

Figure S1. N_2 adsorption isotherms (at -198 °C) of sol-gel alumina support (A) and Lamodified carriers at various rare earth contents (ALaz). Closed symbols: adsorption branch; open symbols: desorption branch.

Figure S2. N_2 physisorption isotherms (at -198 °C) of oxidic P-doped CoMo materials impregnated over sol-gel alumina (A) and corresponding La-modified (ALaz) carriers. Closed symbols: adsorption branch; open symbols: desorption branch.

Figure S3. Pore size distributions of various prepared supports (a) and oxidic P-doped CoMo materials impregnated on sol-gel carriers at different La contents (b), as calculated by Barret-Joyner-Halenda methodology with data from adsorption branch of corresponding N_2 adsorption isotherms.

Figure S4. SEM micrographs of sol-gel La-modified supports. 1000× magnification, back-scattered electrons detector. (a): ALa1: (a); (b): ALa3; (c): ALa5.

Figure S5. SEM micrographs of oxidic P-doped CoMo materials impregnated on sol-gel alumina and La-modified carriers at various rare earth contents. 4000× magnification, back-scattered electrons detector. (a): CM/A; (b): CM/ALa1; (c): CM/ALa3; (d): CM/ALa5.

CM/A	Wt%	At%
Ок	42.08	63.98
Al_K	28.92	26.07
Si _K	1.69	1.46
P _K	1.83	1.43
Co _K	3.76	1.55
Мок	21.73	5.51
Total	100	100
CM/ALa1		
O _K	43.35	65.02
Al_K	30.5	27.13
Pĸ	1.71	1.32
La _L	1.8	0.31
Co _K	3.5	1.43
Mo _K	19.14	4.79
Total	100	100
CM/ALa3		
O _K	40.79	64.82
Al_K	26.97	25.41
P _K	1.27	1.04
La _L	2.17	0.4
Сок	4.17	1.8
Mo _K	24.64	6.53
Total	100	100
CM/ALa5		
O _K	42.26	64.55
Al_K	30.49	27.62
P _K	1.27	1.0
La _L	3.68	0.65
Сок	3.13	1.3
Mo _K	19.18	4.89
Total	100	100

Table S1. SEM-EDS chemical analysis of P-doped CoMo materials impregnated on sol-gel

 alumina and La-modified carriers at various rare earth contents.

UNIDENTATE CARBONATE

High-strength basic site

1510-1560 cm⁻¹

0.....0 ▼c≪ 0 M

1360-1400 cm·1

BIDENTATE CARBONATE OCCO M-O

O_M

Medium-strength basic site

1610-1630 cm⁻¹

1320-1340 cm-1

Scheme S1. Absorption bands in the infrared region of CO_2 species adsorbed on basic sites [from ref. S1].

Scheme S2. Dibenzothiophene HDS reaction network over sulfided $CoMo/Al_2O_3$ [from ref. S2]. HDBT's: hydrodibenzothiophenes; BP: biphenyl; CHB: cyclohexylbenzene; BCH: bicyclohexyl.

References

S1 Morterra, C.; Ghiotti, G.; Boccuzzi, F.; Coluccia, S. An infrared spectroscopic investigation of the surface properties of magnesium aluminate spinel, *J. Catal.* **1978**, *51*, 299-313.

S2. Houalla, M.; Nag, N.K.; Sapre, A.V.; Broderick, D.H.; Gates, B.C. Hydrodesulfurization of dibenzothiophene catalyzed by sulfided CoO-MoO₃/ γ -Al₂O₃: The reaction network. *AIChEJ* **1978**, *24*, 1015-1021.