they first proposed the concept of the “nanozyme” to describe this monolayer of thiol-protected gold
nanoclusters with significant ribonuclease activity, which was later extended to describe nanomaterials
with enzymatic activity. In 2007, the Yan group reported for the first time that magnetic iron tetroxide
nanoparticles exhibited peroxidase-like properties [8]. This discovery has attracted widespread
attention to the nanozyme, which has rapidly become a research hotspot. Hui Wei and Erkang Wang
further defined the concept of nanozyme as “nanomaterials with enzymatic properties”. As a new
generation of artificial mimetic enzymes, nanozymes are more stable and economical than natural
enzymes and traditional artificial enzymes. So far, a variety of nanozymes have been reported and
widely used in the fields of biosensors, environmental remediation, and disease treatment [5,6].

2. Types and Classification of Nanozymes

Until now, many nanomaterials have been found to possess enzyme-mimic activity. Considering
the dual characteristics of nanozymes, i.e., nanomaterials and catalysts, the nanozymes can be classified
by the nanomaterial’s dimensions and catalytic types. Firstly, it can be classified by the nanomaterial’s
dimensions. If three dimensions of a nanomaterial are in the nanoscale (usually less than 100 nm), it
can be named as a zero-dimensional nanozyme [9–19]. If two dimensions of a nanomaterial are in
the nanoscale, it can be named as a one-dimensional nanozyme [20–26]. In the same way, there are
also two-dimensional nanozymes (one dimension in the nanoscale) [27–34] and three-dimensional
nanozymes (zero dimension in the nanoscale) [35–43]. Secondly, according to the types of enzymatic
reactions, we can name nanozymes according to their mimetic natural enzymes, including peroxidase
nanozyme, catalase nanozyme, oxidase nanozyme, nitrate reductase nanozyme, nuclease nanozyme,
and so on.

3. Regulation Strategy of Nanozyme Activity

Similar to natural enzymes, the activity of nanozymes can be regulated in different ways, including
according to their material size, composition, morphology, surface modification, pH and temperature,
and activators or inhibitors. This section summarizes and discusses the above-mentioned important
factors for influencing the catalytic performance of nanozymes.

3.1. Size

Size is a key factor in determining many properties of nanomaterials. Generally, the catalytic
activity of nanozymes can be regulated by controlling the size. In most cases, smaller nanoparticles
have higher activity, which is probably due to their having a larger specific surface area. In other words,
the catalytic activity of nanozymes increases with the increase of the specific surface area. Some studies
have shown that the catalytic activity of one nanozyme is related to its size [44–46]. The Peng group
studied the peroxidase catalytic activity of Fe3O4 NPs with average diameters of 11, 20, and 150 nm [47].
It was found that the peroxidase catalytic activity of Fe3O4 NPs increased with the decrease of the
diameters of nanoparticles. Asati et al. obtained similar results when studying the oxidase activity of
organic polymer-modified cerium oxide nanoparticles with different sizes of 5, 12, 14, and 100 nm [48].
Therefore, the catalytic activity of nanozymes can be achieved by tuning the size of the nanozymes.

3.2. Morphology

The shape and morphology of nanozymes plays a key role in regulating their catalytic
activity [49–52]. Tian et al. have investigated the effect of different morphologies (nanosheets,
nanofibers, and nanorods) of VO2 nanoparticles on the colorimetric assay for H2O2 and glucose [53].
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It is found that VO2 nanofibers exhibit the highest peroxidase-like activity, since the specific surface
area of VO2 nanofibers is much larger than that of VO2 nanosheets and nanorods. To illuminate
the morphology effects on the catalytic ability of Mn3O4 nanoparticles, Singh et al. studied the
size, pore size, surface area, and volume of the various morphologic Mn3O4, including nanoflowers,
cubes, polyhedron, hexagonal plates, and flakes (Figure 1) [54]. The results showed that Mn3O4

