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Abstract: Liquid-phase catalytic oxidation of limonene was carried out under mild conditions,
and carvone was produced in the presence of ZIF-67(Co), cobalt based zeolitic imidazolate framework,
as catalyst, using t-butyl hydroperoxide (t-BHP) as oxidant and benzene as solvent. As a heterogeneous
catalyst, the zeolitic imidazolate framework ZIF-67(Co) exhibited reasonable substrate–product
selectivity (55.4%) and conversion (29.8%). Finally, the X-ray diffraction patterns of the catalyst before
and after proved that ZIF-67(Co) acted as a heterogeneous catalyst, and can be reused without losing
its activity to a great extent.
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1. Introduction

As we know, the reaction about the allylic oxidation plays a critical role in developing fine
chemicals with high additional value from biomass, and has great value in the synthesis of unsaturated
aldehydes and ketones [1,2]. Carvone is a main ingredient, derived from plant essential oils, used
for cosmetics and food flavors, and is also used in the preservation of meat, fruits, and vegetables
because it has good antioxidant activity, analgesic effects, and antibacterial effects [3,4]. In addition,
carvone is an important intermediate in industrial chemistry, where it can further be used to synthesize
carvone thioether and cyanoacetone [5]. The applicability of traditional methods of transforming
limonene to carvone through catalytic oxidation, such as epoxidation and nitrosochlorination, is limited;
largely because environmentally unfriendly reagents are often used and poisonous secondary products
are produced [6]. Compared with these methods, the use of heterogeneous catalysts has broader
applicability prospects in the allylic oxidation of cycloolefins, due to their remarkable advantages in
catalyst recovery and stability.

However, current research results show that the selectivity of the catalytic oxidation of limonene
to carvone by heterogeneous reaction has not been satisfactory. For instance, 36% substrate
conversion and 25% selectivity for carvone were obtained by using chromium-containing mesoporous
molecular sieves MCM-41 [7]. Lower than 5% selectivity for carvone was obtained by using the
[FeIII (BPMP)Cl(µ-O)FeIIICl3] complex as catalyst [8]. A 21% conversion and 20% selectivity for carvone
were obtained in a reaction using Fe/EuroPh catalysts [9]. In another study, high conversion up to 93%
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of limonene was attained, while the selectivity for carvone was less than 7% [10]. In our previous
study, cobalt-doped mesoporous silica templated by reed leaves exhibited high substrate conversion
(100%) and relatively good product (carvone) selectivity (40.2%) for the allylic oxidation of limonene to
carvone [11].

Metal–organic frameworks (MOFs) have attracted considerable attention in catalysis and
adsorption in recent years, owing to their advantages, such as high surface areas, well-defined
structures, special metal centers, their ease of processing, and their structural diversity [12–16]. Thus,
the performance of MOF materials in this reaction has also been reported [17,18], but their application
is limited by their thermal and chemical stability [19]. However we are sure that it is valuable to use
some MOFs materials in this reaction, and this research has aroused our great interest.

Zeolitic imidazolate frameworks (ZIFs), which are constructed from tetrahedrally coordinated
divalent cations (Zn2+ or Co2+) linked by the uninegative imidazolate ligands, are a new class of porous
metal–organic framework (MOF) [20]. They are widely used in organic synthesis [21–25], CO2 capture
of [26], and olefin/paraffin separation [27] because of their excellent thermal and chemical stability.
They benefit from strong interactions between imidazolium salts and metal ions, which make the
frameworks of zeolitic imidazolates maintain their structural integrity even in water, and this is difficult
for other MOFs [28]. Additionally, ZIF-67 has a high-porosity zeolite structure, which is conducive
to catalytic reactions. According to our surveys, ZIFs have been widely used to catalyze different
types of organic synthesis reactions in recent years, such as cyclohexene hydrogenation [29], glycerol
esterification [30], and transesterification reactions [31].To this end, the zeolitic imidazole framework
ZIF-67(Co) was selected because ZIF-67 is easy to prepare at large scale in water under ambient
conditions without using toxic solvents, and the preparation of ZIF-67(Co) has good reproducibility.

In this continuation of our work, we successfully synthesized ZIF-67(Co) by hydrothermal
synthesis, and it displayed good catalytic properties in the catalytic oxidation of limonene. Furthermore,
the application of tert-butyl hydroperoxide (t-BHP) to the allylic oxidation of cycloolefins offers an
alternative to traditional unfriendly oxidants. In this work, the effects of solvents, oxidants, and reaction
temperature on the productivity and reaction time were investigated. Under the optimal conditions,
although the conversion of limonene was only 29.8%, we increased the selectivity for carvone to 55.4%,
which is more than that in all the literature we have been able to refer to. For comparison, the catalytic
activities of more MOFs were also investigated. This is the first report about the oxidation of limonene
to carvone over ZIF-67(Co).

