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Abstract: In this study, oxygen vacancy modified TiO2 nanorod array photoelectrode was prepared
by reducing hydrogen atmosphere to increase its free charge carrier density. Subsequently, a p-type
conductive poly 3,4-ethylenedioxythiophene (PEDOT) layer was deposited on the surface of oxygen
vacancy modified TiO2, to inhibit the surface states. Meanwhile, a p-n heterojunction formed between
PEDOT and TiO2 to improve the separation of photo-induced carriers further. The photocurrent
of TiO2 nanorod array increased to nearly 0.9 mA/cm2 after the co-modification under standard
sunlight illumination, whose value is nearly nine times higher than that of pure TiO2 nanorod array.
Thus, this is a promising modification method for TiO2 photoanode photoelectrochemical (PEC)
performance improving.

Keywords: oxygen vacancy; polymeric composites; photoelectrochemistry; co-modification;
solar energy conversion

1. Introduction

TiO2 has been widely investigated in the past few decades since Fujishima and Honda first reported
its potential in the fields of photocatalysis and photoelectrochemistry in 1972 [1]. The theoretical limited
photocurrent densities of anatase and rutile TiO2 are 1.1 mA/cm2 and 1.8 mA/cm2 under solar light
illumination, respectively. [2] Limited by its low solar light utilization rate and high photo-generated
carrier recombination rate, many modification methods have been researched, such as metal doped [3],
non-metal doped [4], and construct heterojunction [5]. Several elements have been introduced into
TiO2, such as Fe [6], S [7], and N [8]. Metal and non-metal doping could narrow the bandgap,
extend the light absorption range and increase the charge carrier density to improve its photocatalysis
performance. However, the introduction of heterogeneous atoms is likely to cause asymmetric doping
or impurities, which would serve as recombination centers for the photo-generated electrons and holes,
therefore reducing the PEC performance. Many previous research works showed that the formation
of surface oxygen vacancy [9–13] could increase the charge carrier density of the semiconductor to
improve its PEC performance. Wang et al. [14] obtained a yellowish ZnO with a narrowing band gap
by introducing the oxygen vacancies into ZnO crystal, which increased the free charge density of the
ZnO, so that the transfer process of the photogenerated charges became feasible.
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Polymer organic semiconductors with good film-forming properties, high conductivity,
high visible light transmittance and excellent stability are widely used in the field of photoelectrode
modification. Park et al. [15] used a blend of 100 nm TiO2 scattering particles in PEDOT:PSS (poly
3,4-ethylenedioxythiophene:poly styrenesulfonate) solution to fabricate transparent electrode films.
When utilized in an organic photovoltaic device, a power conversion efficiency of 7.92% was achieved.
Sakai et. al. [16] assembled PEDOT and TiO2 layer-by-layer to switch electric conductivity in response
to ultraviolet and visible light. PEDOT is a promising material to modify the TiO2 photoanode to
improve its PEC performance [17–20].

Therefore, in this work, we prepared oxygen vacancy modified TiO2 nanorod array photoanode
with high charge mobility capacity. Then, a p-type PEDOT layer was covered on the surface of
oxygen vacancy modified TiO2 photoanode to inhibit the undesirable surface state and construct a p-n
heterojunction to accelerate the separation capacity of photo-generated carriers [5].

2. Results and Discussion

The XRD (X-ray Diffraction) patterns of series samples were shown in Figure 1, all diffraction
peaks of the prepared three photoelectrodes can be indexed as rutile-type and anatase-type TiO2

