
catalysts

Article

Formation of CuO on TiO2 Surface Using its
Photocatalytic Activity

Hiromasa Nishikiori 1,2,*, Naoya Harata 1, Saho Yamaguchi 1, Takashi Ishikawa 1,
Hayato Kondo 1, Ayaka Kikuchi 1, Tomohiko Yamakami 1 and Katsuya Teshima 1,2

1 Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan;
naoya.harata@yahoo.com (N.H.); saho.yamaguchi@yahoo.com (S.Y.); takashiishikawa222@yahoo.com (T.I.);
hayato.k0716@gmail.com (H.K.); aykikuchi@shinshu-u.ac.jp (A.K.); tyamaka@shinshu-u.ac.jp (T.Y.);
teshima@shinshu-u.ac.jp (K.T.)

2 Center for Energy and Environmental Science, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
* Correspondence: nishiki@shinshu-u.ac.jp; Tel.: +81-26-269-5536

Received: 3 April 2019; Accepted: 22 April 2019; Published: 24 April 2019
����������
�������

Abstract: Some co-catalyst nanoparticles can enhance the activity of photocatalysts due to prolonging
the charge separation lifetime by promoting the electron or hole transfer. CuO particles were prepared
from an aqueous solution of copper (II) nitrate at 351 K on a TiO2 surface by a photocatalytic reaction
and heating at 573 or 673 K. The amount and size of the particles deposited during the photocatalytic
reaction can be controlled by changing the amount of the irradiated photons. The CuO crystals with
about 50−250 nm-sized particles were formed. Nitrate ions were reduced to nitrite ions in the solution
by the photocatalytic activity of the TiO2, and water was simultaneously transformed into hydroxide
ions. An increase in the basicity on the TiO2 surface induced formation of a copper hydroxide.
The copper hydroxide was subsequently dehydrated and transformed into CuO by heating. The TiO2

loading of a small amount of CuO demonstrated a higher photocatalytic activity for methylene blue
degradation compared to the original TiO2 due to the electron transfer from the TiO2 conduction
bands to the CuO conduction band.
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1. Introduction

Titanium dioxide (TiO2) is modified with some co-catalysts in order to improve its photocatalytic
activity due to prolonging the charge separation lifetime by promoting the electron or hole transfer [1,2].
For this purpose, noble metals and their oxides are frequently used as the modifiers to trap the electrons
in the conduction band and holes in the valence band, which suppresses the electron–hole charge
recombination [1–3]. Recently, the non-noble metals or their oxides, such as Ni, Co, NiOx, and CoOx,
are also used as co-catalysts. The conduction and valence bands of such semi-conductive metal oxides
can trap the charges. Furthermore, CuOx and Cu(OH)2 can also be a substitute for them [4–13].
The electron transfer from the TiO2 conduction bands to the CuO conduction band enhances the
photocatalytic activity because it suppresses the charge recombination on the TiO2 and promotes
oxidation on the TiO2 by the hole and reduction on the CuO by the transferred electron. CuO is also
useful as a visible-light-driven photocatalyst [4,6,8,10–13].

One of the photocatalysts, zinc oxide (ZnO) particles, was previously deposited from an aqueous
zinc nitrate solution at 323−358 K on a TiO2 thin film by its photocatalytic activity [14,15]. On the other
hand, the growth of the anatase TiO2 nanoparticles on its film was observed in a solution containing
titanium (IV) chloride and lithium nitrate maintained at 353 K during UV irradiation [16]. Anatase
TiO2 crystals with the size of ca. 20 nm were produced on the original TiO2 film composed of the
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particles with almost the same size. Silica nanolayers were also formed as adsorbents on the anatase
TiO2 particles immersed in solutions of tetraethyl orthosilicate (TEOS) during the UV irradiation [17].