nanoflowers exhibited higher catalytic activity than that of other morphologic Mn3O4 nanomaterials
due to their higher surface area and larger size as well as the bigger pore size of the Mn3O4 nanoflowers.
Additionally, the effects of the morphology of Co3O4 [55], Fe3O4 [56], MnO2 [57], LaNiO3 [42],
and CoFe2O4 [58] on their catalytic activity have also been reported.
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Figure 1. (a–e) SEM images of different morphologic Mn3O4 including the cubes, polyhedrons,
hexagonal plates, flakes, and flowers, respectively. (f) TEM image of Mn3O4 nanoflowers. Reproduced
from Reference [54] with permission from Wiley.

3.3. Composition

The components of nanozymes can effectively affect the catalytic activity. Doping methods
and a constructing complex is often used to regulate the activity of nanozymes [59–64]. He et al.
found that the simulated superoxide dismutase (SOD) activity of the CeO2 nanozyme decreased
with the doping amount of titanium, which suggested that the SOD activity was easily affected by
the spheroidal nanostructure, and Ti-doping promoted a conversion from the cubic crystal phase
of CeO2 to a spheroidal nanostructure [65]. On the contrary, the oxidase-like activity of CeO2 was
somewhat enhanced by Ti doping. Two kinds of catalytic activities of Ti-doping CeO2 were different,
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because SOD activity appeared to be sensitive to the spheroidal nanostructure, while the oxidase-like
activity did not. What’s more, the combination of two or more similar functional nanomaterials can
effectively improve the catalytic efficiency compared to the individual nanomaterial. In contrast with
the individual AuNPs and Fe3O4 NPs, their composites exhibit higher peroxidase activity, which can
be attributed to three factors: the synergistic effect [60], the polarization effect of AuNPs to Fe3O4 [66],
and the special electronic structure interface between Fe3O4 and AuNPs [67]. However, the less active
core could be etched for the aim of growing the higher active sites and further improving the catalytic
activity of nanomaterial. Wu et al. synthesized Pt hollow nanodendrites with the more active sites and
high-index facets that were derived from Pd–Pt core–frame nanodendrites, and then etched the Pd
core, exhibiting the enhancement of peroxidase-like activity (Figure 2) [68].

Catalysts 2020, 10, x FOR PEER REVIEW 4 of 17 

 

that the simulated superoxide dismutase (SOD) activity of the CeO2 nanozyme decreased with the 
doping amount of titanium, which suggested that the SOD activity was easily affected by the 
spheroidal nanostructure, and Ti-doping promoted a conversion from the cubic crystal phase of 
CeO2 to a spheroidal nanostructure [65]. On the contrary, the oxidase-like activity of CeO2 was 
somewhat enhanced by Ti doping. Two kinds of catalytic activities of Ti-doping CeO2 were different, 
because SOD activity appeared to be sensitive to the spheroidal nanostructure, while the 
oxidase-like activity did not. What’s more, the combination of two or more similar functional 
nanomaterials can effectively improve the catalytic efficiency compared to the individual 
nanomaterial. In contrast with the individual AuNPs and Fe3O4 NPs, their composites exhibit higher 
peroxidase activity, which can be attributed to three factors: the synergistic effect [60], the 
polarization effect of AuNPs to Fe3O4 [66], and the special electronic structure interface between 
Fe3O4 and AuNPs [67]. However, the less active core could be etched for the aim of growing the 
higher active sites and further improving the catalytic activity of nanomaterial. Wu et al. 
synthesized Pt hollow nanodendrites with the more active sites and high-index facets that were 
derived from Pd–Pt core–frame nanodendrites, and then etched the Pd core, exhibiting the 
enhancement of peroxidase-like activity (Figure 2) [68]. 