(JCPDS No. 21-1276, JCPDS No. 21-1272) [21,22]. The characteristic diffraction peaks at 2θ = 36.08◦,
54.32, 62.74, and 69.78◦ corresponded to the (101), (211), (002), and (112) crystal planes of rutile-type
TiO2, and the XRD peaks at 2θ = 63.68◦ corresponded to the (204) crystal planes of anatase-type TiO2.
The other characteristic diffraction peaks at 2θ = 26.57◦, 37.76◦, 51.75◦, and 65.74◦ corresponded to
the (110), (200), (211), and (301) crystal planes of SnO2 (JCPDS No. 46-1088), which caused by the
fluorine doped tin oxide (FTO) conductive glass. So, the prepared TiO2 nanorod array included rutile
phases and little anatase phases. The TiO2 nanorod array preparing method in this work was referred
to in Liu’s work [17]. The vanished peaks for anatase and rutile TiO2 at 25.4◦ and 27.4◦ on the XRD
curves maybe attributed to the crystal face inhibition effect of the oriented growth nanorod structure,
whose results are similar to Liu’s work [17].
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Figure 1. XRD patterns of TiO2, H-TiO2, and H-TiO2-PEDOT. 

The SEM technique was employed to observe the surface morphologies of the series samples, 
and the results are shown in Figure 2. As presented in Figure 2A–C, both TiO2, H-TiO2, and H-TiO2-
PEDOT appear to have a distinct nanorod structure. The cross-section image of H-TiO2-PEDOT 
shown in Figure 2D reveals that the TiO2 nanorod is growing vertically on the FTO substrate. The 
nanorods are tetragonal in shape with square top facets, the expected growth habit for the tetragonal 
crystal structure. The nanorods are nearly perpendicular to the FTO substrate. After 8 h of growth, 
the average diameter and length, as determined from SEM, were 90 ± 20 nm and 1 ± 0.2 µm, 
respectively. The peaks of (101) crystal planes for rutile and (204) for anatase TiO2 can be clearly 
observed in the HRTEM image inset in Figure 2D, which is in agreement with the XRD results. 
Meanwhile, PEDOT layer can be observed at the edge area of TiO2 nanorod. Elements distribution of 
H-TiO2-PEDOT were tested by STEM and STEM-EDS mapping. The STEM mapping shown in Figure 
2E reveals the uniform distribution of Ti, O, and S element on the surface of the nanorod, where the 

Figure 1. XRD patterns of TiO2, H-TiO2, and H-TiO2-PEDOT.

The SEM technique was employed to observe the surface morphologies of the series samples,
and the results are shown in Figure 2. As presented in Figure 2A–C, both TiO2, H-TiO2,

and H-TiO2-PEDOT appear to have a distinct nanorod structure. The cross-section image of
H-TiO2-PEDOT shown in Figure 2D reveals that the TiO2 nanorod is growing vertically on the
FTO substrate. The nanorods are tetragonal in shape with square top facets, the expected growth
habit for the tetragonal crystal structure. The nanorods are nearly perpendicular to the FTO substrate.
After 8 h of growth, the average diameter and length, as determined from SEM, were 90 ± 20 nm and
1 ± 0.2 µm, respectively. The peaks of (101) crystal planes for rutile and (204) for anatase TiO2 can be
clearly observed in the HRTEM image inset in Figure 2D, which is in agreement with the XRD results.
Meanwhile, PEDOT layer can be observed at the edge area of TiO2 nanorod. Elements distribution



