Supplementary Material

Hierarchically-Structured TiO₂/MnO₂ Hollow Spheres Exhibiting the Complete Mineralization of Phenol

Caiguo Jiang ¹, Yi Ge ², Wenjing Chen ¹, Li Hua ³, Huiquan Li ^{4,*}, Ying Zhang ^{1,4} and Shunsheng Cao ^{1,4,*}

- ¹ Research Institute of Polymer Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China; <u>2211605015@stmail.ujs.edu.cn</u> (C.J.); <u>cwjing1996@126.com</u> (W.C.); <u>qiushuiyiren2024@126.com</u> (Y.Z.)
- ² Pharmaceutical Science/Biotechnology, School of Pharmacy/CMU-QUB Joint College, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; <u>v.ge@qub.ac.uk</u>
- ³ College of Chemical Engineering, Yangzhou Polytechnic Institute, Yangzhou 225127, China; <u>huali795@sohu.com</u>
- ⁴ Anhui Provincial Key Laboratory for Degradation and Monitoring of the Pollution of the Environment, School of Chemistry & Materials Engineering, Fuyang Normal College, Qinghe West Road 100, Fuyang 236037, China
- * Correspondence: huiquanli0908@163.com (H.L.); sscao@ujs.edu.cn (S.C.)

Figure S1. TGA and DSC curves of as-synthesized HTM spheres.

Figure S2. Raman spectra of as-synthesized HTM spheres.

Figure S3. Selected electron area diffraction of the as-synthesized HTM spheres.

Tuble 51. the parameters of 11 and within 51 of 50 peed and 101 11100 bandpie.							
	Ti2p _{3/2} Ti ³⁺	Ti2p3/2 Ti ⁴⁺	$Ti2p_{1/2}Ti^{3+}$	$Ti2p_{1/2}Ti^{4+}$	Mn2p3/2 Mn ³⁺	Mn2p3/2 Mn ⁴⁺	
peak positions	458.05eV	459.05eV	463.62eV	464.84eV	641.75eV	643.26eV	
FWHM	1.5	1.6	1.9	2.12	2.13	2.69	
area	3274.46	4501.371	1637.23	2250.686	17309.46	17710.5	

Table S1. the parameters of Ti and Mn in XPS spectrum for HTM sample.

Figure S4. N2 adsorption-desorption isotherms and pore size distribution (insert) of CAM.

Figure S5. Effect of oxidant on the degradation of Phenol for HTM.

Figure S6. (a) UV-vis absorption spectra of HTM and hollow TiO₂ spheres; (b) Band gap energy (Eg) of HTM and hollow TiO₂ spheres.

Figure S7. Degradation of phenol for hollow TiO₂ photocatalyst and MnO₂ under simulated solar light irradiation.

Table 52. comparative degradation rate of various catalysis.				
Catalyst	First-order Rate Constant (min ⁻¹)			
HT(oxidation)	0.00123 ± 0.00013			
CAM(oxidation)	0.00675 ± 0.00058			
HTM(oxidation)	0.10887 ± 0.005			
HTM(photo-degradation)	0.0623 ± 0.019			
Mn-100 [1]	0.069			
5wt% Co/MnO ₂ [2]	0.0425 ± 0.0018			

Table S2. comparative degradation rate of various catalysts.

References

- Y. Wang, H. Sun, H.M. Ang, M.O. Tadé, S. Wang, 3D-hierarchically structured MnO₂ for catalytic oxidation of phenol solutions by activation of peroxymonosulfate: Structure dependence and mechanism, Appl. Catal. B-Environ, 164 (2015) 159-167.
- [2] H. Liang, H. Sun, A. Patel, P. Shukla, Z.H. Zhu, S. Wang, Excellent performance of mesoporous Co₃O₄/MnO₂ nanoparticles in heterogeneous activation of peroxymonosulfate for phenol degradation in aqueous solutions, Appl. Catal. B-Environ, 127 (2012) 330-335.

Figure S8. TEM image of HTM after cycles.

Figure S9. SEM of CAM.

 $Figure \ S10. \ Particle \ distribution \ of \ as-synthesized \ MnO_2 \ nanoparticles.$