 
Figure 2. (a) The formation of Pt hollow nanodendrites including the (1) deposition process of Pt
atoms for the generation of Pd@Pt core–frame nanodendrites and the (2) etching process of Pd cores
using FeBr3. (b–d) TEM images of Pd nanocubes, Pd@Pt core–frame nanodendrites, and Pt hollow
nanodendrites, respectively. (e) TEM image of Pt hollow nanodendrites with hollow interiors and
abundant branches. (f) HRTEM image taken from the corner region of a Pt hollow nanodendrite.
The corresponding FT pattern is shown in the inset. Reproduced from Reference [68] with permission
from Wiley.



Catalysts 2019, 9, 1057 5 of 17

3.4. Surface Modification

The surface modification can be achieved by covalently immobilizing functional groups and
electrostatic adsorption. After surface modification, nanozymes possessed different catalytic abilities
and delivered the required performances for further biological coupling [8]. Generally, if the number
of active sites that can bind with the substrate is reduced by the surface modification method,
it will decrease the catalytic activity of a nanozyme. Gao et al. studied the Fe3O4 NPs coated with
3-aminopropyltriethoxysilane, polyethylene glycol, dextran, and silica [8]. It was found that the
peroxidase activity of these coated Fe3O4 NPs was generally lower than that of unmodified Fe3O4

NPs. However, some coatings can also improve the catalytic activity of nanozymes. Zhang et al.
found that the peroxidase-like activity of Prussian blue-coated γ-Fe2O3 NPs increased significantly [69].
They attributed the reason to two points: the surface charge of the coated γ-Fe2O3 NPs was changed
from positive charge to negative charge and the substrate-binding was enhanced by electrostatic
interaction; in addition, more ferrous active centers were introduced by Prussian blue. However, it is
noteworthy that Prussian blue itself has peroxidase activity. Qu’s group studied the effect of surface
functional groups on peroxidase activity in graphene quantum dots (GQD) (Figure 3) [14]. Carbonyl,
hydroxyl, and carboxyl groups on the surface of GQD were selectively modified by benzoic anhydride
(BA), phenylhydrazine (PH), and 2-bromo-1-phenylethyl ketone (BrPE), respectively. Compared with
unmodified GQD, the peroxidase activity of GQDs-BA and GQDs-BrPE was increased, while the
peroxidase activity of GQDs-PH was inhibited. Using terephthalic acid, they found that the carbonyl
group on GQD was the active site, the carboxyl group was the substrate-binding site, and the hydroxyl
group inhibited the activity of the enzyme. This discovery explains the mechanism of carbon materials
as peroxidase mimetic enzymes, providing a solid theoretical basis for the design and synthesis of
carbon materials in the future. Therefore, surface modification acts as one of the effective methods to
regulate the catalytic efficiency of nanozymes.Catalysts 2020, 10, x FOR PEER REVIEW 6 of 17 
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3.5. pH and Temperature

The pH factor plays an important role in the reactions catalyzed by nanozymes. It was found that
some nanozymes exhibited different enzyme activities at different pH values [70–73]; for example, if the
pH of α-ZrO2 is lower than 5.3, it shows the catalytic activity of peroxidase, and when the pH is higher
than 5.3, it shows the catalytic activity of catalase [71]. Additionally, the temperature factor can also
regulate the catalytic efficiency of nanozymes. Qu’s group designed bovine serum albumin (BSA) as
the model protein to construct the BSA–Cu3 (PO4)2·3H2O hybrid nanoflower. In the temperature range
from 15 to 65 ◦C, the nanoflowers showed high-temperature catalytical activity compared with the
natural horseradish peroxidase (HRP) under the same condition [74]. More interestingly, the catalytic
activity of the nanoflower was improved with the increment of temperature. Additionally, Qu’s group
performed an interesting study on pH and temperature modulation [75]. A dual photoresponsive
system for the photoregulation of chemical reactions based on the combination of ultraviolet (UV)
and near-infrared (NIR) light-sensitive materials were developed. The achievement of regulatory
effect was via the modulation of reaction temperature and pH. The hybrids of the photobase reagent
malachite green carbinol base (MGGB) and graphene oxide were used for the photoregulation of pH
and temperature. Under the stimulation of ultraviolet and near-infrared light, high temperature from
graphene oxide and OH- from MGCB were produced, respectively. Accordingly, the change of pH and
temperature were tuned under irradiation, resulting in the modulation of the catalytic activities of
nanozyme. By using nanozyme and enzyme-mediated chemical reactions as models, they verified the
feasibility and high performance of this method (Figure 4) [75].Catalysts 2020, 10, x FOR PEER REVIEW 7 of 17 
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Figure 4. (a) Photothermal effect of graphene and light-induced pH changing the effect of malachite
green carbinol base (MGCB). (b) Finely tuned a broad range of temperatures and pHs for the
regulation of chemical reactions. Reproduced from Reference [75] with permission from The American
Chemical Society.
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3.6. Activators and Inhibitors