Catalysts 2019, 9, 407 3 of 10

of H-TiO2-PEDOT were tested by STEM and STEM-EDS mapping. The STEM mapping shown in
Figure 2E reveals the uniform distribution of Ti, O, and S element on the surface of the nanorod,
where the S element corresponding to the PEDOT deposition layer. This result indicates that PEDOT
layer was successfully deposited on the surface of H-TiO2 photoelectrode.
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Figure 2. SEM images of (A) TiO2, (B) hydrogen treated TiO2 (H-TiO2), (C) PEDOT modified hydrogen
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Similar results could be observed on EDS mapping (Figure 3), in which, the O, Ti, and Sn
element corresponding to TiO2 nanorod and FTO substrate were evenly distributed throughout all the
H-TiO2-PEDOT photoelectrode, besides, C and S elements could be observed simultaneously, which is
corresponding to the STEM mapping showed in Figure 2E.
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To determine the surface composition and chemical states of the series samples, high-resolution
XPS spectra of O 1s and S 2p were used (see Figure 4). The characteristic peaks at 529.8 eV and
530.8 eV correspond to the lattice oxygen (Olat) and the vacancies of O element (Odef). Compared to
TiO2, the peak area of Odef in H-TiO2 was enhanced after the hydrogen treatment, indicating the
increase of oxygen vacancies from 34.2% to 43.77%, which might improve the PEC performance [16].
Oxygen vacancy concentration refers to the proportion of oxygen vacancy peak area to the total oxygen
peak area. Because XPS can only read the distribution of surface elements, the peak area of oxygen (O
1s, Olat, Odef) becomes smaller after PEDOT loading, but the relative content is credible. Next, the peak
area of Odef in H-TiO2-PEDOT was reduced further after PEDOT deposition, which can be ascribed to
the protection of PEDOT layer. The S was observed in the XPS spectra of H-TiO2-PEDOT indicating
PEDOT was introduced successfully, which corresponds to the result of the XPS survey spectra shown
in Figure 4C. Because of the low loading amount of PEDOT, noises can be found on the XPS S2p curve.
The characteristic peaks of Ti 2p did not shift after the hydrogen treatment, and the deposition of
PEDOT (Figure 4D) indicated that the unique TiO2 nanorod structure was preserved.
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Figure 4. High-resolution XPS spectra of O 1s (A) and S 2p (B) of the TiO2, H-TiO2 and H-TiO2-PEDOT. 
XPS survey spectra (C), high-resolution XPS spectra of Ti 2p (D) of the TiO2 and H-TiO2-PEDOT. 

The PEC performance results of series samples are presented in Figure 5. Figure 5A is the current 
density-time curve of the series of electrodes, and Figure 5B is the current density-voltage curve of 
the series of electrodes. The current density-voltage curve shows that the current density of the TiO2 
sample at zero bias (vs. Ag/AgCl) is about 0.07 mA/cm2. The current density of H-TiO2 sample at zero 
bias is about 0.27 mA/cm2. The current density of H-TiO2-PEDOT sample at zero bias is about 0.33 
mA/cm2. In the voltage range from −0.5 to 0.5 V, the photocurrent density of sample H-TiO2-PEDOT 
is higher than that of sample H-TiO2, and the PEC performance of pure TiO2 nanorod array is the 
worst. Figure 5C is the impedance data of each sample in the absence of light. The arc radius of pure 
TiO2 is the largest, corresponding to the largest impedance. The arc radius of H-TiO2 is the smallest, 
corresponding to the smallest impedance. After PEDOT deposition, the arc radius of H-TiO2-PEDOT 
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XPS survey spectra (C), high-resolution XPS spectra of Ti 2p (D) of the TiO2 and H-TiO2-PEDOT.

The PEC performance results of series samples are presented in Figure 5. Figure 5A is the current
density-time curve of the series of electrodes, and Figure 5B is the current density-voltage curve of the
series of electrodes. The current density-voltage curve shows that the current density of the TiO2 sample
at zero bias (vs. Ag/AgCl) is about 0.07 mA/cm2. The current density of H-TiO2 sample at zero bias is
about 0.27 mA/cm2. The current density of H-TiO2-PEDOT sample at zero bias is about 0.33 mA/cm2.
In the voltage range from −0.5 to 0.5 V, the photocurrent density of sample H-TiO2-PEDOT is higher
than that of sample H-TiO2, and the PEC performance of pure TiO2 nanorod array is the worst.
Figure 5C is the impedance data of each sample in the absence of light. The arc radius of pure TiO2

is the largest, corresponding to the largest impedance. The arc radius of H-TiO2 is the smallest,
corresponding to the smallest impedance. After PEDOT deposition, the arc radius of H-TiO2-PEDOT
become larger because of the impedance of PEDOT. After oxygen vacancies modification, the arc
radius and impedance of the obtained H-TiO2 sample decreases. PEDOT conductive layer coated on



Catalysts 2019, 9, 407 5 of 10

the hydrogen treated TiO2 photoelectrode make the arc radius of the obtained H-TiO2-PEDOT further
smaller, indicating a smaller impedance of this sample.
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Figure 5. The current density-time curves (I-T) (A), the current density-potential (I-V) (B), AC impedance
spectroscopy (EIS) (C), intensity modulated photocurrent spectroscopy (CIMPS) (D) and intensity
modulated photovoltage spectroscopy (CIMVS) (E) of series photoelectrodes.