The nitrate ions were reduced to nitrite ions in the solution, and water was simultaneously
transformed into hydroxide ions (NO3

− + H2O + 2e−→ NO2
− +2OH−) by a photocatalytic reduction

reaction on the original TiO2 film, as previously reported [14–16]. According to this mechanism,
an increase in the basicity on the TiO2 surface induced the hydroxide formation. The hydroxides were
subsequently dehydrated and transformed into the oxides. On the other hand, the UV irradiation
caused a slight increase in the density of the basic OH groups on the TiO2 surface [18–20]. Even if there
is a slight increase in the basicity it promotes hydrolysis of the TEOS and subsequent polymerization
of its products, then the silica layers are deposited on the TiO2 surface [17]. The amount and size of the
particles deposited during the photocatalytic reaction can be controlled by changing the amount of the
irradiated photons as studied in the ZnO, TiO2, and silica formation [14–17]. Therefore, this is suitable
for forming co-catalyst nanoparticles selectively on the photoactive sites of the original photocatalyst
particles, as distinct from the other methods.

In this study, CuO nanoparticles were also attempted to be formed from an aqueous solution of Cu
(II) nitrate on a substrate plate coated with a TiO2 thin layer by a photocatalytic reaction based on such
a preparation process of the mentioned oxides. The difficulty of the metal oxide formation depends on
that of the dehydration of the metal hydroxides. It is an important point as to whether the dehydration
of the copper hydroxide can proceed in the aqueous solution, although the silicon, zinc, and titanium
hydroxides were easily dehydrated. The photocatalytic activity of the CuO-modified TiO2 and the
co-catalyst function of the CuO were evaluated by a normal dye degradation during UV irradiation.

2. Results and Discussion

2.1. Characterization of the Film Surface

The objective samples were prepared on the glass substrate plates with the TiO2 thin layer for
observations of their microscopic morphology and crystal structure of the particles deposited during
the UV irradiation. As previously observed, the surface SEM image indicated that the pre-coated
TiO2 film was composed of particles with the size of ca. 20 nm [14,15]. The Raman spectrum of the
film corresponded to that of the standard sample of anatase TiO2. No peak was, however, detected
on the substrate by the XRD analysis due to the thinness of the TiO2 layer. Figure S1 shows the
element mapping images of the Ag-deposited TiO2 film obtained by electron probe microanalysis
(EPMA). The Ag particles were dispersed on the film surface. The elemental ratio of Ag/Ti was 0.74
and a sufficient amount for the co-catalyst of TiO2.

No XRD peak was observed on the samples prepared in the dark or on the glass substrates
without the Ag-deposited TiO2 film even during the UV irradiation. The characteristic peaks were
observed in the XRD patterns of the unheated samples prepared from the solutions of pH 3.07, pH 3.90,
and pH 4.57 on the Ag-deposited TiO2 films during the UV irradiation, as shown in Figure 1. All the
samples exhibited peaks at 2θ = 12.8◦ and 25.7◦ assigned to the (001) and (200) planes, respectively,
of Cu2(OH)3(NO3), i.e., layered copper hydroxide (LCH) nitrate [21,22]. CuO was not observed under
the present conditions similar to the layered zinc hydroxide (LZH) nitrate in the case of the ZnO
formation [14,15]. The LCH was reported to be formed in a basic solution and decomposed to CuO
during heating at 333–508 K [23]. The LCH formation indicated that the dehydration did not proceed
due to a very low reaction rate in the solution. The sample prepared from the solution of pH 3.07
also exhibited a halo peak assigned to amorphous copper hydroxides in addition to the above peaks
due to the slow reaction. The average LCH crystallite sizes were estimated from the full width at
half maximum (FWHM) of the (001) peak using Scherrer’s equation. The sizes of the crystallites
produced from the solutions of pH 3.07, pH 3.90, and pH 4.57 were 29.6, 32.0, and 32.0 nm, respectively.
The sizes are determined by the rates of the crystal nucleus formation and crystal growth as reported
in the previous study of the photocatalyzed ZnO formation [15]. A higher pH generally induces the
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forming of a greater amount of LCH nuclei in the solution. However, the amounts of the crystal nuclei
significantly depend on the amount of the Ag particles on the TiO2 surface. The higher pH can better
promote the crystal growth in this case. Under the present conditions, dehydration of the LCH was
more difficult than that of zinc and titanium hydroxides because CuO is more easily hydrolyzed.