Apart from the above factors, activators and inhibitors also affected the catalytic performance
of nanozymes [76–79]. For natural enzymes, activators can increase the activity of enzymes, while
inhibitors can decrease the activity of enzymes. Inspired by this, researchers are also trying to find
activators and inhibitors to regulate the catalytic activity of nanozymes. In some cases, certain ions and
other molecules could react with the nanozymes to affect the catalytic activity of nanozymes. Singh’s
studies have shown that phosphate ions can keep Ce in the +3 valence state, increasing the catalase-like
activity of nano-cerium dioxide [59]. Liu et al. carried out a series of screening experiments to select
the optimum condition to inhibit the activity of Au@Pt nanorod oxidase [80]. It found that Fe2+ was an
irreversible inhibitor, while Cu2+ and NaN3 were reversible inhibitors. Additionally, it was found that
Hg2+ was an effective inhibitor, and a method for detecting Hg2+ inhibition was established.

Herein, some regulation strategies of typical nanomaterials and their applications were
summarized in Table 1.

Table 1. The regulation strategy of typical nanomaterials and their applications. BSA: bovine
serum albumin.

Types of
Nanozymes Nanomaterial Regulation Strategy Application Reference

zero dimension

CeO2-X
size (4.5 nm, 7.8 nm, 23 nm, and 28 nm);

composition (surface area concentration of Ce3+) decomposition of H2O2 44

Fe3O4 NPs size (11 nm, 20 nm, 150 nm) catalyze the oxidation of the
substrate TMB by H2O2

47

dextran-coated
nanoceria size (5 nm, 12 nm, 14 nm, 100 nm) enzyme-linked

immunosorbent assay 48

Au-Fe3O4 NPs composition (complex) detection of H2O2 60

Ti-doped CeO2 composition (doping) biological applications 65

Pt hollow
nanodendrites composition (etching) antibacteria 68

Fe3O4
surface modification (3-aminopropyltriethoxysilane,

polyethylene glycol, dextran, and SiO2) immunoassay 8

graphene quantum
dots

surface modification (phenylhydrazine, benzoic
anhydride, and 2-bromo-1-phenylethyl ketone) glucose detection 14

γ-Fe2O3 NPs surface modification (Prussian blue) immunoassay 69

Ag activator (mercury (II)) colorimetric assays for
mercury (II) 76

Pt inhibitor (mercury (II)) colorimetric assays for
mercury (II) 77

AuxPty -DNA inhibitor (biothiol) colorimetric assay of biothiols 78

Pt–apoferritin
inhibitor of catalase activity (NaN3), inhibitor of catalase

and superoxide dismutase activities
(3-amino-1,2,4-triazole)

engineering targeting
enzyme mimetics 79

CeO2 inhibitor (phosphate) catalyst 59

Prussian Blue pH
multienzyme mimetics and

reactive oxygen
species scavengers

71

CoFe2O4 pH, surface modification chemiluminescence without
the need for H2O2

73

one dimension

VO2 morphology (nanofibers, nanosheets, and nanorods) detection of H2O2 and glucose 53