Figure 5D shows the CIMPS data of each sample under a monochrome light LED-365 nm with a
5% amplitude. The electron migration time of the sample can be obtained by converting the frequency
of the minimum imaginary component into Equation (1), which is shown in the Experimental Section.
Electron migration time represents the sum of the photogenerated electron time from excitation to the
back electrode FTO and the time of photogenerated holes oxidation of the electrolytes in the electric
double layer. Figure 5E is the CIMVS data in the same testing conditions. The electronic lifetime can be
obtained by introducing the obtained frequency into Equation (2).

From the calculation results shown in Table 1, the electron migration time decreases obviously
after hydrogen treatment. However, hydrogen treatment also introduces defects in the surface and
bulk phase, which increases the probability of secondary recombination to reduce the lifetime of
photogenerated electron holes. After the PEDOT conductive layer deposition, the surface state cannot
be oxidized by air, meanwhile, p-n junction can be formed between TiO2 and PEDOT thin film.
The formation of p-n junction electric field accelerates the separation of photogenerated electron holes
and reduces the electron migration time. The charge collection efficiency of these three samples was
also calculated and the calculation process is shown in Equation (3). H-TiO2-PEDOT photoanode
shows a 37.71% charge collection efficiency whose value is higher than that of TiO2 and H-TiO2,
indicating that more real hot carriers can be used in the PEC process.

Table 1. The calculated data through CIMPS and CIMVS results.

fmin(CIMPS) tr fmin(CIMVS) trec ŋ (%)

TiO2 172.24 0.924499 154.22 1.032523 10.46
H-TiO2 673.58 0.236402 536.63 0.296733 20.33

H-TiO2-PEDOT 845.47 0.18834 526.63 0.302367 37.71

IPCE of the series of electrodes were tested and the results are shown in Figure 6A. It can be
seen that the photoelectric conversion efficiency of hydrogen-reduced TiO2 is significantly higher
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than that of non-reduced TiO2. After loading PEDOT on the photoelectrode, the H-TiO2-PEDOT
electrodes reducing surface state have more than 60% photoelectric conversion efficiency. Figure 6B
presents the ultraviolet-visible diffuse reflectance result of the series photoanodes. It can be seen that
the absorption band edge of pure TiO2 is about 400 nm, because of anatase (band gap 3.2 eV) and
rutile (band gap 3.0 eV) mix phase. After hydrogen treatment, an indicated absorption can be found
from 400 nm to 600 nm, because of the oxygen vacancy energy level formed on the top of the TiO2

valance band. The light absorption capacity of oxygen modified TiO2 nanorod array did not change
after the PEDOT outer layer loading. Comparing with Figure 6A, there is no photocurrent response of
H-TiO2-PEDOT photoanode in the wavelength area from 400 nm to 600 nm, indicating that there is
no IPCE contribution from oxygen vacancy surface energy level. Figure 6C is a photocurrent-time
curve measured continuously for 4 h under 0.5 V (vs. Ag/AgCl) external bias voltage. After 4 h
continuous illumination, the photocurrent generating by H-TiO2-PEDOT photoanode decays less than
10% of the initial value, showing acceptable stability. Meanwhile, the oxygen and hydrogen evolution
performance were tested during the PEC stability testing for 4 h, and the result shown in Figure 6C
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In Table 2, the related research on TiO2 electrodes in recent years is listed. When comparing
them, we can see that H-TiO2-PEDOT electrodes presented in this work obtained relatively high
PEC performance.

Table 2. Statistical list of references.