Catalysts 2019, 9, x FOR PEER REVIEW 3 of 12 

 

pH can better promote the crystal growth in this case. Under the present conditions, dehydration of 
the LCH was more difficult than that of zinc and titanium hydroxides because CuO is more easily 
hydrolyzed. 

 

Figure 1. XRD patterns of the unheated samples prepared from the solutions of pH 3.07, pH 3.90, and 
pH 4.57. 

The EPMA element mapping images of the unheated samples prepared from the solutions of 
pH 3.07, pH 3.90, and pH 4.57 were obtained as shown in Figure 2. In the sample prepared from the 
solution of pH 3.07, the amount of the Cu element was lower than the lower detection limit although 
its XRD pattern indicated the formation of LCH. This is because a slight amount of LCH was 
dispersed on the TiO2 film. The Cu/Ti element ratios of these samples prepared from the solutions of 
pH 3.90 and pH 4.57 were 0.51 and 0.27, respectively. In the sample prepared from the solution of pH 
3.90, the elemental Cu was distributed in a limited area. Only a slight amount of the elemental Cu 
was observed in almost all of the areas. In the sample prepared from the solution of pH 4.57, the 
elemental Cu was widely distributed over the entire area. 

 
Figure 2. EPMA element mapping images of the unheated samples prepared from the solutions of (a) 
pH 3.07, (b) pH 3.90, and (c) pH 4.57. 

Figure 1. XRD patterns of the unheated samples prepared from the solutions of pH 3.07, pH 3.90,
and pH 4.57.

The EPMA element mapping images of the unheated samples prepared from the solutions of
pH 3.07, pH 3.90, and pH 4.57 were obtained as shown in Figure 2. In the sample prepared from the
solution of pH 3.07, the amount of the Cu element was lower than the lower detection limit although
its XRD pattern indicated the formation of LCH. This is because a slight amount of LCH was dispersed
on the TiO2 film. The Cu/Ti element ratios of these samples prepared from the solutions of pH 3.90
and pH 4.57 were 0.51 and 0.27, respectively. In the sample prepared from the solution of pH 3.90,
the elemental Cu was distributed in a limited area. Only a slight amount of the elemental Cu was
observed in almost all of the areas. In the sample prepared from the solution of pH 4.57, the elemental
Cu was widely distributed over the entire area.
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Figure 3 shows the XRD patterns of the samples prepared from the solutions of pH 3.07, pH 3.90,
and pH 4.57 and heated at 673 K for 2 h. No peak was clearly observed in the XRD pattern of the
sample prepared from the solution of pH 3.07. A slight amount of LCH was partially dehydrated,
but not completely transformed into CuO, thus being possibly amorphous copper hydroxides due to
the strong hydration. In the sample prepared from the solution of pH 3.90, LCH was still observed.
A small amount of LCH was presumed to be stably stacked in small cavities on the TiO2 film surface.
The samples prepared from the solutions of pH 3.90 and pH 4.57 exhibited peaks at 2θ = 32.5◦, 35.5◦,
38.8◦, 48.7◦, 53.5◦, 58.5◦, 61.5◦, 65.9◦, 66.2◦, 68.1◦, and 68.2◦ assigned to the (110), (002), (111), (202), (112),
(202), (113), (022), (311), (113), and (220) planes of CuO, respectively. The average CuO crystallite sizes
were estimated from the FWHM of the (002) peak using Scherrer’s equation. The sizes of the crystallites
produced from the solutions of pH 3.90 and pH 4.57 were 21.0 and 19.3 nm, respectively. These results
indicated that the UV irradiation induced the photocatalytic formation of copper hydroxide on the
TiO2 film and the additional heat mainly accelerated its dehydration and transformation into CuO [23].
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and heated at 673 K for 2 h.