Mn3O4 nanoflower morphology (nanoflowers, cubes, polyhedron,
hexagonal plates, and flakes)

preventing the cells from
oxidative damage 54

Co3O4 nanoplates morphology (nanoplates, nanorods, and nanocubes) determination of calcium ion 55

Au@Pt nanorods inhibitor (Fe2+, Cu2+, and NaN3)
screening of inhibitors for

oxidase mimics 80

two dimension
graphene oxide pH, temperature programmable wound healing 75

WS2 temperature glucose detection 31

three dimension
ZrO2 gel pH nonredox system construction 70

BSA–Cu3(PO4)·3H2O temperature decompose organic pollutants 74
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4. Applications of Nanozymes

4.1. Nanozymes in Antibacteria for Topical Application

Up to now, the usage of nanozymes in combatting multi-drug resistant bacteria and biofilms
has become an attractive field. Metal oxide-based and sulfide metal-based nanozymes, carbon-based
enzymes, and nanocomposites show good biocompatibility and antibacterial activities, which have
been applied for killing bacteria [3]. However, most related works about nanozyme antibacterial agents
were applied for topical applications such as mouse skin, since they would release reactive oxygen
species (ROS) in an aspecific manner. Therefore, nanozymes for antibacterial applications cannot
be systemically administered until now. Although the antibacterial and antibiofilm mechanism of
nanozymes are largely unknown, three aspects are mainly summarized as following [3]: (1) nanozymes
trigger the generation of reactive oxygen species (ROS) such as hydroxyl radical (•OH) and superoxide
anion (O2

•−), which can attack bacteria and biofilms because of the high oxidation capability of
ROS [81], and unselectively defunctionalize many important substances such as lipids, proteins, and
nucleic acids, thus causing the lysis of the bacterial cytoplasmic membrane, protein deactivation, and
DNA damage. (2) Deoxyribonuclease mimics, as a kind of hydrolytic nanozymes, can catalytically
cleave the extracellular DNA for inhibiting the formation of biofilms and dispersing the integrity of
the biofilm [82]. (3) Haloperoxidase mimics that can reduce autoinducers have exhibited a successful
inhibition of biofilm growth and the destruction of biofilms [83]. However, most of the existing
antibacterial mechanism was focused on the above first one. Karim et al. reported that CuO nanorods
could serve as high-efficiency antibacterial agents under light illumination, which causes a 20 times
enhancement of the •OH production rate compared with the dark condition [84]. Yan’s group first
demonstrated a zinc-based zeolitic-imidazolate-framework (ZIF-8) derived Zn–N–C single-atom
nanozyme (SAzyme) that is considered as a high therapeutic effect single-atom catalyst for wound
antibacterial application (Figure 5) [85]. The high catalytic activity of the SAzyme was due to the
coordinatively unsaturated Zn-N4 active site, leading to the dissociation of H2O2 and the generation of
•OH. The formation of high oxidative •OH could trigger the oxidation of cellular components and
then result in the bacteria apoptosis. The result showed that the inhibition rate of the SAzyme on
bacteria was 99.87%. Moreover, the SAzyme significantly promoted wound healing with low toxicity
to the organism.
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4.2. Nanozymes in Hazardous Degradation