2. Results and Discussion

2.1. Characterization of ZIF-67(Co)

Powder XRD patterns of the ZIF-67(Co) are shown in Figure 1. The diffraction peaks of the 2θ
values at 7.48◦, 10.42◦, 12.74◦, and 18.06◦, were assigned to the (011), (002), (112), and (222) planes of
ZIF-67, which has been reported by other researchers [20,21,29]. Figure 1 also reflects the fact that
synthetic ZIF-67(Co) is a phase-pure product. Besides, in order to compare the different catalysts’
ability about catalyzed the limonene to carvone, some other MOFs have been synthesized successfully
and their XRD patterns have been revealed in supplementary material (Figures S1–S5)

The N2 sorption experiments for the ZIF-67(Co) yielded the typical type I isotherms in Figure 2.
The Brunauer–Emmett–Teller (SBET) and Langmuir surface areas of ZIF-67 were 1378 and 1805 m2/g,
and the pore volume was 0.62 cm3/g, which are near to the previously reported values [32,33]. At lower
relative pressures, the micropore in the material makes the adsorption capacity increase rapidly,
while at higher relative pressures, due to the existence of spin/large porosity nanoparticles structure,
the enhancement of adsorption capacity is lower. The pore size distribution curve was calculated by
the Horvath–Kawazoe (HK) method, which clearly showed that there were two kinds of micropores in
ZIF-67(Co). This result is similar to an earlier work [22].
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Figure 2. N2 adsorption/desorption isotherms of ZIF-67(Co) samples at 77 K and Horvath–Kawazoe
(HK) pore size distribution curve.

The morphology and particle size of the samples revealed by scanning electron microscopy
(SEM) are shown in Figure 3. The SEM picture reveals that the particles were submicroscopic
crystals with polyhedral shapes, each surface was a homogeneous quadrilateral, and the particle sizes
ranged from 200 to 500 nm. This also proves that the as-synthesized ZIF-67(Co) was composed of
submicroscopic crystals.

FT-IR and TGA were employed to obtain further structural information about the ZIF-67(Co).
Figure 4 presents FT-IR spectra of ZIF-67(Co) between 400 and 4000 cm−1. The peak at 3420 cm−1 is
a contribution of the asymmetric characteristic absorption peaks of O–H bonds in hydroxyl groups
adsorbed on the surface of materials. There were also some peaks between 500 and 1500 cm−1 caused
by plane-bending vibrations and stretching vibrations of the imidazole ring. Meanwhile, the two
small peaks at 758 and 534 cm−1 were attributed to the stretching vibration peak of the Co–N bond.
In addition, there were two bands at 3134 and 2931 cm−1 caused by the asymmetric absorption
vibrations of the C–H bond in the methyl groups.
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Figure 4. FT-IR spectra of ZIF-67(Co).

The synthesized ZIF-67(Co) submicroscopic crystals had high thermostability, which was proved
by TGA and differential scanning calorimetry (DSC) as shown in Figure 5. The test increased
temperature to 873 K from room temperature at 5 K/min. When calcined below 373 K, the total weight
loss of the sample was very small (about 8%), relating to the removal of guest molecules such as water.
Between 373 and 510 K, the curve remained smooth overall, indicating that the skeleton of ZIF-67(Co)
has good thermal stability below 510 K. When the temperature was greater than 520 K, the mass loss
began at the stage of skeletal decomposition. This was attributed to the collapse of the ligands, which
was caused by the decomposition of 2-methylimidazole. The weight-loss process was complete at
620 K, and the residue was Co3O4.
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2.2. Catalytic Experiments

2.2.1. The Effect of Various Catalysts on the Reaction

The comparison of the catalytic activities of different catalysts for the oxidation of limonene is
summarized in Table 1. Using t-BHP as oxidant yielded carvone as the main product, and the reaction
time was 8 h. Besides, the synthetic method and XRD patterns about these MOFs have been revealed
in supplementary material (Figures S1–S5)

Table 1. Comparison of the catalytic activities of various metal–organic frameworks (MOFs) for the
oxidation of limonene.