Figure 4 shows the SEM images of the samples prepared from the solutions of pH 3.07, pH 3.90,
and pH 4.57 and heated at 673 K for 2 h. Under the condition of pH 3.07, island-like deposits with the
size of ca. 2 µm were observed on the film. However, almost all of these are presumed not to be copper
compounds because a slight amount of them was detected by the EPMA. Small amounts of TiO2

aggregates were possibly reconstructed during the UV irradiation. Under the condition of pH 3.90,
the CuO particles with the sizes of 100–300 nm were aggregated on the TiO2 films. The aggregates of
the amorphous or low crystalline particles were deposited at a low pH similar to the case of the ZnO
formation [15]. Under the condition of pH 4.57, the second-order particles of the aggregates with ca.
50-nm sized CuO particles were dispersed on the TiO2 film.
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Figure 4. SEM images of the samples prepared from the solutions of pH 3.07, pH 3.90, and pH 4.57 and
heated at 673 K for 2 h.

Figure 5 shows the XRD patterns of the samples prepared from the solutions of pH 4.57 and
heated at 373, 473, 573, and 673 K for 2 h. The samples heated at 373 and 473 K still retained the LCH
peaks while those heated at 573 and 673 K exhibited the CuO peaks. The average crystallite sizes of the
samples heated at 573 and 673 K were 20.7 and 19.3 nm, respectively, which were almost the same.
The temperature corresponding to the thermal energy for dehydration of the LCH particles was 473–573
K under the present conditions. This is consistent with the reported results [23]. The CuO formation
required a specific pH condition for the reaction solution and heating temperature for the deposits.
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Figure 6 shows the SEM images of the samples prepared from the solutions of pH 4.57 and heated
at 373, 473, 573, and 673 K for 2 h. The particles were highly dispersed on the TiO2 film surface in all
the samples. The particles with the sizes of 100–250 nm and ca. 50 nm were observed in the samples
containing the LCH and CuO, respectively. The aggregates of the particles were dispersed on the
TiO2 film surface. The more hydrophilic LCH particles more easily formed aggregates. The CuO
nanocrystals were formed by the photocatalytic reaction and heating, although their shape was difficult
to control.
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2.2. Photocatalytic Activity of the CuO-Modified TiO2 Powders

The photocatalytic activities of the CuO-modified TiO2 films were lower than that of the
original TiO2 film because the amount of the CuO was too great to enhance the charge separation,
which significantly prevented light absorption of the TiO2. This study aims to form the CuO
nanoparticles on the TiO2 as the co-catalyst rather than the counterpart semiconductor for the
heterojunction. Furthermore, the powder sample is more suitable to evaluate the photocatalytic activity
for organic molecule degradation due to the effective surface area contacting them. A lower amount
of the CuO was deposited on the TiO2 powder without any Ag particles in order to confirm the
enhancement of the photocatalytic activity by the modification.

Table 1 shows the Cu/Ti ratio of the powder samples prepared using the 0.500–100 mmol dm−3

Cu(NO3)2 solutions and heated at 573 K for 2 h, which was estimated by EPMA. The Cu amount of
these samples was smaller than the resolution limit of the EPMA element mapping. Figure 7 shows
the more highly resolutive images of the SEM-EDS element mapping of the powder sample prepared
using the 0.500 mmol dm−3 Cu(NO3)2 solution and heated at 573 K for 2 h. The elemental Cu was
highly dispersed on the TiO2 surface. However, the surface of the modified TiO2 particles was not
significantly distinct from the original TiO2 surface based on even their TEM images similar to the TiO2

modified with silica by the photocatalytic reaction [17]. If it is postulated that a TiO2 cubic particle with
the size of 20 nm is covered with a 0.1 nm-thick CuO monolayer, the Cu/Ti ratio of the TiO2 particle
loading the CuO monolayer can be estimated by a simple calculation to be about 3%. The samples
prepared using less than 100 mmol dm−3 Cu(NO3)2 solutions can load submonolayers or very small
nanoparticles of CuO. Figure S2 shows the XPS spectra related to the Cu 2p electrons for the original
and modified TiO2 samples [6,7,10–13]. The modified TiO2 samples exhibited the Cu 2p2/3 peaks
at around 934 eV assigned to Cu2+ of CuO. The BET specific surface area for the original TiO2 and
CuO-modified TiO2 powders are shown in Table 2. The specific surface area for the TiO2 powders
modified using the 0.500 and 1.00 mmol dm−3 Cu(NO3)2 solutions was not significantly distinct from
that for the original TiO2 powder (49 m2 g−1) because the amount of the deposited CuO was very low.
The specific surface area clearly decreased by the modification using the 10.0 and 100 mmol dm−3

Cu(NO3)2 solutions due to the CuO aggregation.