Organic pollutants, especially those with high toxicity, have shown serious effects on the
eco-environment system and human health [86]. The degradation of organic pollutants for decreasing
environmental pollution has been a focus of attention of the international community. Until now,
a variety of methods have been proposed to decompose organic pollutants, including chemical
oxidation, physical adsorption, and biological degradation. Among them, physical adsorption is not an
ideal method, since it lacks the efficiency in the process and needs abundant adsorbing materials [87].
For chemical oxidation, it needs a Fenton reagent including Fe3+, Fe2+, and H2O2. However, chemical
oxidation usually produces iron ions and sludge, which were easily discharged into the environment,
resulting in secondary pollution [88,89]. Biological degradation has the properties of being highly
efficient and environmentally friendly. Nevertheless, the natural enzyme which is applied for biological
degradation is expensive and unstable. Thus, it is urgent to explore new materials and methods to
decompose organic pollutants. The nanozyme is an ideal degradation agent. So far, the reported
organic molecules of nanozyme degradation include phenol, bisphenol A, methyl blue, sulfamethoxine,
4-chlorophenol, norfloxacin, xylenol orange, sulfathiazole, rhodamine B, methylene blue, and congo
red. Wang et al. prepared a novel CH–Cu nanozyme based on the coordination of Cu+/Cu2+ with a
Cys-His dipeptide for the degradation of chlorophenols and bisphenols (Figure 6) [90]. The CH–Cu
nanozymes can mimic the laccase activity and exhibit an excellent catalytic activity, recyclability,
and substrate universality comparable with laccase. Employing key peptides as metal ligands for the
metal ions complexing reaction is a novel concept and method for the design and synthesis of new
nanozymes, which could mimic the structure of the active site of a natural enzyme. Despite this process,
an enormous challenge is the immobilization of nanozymes, since attaching ligands to nanozymes
may block active sites and affect their catalytic activity [91]. To solve this problem, the idea of growing
a layer of nanozymes on magnetic nanoparticles is proposed, which could be a benefit for separation
and recycling as well as the maintaining of catalytic activity. Zhang et al. reported a novel magnetic
laccase-like nanozyme (Fe3O4@Cu/guanosine 5′-monophosphate (GMP)), which could oxidize harmful
o-phenylenediamine and remove phenolic compounds [92]. Based on the complexed Cu2+ and GMP,
which possessed the laccase-like activity and were modified on the outside of Fe3O4 nanoparticles, the
catalytic performance of Fe3O4@Cu/GMP was achieved. The application of magnetic nanoparticle
as a magnetic core is conducive to further separation and recycling. Besides, the photocatalytic
degradation of organic pollutants generally takes place in a stepwise fashion [93]. Photocatalytic
degradation can occur under ultraviolet (UV) or visible light irradiation, causing the degradation of
organic pollutants. Fan et al. reported an efficient titanate nanomaterials (NTs) photocatalyst modified
with H2O2 (HTNM), exhibiting an enhanced photoresponse to visible light with high photocatalytic
activity for the degradation of naproxen [94]. These above reports show that nanozymes can potentially
be a substitution for natural enzymes in hazardous degradation and environmental remediation.

4.3. Nanozymes in Sensing

Nanozymes have been extensively explored for the sensing of various important targets in the
fields of food safety analysis, environmental monitoring, disease diagnosis, and pharmaceutical
analysis, ranging from food and environmental pollutants, bioactive small molecules, metal ions,
nucleic acids, biomarkers, and cancer cells. Nevertheless, the simultaneous analysis of multiple targets
by using one single nanozyme is still a challenge. To solve this problem, the Qu group established a
multiplex readout method for the pattern recognition of different proteins by using graphitic carbon
nitride (g-C3N4) nanosheets as a single sensing receptor with peroxidase-like activity (Figure 7) [95].
It is surprising that the catalytic activity of g-C3N4 nanosheets can be regulated into different degrees
because of the different interactions between g-C3N4 and proteins. The advantage of this platform is
no need for numerous sensing receptors and sophisticated instruments, resulting in lower cost and
time consumption, providing a new pathway for the construction of convenient, feasible, and flexibly
nanozyme-based sensing arrays. The g-C3N4-based nanozyme is not only used for the construction
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of colorimetric sensors, but it can also be used for fluorescent sensors. However, the fluorescence
performances at a single emission wavelength are easily affected by environmental factors, such as
exciting and emitting light efficiency, and fluorescence probe concentration [96]. The ratio of double
emission wavelengths is obtained as a response signal that improves the accuracy of the results by
the self-calibration of two different emission wavelengths. The Wei group designed the ratiometric
sensing systems by using three kinds of fluorescent C3N4-based nanozymes such as C3N4-Ru, C3N4-Cu,
and C3N4-hemins, which possessed excellent peroxidase mimic catalytic activities [97]. The fluorescent
intensity at 438 and 564 nm as the signal output was used to construct ratiometric sensor assays
for the determination and discrimination of five phosphates, providing more reliable and robust
sensing performance.
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4.4. Nanozymes in Cancer Therapy