Catalysts Conversion (%) Selectivity (%)

MIL-101(Fe) 50.8 20.3
ZIF-8(Zn) 16.5 9.2

ZIF-67(Co) 35.7 32.6
MIL-101(Cr) 44.1 26.6

HKUST-1(Cu) 20.4 7.9
MIL-125(Ti) 18.2 10.1
No catalyst 26.7 0.05

Conditions: limonene: 2 mL, catalyst: 100 mg, solvent: 15 mL acetic acid, oxidant: 15 mL t-BHP (tert-butyl
hydroperoxide), temperature: 85 ◦C, reaction time: 8 h.

First, the reactivity of several common catalysts was compared without any condition optimization.
The activity of MIL-101(Fe)(Materials of Institute Lavoisier Frameworks) was the most outstanding
for the oxidation of limonene—the conversion rate was 50.8% after 8 h; followed by MIL-101(Cr),
whose conversion rate was 44.1%. ZIF-8 showed the worst activity, with a conversion rate of only
16.5%. However, after the reaction, the filtrates from HKUST-1(Cu)([Cu3(BTC)2(H2O)3]n), MIL-101(Fe),
and MIL-101(Cr) were light blue, dark red, and yellow-green, respectively. This indicates that metal
ions, as metal centers, leaked during the reactions with HKUST-1(Cu), MIL-101(Fe), and MIL-101(Cr).
On the other hand, ZIF-67 showed the highest selectivity, and the selectivity for carvone reached 36.6%
after 8 h of reaction. The high selectivity of ZIF-67(Co) may be attributed to its unique ion centers.
Heterogeneous catalysis with MOF materials is one of their extensively investigated applications [21].
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2.2.2. The Effect of the Catalyst Dosage on the Reaction

The catalyst dosage had a significant effect on the oxidation of limonene. Five different dosages of
ZIF-67(Co)—35, 60, 85, 110, and 135 mg—were used while keeping all the other reaction parameters
fixed, and the experimental results are shown in Figure 6. Conversions of 4.75%, 13.2%, 28.1%, 30.3%,
and 33.5%, corresponding to the 35, 60, 85, 110, and 135 mg catalyst loadings, respectively, were
obtained in the experiment. With increasing ZIF-67(Co) dosage, the conversion of limonene increased.
When the amount of catalyst was 135 mg, the conversion of limonene was 33.5%. Interestingly,
the selectivity for carvone increased at low catalyst contents and then decreased, relative to increasing
content of the catalyst. When the dosage of the catalyst was 85 mg, the selectivity for carvone reached
the maximum value (36.7%). After that, the yield of carvone decreased slightly as the amount of
catalyst continued to increase, but the rate of change was small.
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2.2.3. The Effects of Various Oxidizing Agents on the Reaction

Choosing a suitable oxidant is very important for improving the conversion and selectivity of
catalytic oxidation, because oxidants are one of the key factors in catalytic oxidation. We tried to get
air in the reaction to use oxygen as a reagent. In addition, hydrogen peroxide and t-BHP were used
as oxidants. The results of these experiments are recorded in Table 2. When t-BHP (70%) was added
to the system, the conversion of limonene increased to 28.1%, and the selectivity for carvone was
36.7%. However, if hydrogen peroxide (30%) was used as oxidant, the conversion of limonene and the
selectivity decreased significantly.

Table 2. The effect of various oxidizing agents on the reaction.

Oxidant Conversion (%) Selectivity (%)

Air 11.3 30.9
30% H2O2 6.8 9.9
70% t-BHP 28.1 36.7

Conditions: limonene: 2 mL, catalyst: 85 mg of ZIF-67(Co), solvent: 15 mL acetic acid, oxidant: 5 mL H2O2 (30%) or
5 mL t-BHP, temperature: 85 ◦C, reaction time: 8 h.
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2.2.4. The Effect of the Dosage of the Oxidant on the Reaction

Experimental results on the effect of oxidant dosage on the reaction were shown in Figure 7.
We noticed that the conversion of limonene increased with increasing amounts of t-BHP. When the
amount of t-BHP was 7 mL, the conversion of limonene was 33.1%. Meanwhile, the selectivity for
carvone increased and then decreased with the increase in t-BHP. We also found that the selectivity for
carvone reached its maximum (43.5%) when the dosage of oxidant was 3 mL. After that, increasing the
amount of oxidant increased the degree of oxidation, resulting in a decrease of selectivity and yield.
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2.2.5. The Effects of Different Solvents on the Reaction

The solvent is an important factor affecting heterogeneous catalytic reaction systems. The polarity,
acidity, viscosity, and volatility of solvents have a great influence on the performance and reactivity
of the catalyst. Some experiments were carried out to study the effects of different solvents on the
catalytic oxidation of limonene by ZIF-67(Co), and the results are shown in Table 3. We found that
limonene conversion and carvone selectivity were higher when benzene was used as solvent than with
acetic acid, acetic anhydride, or ethyl acetate.