Table 1. Cu/Ti ratio of the powder samples prepared using the 0.500–100 mmol dm−3 Cu(NO3)2

solutions and heated at 573 K for 2 h. Each elemental composition was estimated by EPMA.

Cu(NO3)2/mmol dm−3 0.500 1.00 10.0 100

Cu/Ti ratio 0.22% 0.67% 1.30% 7.98%
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Figure S3 shows the UV–Vis diffuse reflectance spectra of the TiO2 and CuO-modified TiO2 samples.
The ordinate indicates the Kubelka–Munk function approximating the absorbance. As expected,
the absorption edge of the original TiO2 sample is located at around 400 nm. The CuO-modified
TiO2 samples clearly exhibit a visible light absorption at around 400–500 nm, the intensity of which
increased with an increase in the loading amount of the CuO.

Figure S4 shows the changes in the concentration of methylene blue (MB) during the UV irradiation
using the TiO2 and CuO-modified TiO2 powder samples. Figure 8 shows the plots of the quasi first-order
reaction analysis of them. The concentration is normalized by each adsorption equilibrium concentration
on the powder samples. Figure 9 shows the adsorption amounts and degradation rate constants
of MB on the TiO2 powder and the powders prepared using the 0.500–100 mmol dm−3 Cu(NO3)2

solutions. The adsorption and degradation properties on the latter powders were evaluated before
(copper hydroxides) and after (CuO) heating them. The adsorption amounts somewhat decreased
by heating due to a decrease in the hydrophilicity of the surface. On the other hand, the degradation
rate increased by heating due to the CuO formation. CuO functioned as a co-catalyst better than the
copper hydroxide in this study. The amount of the MB adsorbed on the unheated samples in the
dark increased and decreased with an increase in a loading amount of the Cu. The degradation rate
constants on the samples also increased and decreased corresponding to their adsorption properties.
On the other hand, the amount of the MB adsorbed on the heated samples was lower in the samples
loading a large amount of the CuO. The samples with the Cu contents of 0.67% and 1.30% exhibited
higher activities than the original TiO2. These samples had a submonolayer of CuO and areas larger
than 75% of the TiO2 particle surface can be bare. The greater CuO should lower the photocatalytic
activity of the TiO2 because it prevented light absorption of the TiO2 and transfer of the separated
charges to the reactants adsorbed on the particle surface. In previous examples, the samples with the
CuO contents of 1%–5% exhibited the highest activity of all the samples [6,10,13]. Therefore, the TiO2

loading a small amount of CuO demonstrated a higher photocatalytic activity for degradation of the
organic dye compared to the original TiO2.

Figure S5 shows the relative concentrations of MB and TOC after the photocatalytic degradation
for 60 min using the TiO2 sample and the CuO-modified TiO2 samples prepared using the 1.00 and
10.0 mmol dm−3 Cu(NO3)2 solutions. The relative concentrations were calculated by normalizing the
initial concentrations estimated by the UV-Vis absorption and TOC measurements. The concentrations
estimated by the TOC analysis were higher than those estimated by the UV-Vis spectroscopy by
10%–20%. This result indicated that some MB molecules were not completely mineralized, but partially
degraded to colorless organic species, as reported [24,25].
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Figure 9. (a) Adsorption amounts and (b) degradation rate constants of MB using the TiO2 powder
and the powders prepared using the 0.500–100 mmol dm−3 Cu(NO3)2 solutions. The adsorption and
degradation properties on the latter powders were evaluated before and after heating them.