Electrode Light Source Voltage Electrolyte Current Density

TiO2 B-NRs [23] Xe lamp 88 mW cm−2 1.1 V 1 M KOH 0.8 mA/cm2

TiO2 nanorod array [24] AM 1.5 100 mW cm−2 0.5 V 0.5 M NaClO4 15 µA/cm2

Carbon Dot/TiO2 Nanorod [25] Xe lamp 88 mW cm−2 0 V 0.1 M NaSO4 + 0.01 M Na2S 0.35 mA/cm2

H:TiO2 nanotube arrays [26] AM 1.5G 100 mW cm−2 0 V 1 M NaOH 0.6 mA/cm2

TiO2 nanotubes [27] UV light 70 mW cm−2 0.2 V 1 M KOH 0.125 mA/cm2

This Work Simulated sunlight 100 mW cm−2 0.5 V 0.1 M NaSO4 + KPi 0.9 mA/cm2

The PEC performance improving the mechanism of H-TiO2-PEDOT nanorod photoanode is
shown in Figure 7. Firstly, a nanorod array structure of TiO2 was prepared, which provided a unique
route for the photogenerated electron transfer and reduced the recombination rate. In addition,
after hydrogen treatment, oxygen vacancies formed on the surface of TiO2 nanorod, increasing the
concentrations of free charge carriers. Lastly, a PEDOT layer was deposited on the surface of oxygen
vacancy modified TiO2, to inhibit the surface states and improve the separation of photo-induced
carriers further by p-n heterojunction formation between PEDOT and TiO2. Thus, more photogenerated
holes were transferred to the PEDOT layer and oxidized water, whereas more photogenerated electrons
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were transferred to the FTO substrate through the TiO2 nanorod to improve the PEC performance of
H-TiO2-PEDOT photoanode.Catalysts 2019, 9, x FOR PEER REVIEW 7 of 10 
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3. Materials and Methods

All reagents used in this study were purchased from Aladdin Industrial Corporation (Shanghai,
China) with analytical grade. Tetrabutyl titanate, 3,4-ethylenedioxythiophene, and sodium dodecyl
sulfonate were not further purified.

3.1. TiO2 Nanorod Array and Oxygen Vacancy Modified TiO2 Nanorod Preparation

The TiO2 nanorod arrays were prepared through the solvothermal method. In a typical synthesis,
0.5 mL tetrabutyl titanate was dissolved in 15 mL of hydrochloric acid (36.5%) under continuous
stirring, and then 15 mL of deionized water was added for another 5 min to obtain a homogenous
solution. The mixed solution was then transferred into a 50 mL Teflon stainless steel autoclave,
then two cleaned FTO substrates were immersed into the mixture and kept at 160 ◦C for 8 h in an
oven. After that, the FTO substrates were cleaned with deionized water and then dried under ambient
conditions, followed by annealing at 450 ◦C for 2 h with a ramping rate of 10 ◦C/min in air in a muffle
furnace to obtain TiO2 nanorod array. Then, TiO2 nanorod array was reduced by annealing at 350 ◦C
for 0.5 h with a ramping rate of 10 ◦C/min in hydrogen conditions, which was denoted as H-TiO2.

3.2. PEDOT Preparation

The PEDOT was coated by H-TiO2 nanorod array through electrodeposition method. Typically,
1 mL 3,4-ethylenedioxythiophene (EDOT) and 20 mmol of sodium dodecyl sulfonate (SDS) were
dissolved into 200 mL of deionized water under continuous stirring to prepare precursor solution,
the deposition process was carried out in a three-electrode system in the above solution. The as-prepared
H-TiO2 photoelectrodes, platinum and Ag/AgCl electrode were served as the working, counter,
and reference electrodes, respectively. The electrodeposition was carried out using multi-current steps
containing 0.01 s of 1 mA of anodic pulse, 0.004 s of 1 mA of cathodic pulse and 0.5 s of 0 A rest current.
This above process is termed as one cycle, and 20 cycles were repeated, the obtained electrode was
denoted as H-TiO2-PEDOT. Three-electrode system was used to test the H-TiO2-PEDOT stability with
an applied bias of 0.5 V (vs. Ag/AgCl). At the same time, oxygen and hydrogen evolution performance
were detected by gas chromatography (97900II) regularly.
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3.3. Characterization