In cancer diagnosis and therapy, nanozymes have received great attention. Nanozymes can be
remotely controlled by different stimuli such as magnetic field, light, ultrasound, and heat [98]. These
above stimuli factors can be applied for improving the diagnostic and therapeutic efficacies of different
diseases in biomedical applications. For example, Li et al. developed a PtFe@Fe3O4 nanozyme with
two kinds of enzyme-like catalytical activities for tumor therapy [99]. In the tumor microenvironment,
the PtFe@Fe3O4 nanozymes exhibited a photothermal effect with photo-enhanced catalase-like and
peroxidase-like activities. The current systems are mainly based on oxygen status and/or external
stimuli to produce ROS, which can cause the apoptosis of tumor cells and act as a promising treatment
strategy for malignant neoplasms. However, for hypoxic tumors, the therapeutic efficacy is limited,
because the generation of ROS highly relied on oxygen status and external stimuli. A self-assembly
of MnO2@PtCo nanoflowers-based nanozymes that catalyzed a cascade of intracellular reactions to
generate ROS in both normoxic and hypoxic conditions which were dispensed with external stimuli
were rationally designed and synthesized by the Qu group [100] (Figure 8). PtCo and MnO2 served as
an oxidase mimic and catalase mimic, respectively. The MnO2@PtCo nanoflowers can relieve hypoxic
conditions as well as induce the apoptosis of tumor cells based on the ROS-mediated mechanism,
thus causing a remarkable and specific inhibition of neoplasm growth. In contrast with traditional
ROS-mediated systems, this platform possesses many advantages; for example, no external stimuli
were needed. By combining the oxidative activity of PtCo with the supplement ability of O2 from MnO2,
remarkable therapeutic efficacies for hypoxic tumors were achieved. The MnO2@PtCo nanoflowers
could preferentially cause the apoptosis of tumors, since the oxidative ability of nanoflowers depends
on the acidic pH.
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5. Summary and Outlook

The emergence of nanozymes not only changes the traditional concept that nanomaterials are
biological inert substances, but also provides a new perspective for the study of the biological effects
of nanomaterials. Nanozymes enrich the research content of enzyme mimics, making it expand
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from organic compounds to inorganic nanomaterials, expanding the application of nanomaterials.
Although tremendous progress has been achieved in the field of nanozymes, this field still faces great
challenges. Firstly, the catalytic mechanism of different kinds of nanozymes should be thoroughly
investigated. Generally, the nanozymes exhibit multiple enzyme-mimicking catalytical properties
due to the diversity of substrates. Therefore, the catalytic specificity and substrate selectivity of the
nanozyme should be regulated and explored for designing different applications. With the development
of nanotechnology, numerous and new discoveries of nanozymes should be explored, expanding the
scope of enzyme categories. Future designs will be focused on reversibly turning ON/OFF the catalytic
activity of nanozymes by changing the environmental condition. Nanozymes possess dual-functional
characteristics as nanomaterials with catalytic properties. It is possible, by means of combining the
dual functional characteristics of nanozymes, to create more nanozymes with unique functions and
reveal their mechanisms of action that can be applied to human health, environmental protection,
and bioenergy in the future.
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