Figure S6 shows the change in the fluorescence intensity of 2-hydroxy terephthalic acid
resulting from hydroxyl radical trapping during the UV irradiation using the TiO2 film and the
CuO-modified TiO2 film prepared using the 100 mmol dm−3 Cu(NO3)2 solution and the TiO2

powder and the CuO-modified TiO2 powder prepared using the 1.00 mmol dm−3 Cu(NO3)2 solution.
These CuO-modified TiO2 samples were prepared by heating at 573 K. An energy diagram of the
photocatalytic reaction on the CuO-modified TiO2 is shown in Scheme 1. Hydroxyl radical originating
from the photocatalytic water oxidation and oxygen reduction is an active species degrading organic
molecules. The present fluorescence analysis is a method to evaluate enhancement of the hydroxyl
radical formation, which was promoted by the electrons transferred from the TiO2 conduction bands
to the CuO conduction band due to suppressing the charge recombination [26,27]. The production
rate of hydroxyl radical of the CuO-modified TiO2 film was slower than that of the original TiO2 film,
while that of the CuO-modified TiO2 powder was clearly faster than that of the original TiO2 powder.
These results corresponded to those of the MB degradation. Therefore, the charge separation efficiency
is significant for the production of the activate species.
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3. Materials and Methods

3.1. Sample Preparation

Aqueous solutions of 0.100 mol dm−3 copper (II) nitrate trihydrate (Cu(NO3)2·3H2O, Wako, Osaka,
Japan, S grade) were prepared in which the pH was adjusted to 3.1–4.6 with nitric acid and sodium
hydroxide (Wako, Osaka, Japan, S grade). The glass substrates (Matsunami, Kishiwada, Japan, S-1111)
were dip-coated with a very thin TiO2 layer by the sol–gel method. For preparation of the sol, 25.0 cm3

of ethanol (Wako, Osaka, Japan, S grade), 0.21 cm3 of nitric acid, and 0.21 cm3 of water were mixed,
followed by adding 5.0 cm3 of titanium tetraisopropoxide (Wako, Osaka, Japan, reagent grade) in a dry
nitrogen atmosphere. Water was ion-exchanged and distilled by a distiller (Yamato, Tokyo, Japan,
WG23). The anatase TiO2 films were formed by three dip-coatings using the sol, followed by heating at
773K for 30 min. The thickness of the TiO2 film was ca. 50 nm, as previously reported [15].

The light irradiation for the sample preparation was conducted as previously reported [17].
The glass substrates with the TiO2 film were immersed in water along with light irradiation for 20 min
in order to remove any organic compounds on the surface. They were then immersed in an aqueous
solution of 60.0 mmol dm−3 silver nitrate (AgCl, Wako, Osaka, Japan, S grade) during nitrogen gas
purging for 5 min in order to remove the dissolved oxygen, then light irradiation for 40 min in order
to deposit Ag particles. Consequently, Ag particles were slightly formed on the surface to function
as nuclei for the CuO crystal growth and as the promoter for the TiO2 photocatalyst. Furthermore,
the substrates were immersed in 100 cm3 of the aqueous solution of 100 mmol dm−3 Cu(NO3)2,
which was maintained at 351 ± 3 K without stirring in the dark or during light irradiation for 2 h.
The substrates were washed with water after the Cu(NO3)2 treatment, dried at room temperature,
then heated at 373, 473, 573, and 673 K for 2 h.

The TiO2 powder (Nippon Aerosil, Tokyo, Japan, AEROXIDE TiO2 P25), 1.00 g, was stirred in
100 cm3 of the aqueous solutions of 0.500, 1.00, 10.0, and 100 mmol dm−3 Cu(NO3)2 in the dark or
during light irradiation for 10 min. The pH value in the solutions was adjusted to 4.6. The samples
were washed with water after the Cu(NO3)2 treatment, dried at room temperature, then heated at
537 K for 2 h. In this case, the Ag particles were not deposited on the TiO2 in order to prepare a very
small amount of the CuO nanoparticles.

3.2. Measurements

Micromorphology, elemental mapping and composition analysis, X-ray diffraction patterns,
BET specific surface areas, X-ray photoelectron spectra, and UV-Vis absorption and diffuse reflectance
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spectra of the samples were obtained by the previously reported methods [17]. The total organic carbon
(TOC) was measured using a wet chemical TOC analyzer (Shimadzu, Kyoto, Japan, TOC-VWP).

