Electronic Supplementary Information

Energy efficient and intermittently variable ammonia synthesis over mesoporous

carbon-supported Cs-Ru nanocatalysts

Masayasu Nishi*, Shih-Yuan Chen, and Hideyuki Takagi

Table of Contents

Table S1. TPR-MS data of the prepared Cs-Ru catalysts
Figure S1. HRTEM images of carbon supports (a) AC, (b) MPC-15, (c) MPC-18, and
(d) MPC-214
Figure S2. HAADF-STEM images of 2.5Cs-10Ru/MPC-15 catalysts. (a) Fresh and (b)
used samples5
Figure S3. HAADF-STEM images of 2.5Cs-10Ru/MPC-18 catalysts. (a) Fresh and (b)
used samples
Figure S4. HAADF-STEM images of 2.5Cs-10Ru/MPC-21 catalysts. (a) Fresh and (b)
used samples7
Figure S5. HAADF-STEM images of 2.5Cs-10Ru/AC catalysts. (a) Fresh and (b) used
samples
Figure S6. TPR-TCD and TPR-MS profiles of RuO ₂
Figure S7. TPR-TCD and TPR-MS profiles of MPC-1810
Figure S8. TPR-TCD and TPR-MS profiles of 10Ru/MPC-18 obtained by the dispersion
of MPC-18 (1 g) in 70 mL of ethanol (50%, v/v) containing 0.31 g of
nitrosylruthenium(III) nitrate (Ru(NO)(NO_3)_3) and slowly heating to around 70–80 ${}^\circ\!{\rm C}$
until the solvent completely evaporated. This was followed by calcination at 400 ${}^\circ\!\!{\rm C}$ for
3 h in N ₂ at a ramp rate of 5 $^{\circ}\mathrm{C}$ min^{-1}
Figure S9. TPR-TCD and TPR-MS profiles of 2.5Cs/MPC-18 obtained by the dispersion
of MPC-18 (1 g) in 70 mL of ethanol (50%, v/v) containing a 0.40 g of cesium carbonate

(Cs ₂ (CO ₃) and slowly heating to around 70–80 $^{\circ}\mathrm{C}$ until the solvent completely
evaporated12
Figure S10. TPR-MS profiles of freshly prepared catalysts (a) 2.5Cs-10Ru/AC, (b)
2.5Cs-10Ru/MPC-15, (c) 2.5Cs-10Ru/MPC-18, and (d) 2.5Cs-10Ru/MPC-2113
Figure S11. TPR-MS profiles ($m/z = 18$) of freshly prepared Cs-Ru catalysts14
Figure S12. HRTEM images and Ru particle size distributions of the used catalysts. (a)
2.5Cs-10Ru/MPC-AC, (b) 2.5Cs-10Ru/MPC-15, (c) 2.5Cs-10Ru/MPC-18, and (d)
2.5Cs-10Ru/MPC-2115
Figure S13. Wide-angle XRD patterns of used catalysts. (a) 2.5Cs-10Ru/AC, (b) 2.5Cs-
10Ru/MPC-15, 2.5Cs-10Ru/MPC-18, and (d) 2.5Cs-10Ru/MPC-2116
Figure S14. Rate of ammonia synthesis as a function of reaction temperature over the
10Ru/MPC-18 and 2.5Cs/MPC-18 catalysts at an SV value of 9000 $h^{-1}.\ldots\ldots 17$

•

Catalysts	α1	α2	α3	α4	β1	β2	β3	β4	β5	β6	γ1
	(°C)	(°C)	(°C)	(°C)	(°C)	(°C)	(°C)	(°C)	(°C)	(°C)	(°C)
Figures	Fig. 6(A)	Fig. 6(D)	Fig. 6(D)	Fig. 6(F)	Fig. 6(B)	Fig. 6(B)	Fig. 6(C)	Fig. 6(C)	Fig. 6(E)	Fig. 6(FD)	Fig. 6(E)
m/z	2 (H ₂)	18 (H ₂ O)	18 (H ₂ O)	44 (CO ₂)	2 (H ₂)	2 (H ₂)	15 (CH ₃)	15 (CH ₃)	28 (CO)	44 (CO ₂)	28 (CO)
2.5Cs-10Ru/AC	132	87	137	124	396	437	415	443	389	304	701
2.5Cs-10Ru/MPC-15	120	90	124	112	378	415	400	421	379	300	708
2.5Cs-10Ru/MPC-18	133	90	137	116	375	415	397	421	374	325	723
2.5Cs-10Ru/MPC-21	138	90	143	160	390	443	405	473	393	327	774

 Table S1. TPR-MS data of the prepared Cs-Ru catalysts.

Figure S1. HRTEM images of carbon supports (a) AC, (b) MPC-15, (c) MPC-18, and (d) MPC-21.

Figure S2. HAADF-STEM images of 2.5Cs-10Ru/MPC-15 catalysts. (a) Fresh and (b) used samples.

(b)

Figure S3. HAADF-STEM images of 2.5Cs-10Ru/MPC-18 catalysts. (a) Fresh and (b) used samples.

Figure S4. HAADF-STEM images of 2.5Cs-10Ru/MPC-21 catalysts. (a) Fresh and (b) used samples.

(b)

Figure S5. HAADF-STEM images of 2.5Cs-10Ru/AC catalysts. (a) Fresh and (b) used samples.

Figure S6. TPR-TCD and TPR-MS profiles of RuO₂.

Figure S7. TPR-TCD and TPR-MS profiles of MPC-18.

Figure S8. TPR-TCD and TPR-MS profiles of 10Ru/MPC-18 obtained by the dispersion of MPC-18 (1 g) in 70 mL of ethanol (50%, v/v) containing 0.31 g of nitrosylruthenium(III) nitrate (Ru(NO)(NO₃)₃) and slowly heating to around 70–80 $^{\circ}$ C until the solvent completely evaporated. This was followed by calcination at 400 $^{\circ}$ C for 3 h in N₂ at a ramp rate of 5 $^{\circ}$ C min⁻¹.

Figure S9. TPR-TCD and TPR-MS profiles of 2.5Cs/MPC-18 obtained by the dispersion of MPC-18 (1 g) in 70 mL of ethanol (50%, v/v) containing a 0.40 g of cesium carbonate (Cs₂(CO₃) and slowly heating to around 70–80 $^{\circ}$ C until the solvent completely evaporated.

Figure S10. TPR-MS profiles of freshly prepared catalysts (a) 2.5Cs-10Ru/AC, (b) 2.5Cs-10Ru/MPC-15, (c) 2.5Cs-10Ru/MPC-18, and (d) 2.5Cs-10Ru/MPC-21.

Figure S11. TPR-MS profiles (m/z = 18) of freshly prepared Cs-Ru catalysts.

Figure S12. HRTEM images and Ru particle size distributions of the used catalysts. (a) 2.5Cs-10Ru/MPC-AC, (b) 2.5Cs-10Ru/MPC-15, (c) 2.5Cs-10Ru/MPC-18, and (d) 2.5Cs-10Ru/MPC-21.

Figure S13. Wide-angle XRD patterns of used catalysts. (a) 2.5Cs-10Ru/AC, (b) 2.5Cs-10Ru/MPC-15, 2.5Cs-10Ru/MPC-18, and (d) 2.5Cs-10Ru/MPC-21.

Figure S14. Rate of ammonia synthesis as a function of reaction temperature over the Ru/MPC-18 and 2.5Cs/MPC-18 catalysts at an SV value of 9000 h⁻¹.