Table 3. The effect of different solvents on the reaction.

Solvent Conversion (%) Selectivity (%)

Acetic acid 25.9 33.3
Acetic

anhydride 38.1 15.9

Ethyl acetate 42.6 23.1
Benzene 20.3 49.4

Conditions: limonene: 2 mL, catalyst: 85 mg of ZIF-67(Co), solvent: 15 mL, oxidant: 3 mL t-BHP, temperature:
85 ◦C, reaction time: 8 h.

2.2.6. The Effect of the Temperature on the Reaction

The oxidation of limonene was examined over the temperature range of 55–95 ◦C, and the results
are shown in Figure 8. The conversion of limonene increased quickly from 6.5% to 30.5% for a reaction
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time of 8 h, when the temperature was increased from 55 to 65 ◦C. Thereafter, the trend of conversion
had a slow decline. Interestingly enough, the selectivity for carvone reached its maximum (48.7%) at
85 ◦C. This might be because the activity of the catalyst definitely increased at the beginning of the
temperature rise, so the conversion of limonene increased rapidly. However, after the temperature
reached a certain value, the catalytic activity of the material did not increase and the byproduct
formation did increase, so the selectivity for carvone decreased.
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2.2.7. The Effect of the Reaction Time on the Reaction

The catalytic oxidation of limonene, using the above conditions for different reaction times, was
studied. As can be seen in Figure 9, the conversion of limonene increased with increasing reaction
time, and the conversion was 37.8% at 12 h. Meanwhile, the selectivity for carvone increased first,
reached a maximum at 6 h (57.7%), and then decreased. Owing to the fact that t-BHP is not completely
decomposed over short times, the oxidation efficiency was undesirable, and with increasing reaction
time, there were corresponding increases in the oxidants’ oxidation capacity as well as the conversion
rate. However, selectivity of carvone decreased with reaction time increased because of the depth
oxidation of carvone and by-product increased.
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2.2.8. Study of the Catalyst Stability

Stability is an important parameter of catalyst performance. In order to investigate the stability of
ZIF-67(Co), XRD spectra of ZIF-67(Co) before and after the first reaction round were obtained and
are presented here. As shown in Figure 10, the characteristic peak was still present, but its strength
decreased slightly. So, we can be sure that the structure of ZIF-67 still existed.
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Concurrently, the specific data about repetitive experiments are revealed in Table 4.

Table 4. The data from reuse experiments.

Times Conversion (%) Selectivity (%) TON

First round 29.8 55.4 18.1
Second round 33.5 41.6 13
Third round 32.5 28.0 8.7

Conditions: limonene: 2 mL, catalyst: 85 mg of ZIF-67(Co), solvent: 12 mL benzene, oxidant: 3 mL t-BHP,
temperature: 75 ◦C, reaction time: 8 h. Turnover number (TON) = carvone (yield) mmol/total Co site mmol.

The data in Table 4 reveal the repeatability of ZIF-67(Co) in the catalytic oxidation of limonene.
As can be seen from the data in Table 4, we found that the selectivity for carvone declined slightly in
the second round. At the same time, the conversion of limonene declined as well. We conclude that
this may be related to a partial collapse of the basic structure of ZIF-67(Co).

3. Materials and Methods

3.1. Materials and Solvents

Cobaltous nitrate hexahydrate was supplied by Xilong Chemical Co., Ltd. (Shantou, China)
and 2-methylimidazole was obtained from Sinopharm Chemical Reagent Co., Ltd. (Shanghai,
China). All other reactants used in the synthesis of the ZIF-67(Co) catalyst samples were supplied
by Xilong Chemical Co., Ltd. Methanol and acetic acid were purchased from Xilong Chemical Co.,
Ltd. The tert-butyl hydroperoxide and limonene were obtained from Adamas Reagent Co., Ltd.
(Shanghai, China).
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3.2. Catalyst Preparation

In a typical preparation process [33], 0.45 g cobaltous nitrate hexahydrate was dissolved in 3 mL
of distilled water, and then 5.5 g of 2-methylimidazole was dissolved in 100 mL of distilled water.
Then the two solutions were mixed evenly and stirred at room temperature for 6 h. The products
obtained were washed with distilled water and methanol, and then dried in at 80 ◦C for 24 h.