For evaluation of the photocatalytic properties, the photocatalyst powder samples, 50.0 mg,
were added to 40.0 cm3 of 2.00 × 10−5 mol dm−3 aqueous solutions of MB (Wako, Osaka, Japan, S grade).
The suspensions were stirred in the dark for 24 h and furthermore during the near-UV light irradiation
from black light bulbs, as previously reported [17]. The UV-Vis absorption spectra of the MB in the
centrifuged solutions were measured before and after the adsorption equilibrium and as a function of
the light irradiation time using the spectrophotometer.

Each film or 5.0-mg powder sample was added to 50 cm3 of aqueous solution of terephthalic acid
(3.0 × 10−3 mol dm−3, Wako, Osaka, Japan, S grade) and sodium hydroxide (1.0 × 10−2 mol dm−3).
The solutions or suspensions were stirred in the dark for 24 h and furthermore during the UV irradiation
from the black light bulbs. The terephthalic acid reacts with hydroxyl radical resulting from the
photocatalytic reactions and produces 2-hydroxy terephthalic acid [26,27]. The fluorescence spectra of
the 2-hydroxy terephthalic acid in the centrifuged solutions were obtained upon 312-nm excitation
using a fluorescence spectrophotometer (Shimadzu, Kyoto, Japan, RF5300) as a function of the light
irradiation time.

4. Conclusions

CuO particles were prepared from an aqueous solution of copper (II) nitrate at 351 K on
the TiO2 surface by a photocatalytic reaction and heating at 573 or 673 K. The CuO crystals with
about 50−250 nm-sized particles were formed. NO3

− was reduced to NO2
− in the solution by the

photocatalytic activity of the TiO2, and water was simultaneously transformed into OH−. An increase
in the basicity on the TiO2 surface induced formation of a copper hydroxide. The copper hydroxide was
then dehydrated and transformed into CuO by heating. The photocatalytic activity of the CuO-modified
TiO2 films were lower than that of the original TiO2 film because the amount of the CuO was too great
to enhance the charge separation. The TiO2 loading a low amount of CuO, i.e., the submonolayer CuO
and bare areas greater than 75% of the TiO2 particle surface, demonstrated a higher photocatalytic
activity for MB degradation compared to the original TiO2 due to the electron transfer from the TiO2

conduction bands to the CuO conduction band.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/9/4/383/s1,
Figure S1: EPMA element mapping images of the Ag-deposited TiO2 film., Figure S2: XPS spectra related to the
binding energy of the Cu 2p electrons for (1) the TiO2 sample and the CuO-modified TiO2 samples prepared
using the (2) 0.500, (3) 1.00, (4) 10.0, and (5) 100 mmol dm−3 Cu(NO3)2 solutions., Figure S3: UV–Vis diffuse
reflectance spectra of (1) the TiO2 sample and the CuO-modified TiO2 samples prepared using the (2) 0.500, (3)
1.00, (4) 10.0, and (5) 100 mmol dm−3 Cu(NO3)2 solutions., Figure S4: Changes in the methylene blue concentration
during the UV irradiation using the TiO2 sample and the CuO-modified TiO2 samples prepared using the
0.500–100 mmol dm−3 Cu(NO3)2 solutions., Figure S5: Relative concentrations of methylene blue and TOC
estimated by the UV–Vis absorption and TOC measurements, respectively, after the photocatalytic degradation for
60 min using the TiO2 sample and the CuO-modified TiO2 samples prepared using the 1.00 and 10.0 mmol dm−3

Cu(NO3)2 solutions., Figure S6: Time course of the fluorescence intensity of 2-hydroxy terephthalic acid in order to
detect hydroxyl radicals produced during the UV irradiation using (1) the TiO2 film and (2) the CuO-modified TiO2
film prepared using the 100 mmol dm−3 Cu(NO3)2 solution and (3) the TiO2 powder and (4) the CuO-modified
TiO2 powder prepared using the 1.00 mmol dm−3 Cu(NO3)2 solution.
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