3.3. Catalyst Characterization

ZIF-67(Co) was characterized through a series of techniques. The diffraction patterns of the
materials and the residual catalyst were obtained by powder X-ray diffraction (XRD, Rigaku Co., Tokyo,
Japan) experiments using Cu Kα band radiation on a D/max-3B spectrometer. Scans were made over
the 2θ range of 10–90◦ with a scan rate of 10◦/min (wide-angle diffraction). Pore size distributions,
pore volumes, and specific surface area were measured by nitrogen adsorption/desorption using a
Micromeritics ASAP 2460(Micromeritics, Norcross, GA, USA) at 77 K. The specific surface areas were
calculated by the Brunauer–Emmett–Teller (SBET) and Langmuir methods, and the pore volumes
and pore sizes were calculated by the BJH (Barrett–Joyner–Halenda) method. Thermogravimetric
analysis (TGA) curves and differential scanning calorimetry (DSC) determinations were carried out
on a NETZSCH STA 449 F3 synchronous TG-DSC thermal analyzer (Nuremberg, Germany) with
a scanning rate of 5 K/min in a dry nitrogen atmosphere and heating from room temperature to
1073 K. The FT-IR(Fourier transform infrared spectroscopy) measurements were performed on a
Thermo Nicolet 8700 instrument(Wilmington, MA, USA). Potassium bromide pellets were used in
FT-IR experiments at a spectral resolution of 4 cm−1. Scanning electron microscopy (SEM) images were
taken on a Quanta 200FEG microscope (FEI, Hillsboro, OR, USA) at an accelerating voltage of 15 kV
with the pressure in the sample chamber set to 2.7 × 10−5 Pa. Double-sided adhesive tape was bonded
on the carrier disc, then a small amount of powder sample was placed near the center of the carrier
disc on the adhesive tape. Then, a rubber ball was used to blow the sample outward along the radial
direction of the load plate, so that the powder was evenly distributed on the tape. The tape was then
coated with conductive silver paste to connect the sample to the carrier plate. After the silver paste
was dried, the final gold steaming process could be carried out.

3.4. Catalytic Performance

In a typical reaction, 2 mL limonene with varying amounts of catalyst and solvents were used
as received, without further purification, in a 25 mL three-neck flask. Each set of experiments
was performed at a corresponding temperature, under atmospheric pressure and magnetic stirring,
using an appropriate amount of solvent, e.g., acetic acid, acetic anhydride, ethyl acetate, benzene,
etc. Afterwards, the catalyst was separated by filtration, and the sample solution was dried with
anhydrous magnesium sulfate. A final filtration was carried out, and the samples were qualitatively
and quantitatively analyzed by gas chromatography (GC-9560, HUAAI Chromatography, Shanghai,
China), with a capillary column AE.OV-624, 30 m in length, 0.25 mm i.d., 0.5 µm film thickness, and an
FID (Flame ionization detector).

In order to assess the stability of the ZIF-67(Co), some sets of a repeatability experiment were
performed. After the first reaction, the catalyst was centrifuged and separated from the reaction
system, and after repeated washing with distilled water and anhydrous ethanol, the catalyst was
reactivated at 90 ◦C in the vacuum drying chamber for 12 h. Thereafter, the reactor was supplied with
the recovered dry catalyst, new reagents, and solvent for the second reaction. We repeated the above
process three times.

4. Conclusions

In conclusion, we proved that the zeolitic imidazolate framework ZIF-67(Co) was an efficient
catalyst for the liquid-phase catalytic oxidation of limonene, under relatively mild reaction conditions,
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to carvone. Based on current research, the catalytic oxidation of limonene comprises two parallel
reactions, namely a synergistic reaction and a free-radical reaction. Carvone is the product
of the free-radical reaction of limonene at the allyl group. The synergistic reaction produced
limonene-1,2-oxides and limonene-1,2-diols. Meanwhile, under acidic conditions, the 1,2-oxide
of limonene could be hydrolyzed to produce the 1,2-diol of limonene, and the 1,2-diol of limonene
could be further rearranged and converted to carvone.

This is the first report on catalyzing the oxidation of limonene using ZIF-67(Co) as catalyst. It was
revealed that ZIF-67(Co) was an efficient catalyst, with selectivity of 55.4% for carvone in the catalytic
oxidation of limonene, and could be reused with similar activity.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/9/4/374/s1,
Figure S1: XRD pattern of MIL-101(Cr), Figure S2: XRD pattern of MIL-125(Ti), Figure S3: XRD pattern of
HKUST-1(Cu), Figure S4: XRD pattern of ZIF-8(Zn), Figure S5: XRD pattern of MIL-101(Fe).
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