The micromorphology of the prepared photoelectrodes was characterized using a field emission
scanning electron microscope (FE-SEM, Ultra 55, Zeiss, Oberkochen, Germany) and a field emission
transmission electron microscope (FE-HRTEM, JEM-2100F, Beijing, China). TEM sample was scraping
the electrode film into powder and filling the power with alcohol or acetone in a small container. Then a
small amount of powder sample was put into it, next, it was placed in an ultrasonic oscillator to vibrate
for more than 15 min, and then a copper mesh with supporting film was used to gently pull it out from
the solution. The elemental compositions of the photoelectrodes were tested through energy dispersive
spectroscopy (EDS, X-max, Oxford Instruments, Oxford, England) and scanning transmission electron
microscopy (STEM, JEM-2100F, Tokyo, Japan) mapping. X-ray diffraction (XRD, D/MAX-2500/PC,
Rigaku Co., Tokyo, Japan) was used to identify the crystalline structures of the prepared series
photoelectrodes. The elementary composition and bonding information of the materials were analyzed
using X-ray photoelectron spectroscopy (XPS; Axis Ultra, Kratos Analytical Ltd., Kratos Analytical,
Manchester, England). Characterization of the optical absorption properties of a series of electrodes
was done by UV-Vis diffuse reflectance (TU-1901, Persee Co., Beijing, China).

3.4. PEC Performance Testing

PEC performance measurements were performed in a traditional three-electrode experimental
system using Zahner Zennium Pro Electrochemical Workstation (Zahner, Kronach, Germany).
The prepared series photoelectrodes, Ag/AgCl (saturated KCl), and a piece of platinum acted as the
working, reference, and counter electrodes, respectively. The series photoelectrodes were illuminated
under a standard solar simulator (AM1.5G) (LSE341-Zahner, Kronach, Germany). All tests were
performed in 0.1 M Na2SO4 electrolyte. The photocurrent test with time (I-t) curves was measured at a
bias potential of 0 V (vs. Ag/AgCl). The linear sweep voltammetry (I-V) curves were measured from
−0.5 to 1.5 V (vs. Ag/AgCl) at a scan rate of 0.02 V s−1. The IPCE of the photoelectrodes were tested at
0.5 V (vs. Ag/AgCl) bias potential using an IPCE tester (TLS03-Zahner, Germany). Electrochemical
impedance spectroscopy (EIS) tests were performed at OCP vs. Ag/AgCl (saturated KCl) over the
frequency range between 105 and 10−1 Hz. Control intensity modulated photocurrent/photovoltage
spectroscopy (CIMPS/CIMVS) measured series photoelectrodes with an LED white light source (LSW)
from 100 K to 0.1 Hz. The electron transit time (τr) and electron lifetime (τrec) can be obtained by the
following Equations:

τr = 1/(2π fCIMPS) (1)

τrec = 1/(2π fCIMVS) (2)

ŋ(%) = (1 − τr/τrec) × 100% (3)

where fCIMPS/fCIMVS is the frequency of the minimum imaginary component.

4. Conclusions

In this study, PEDOT modified oxygen vacancy-TiO2 nanorod was prepared, oxygen vacancy
can improve the charge transfer capacity of TiO2. Meanwhile, the PEDOT could not only serve as
the protective layer to inhibit the surface states, but also to fabricate a p-n junction to increase the
separation efficiency of the photo-generated electrons and holes. Thus, a near 0.9 mA/cm2 photocurrent
of TiO2 nanorod array was achieved after oxygen vacancy and PEDOT co-modification under standard
sunlight illumination. Furthermore, the PEC stability test showed that the photocurrent generating
by H-TiO2-PEDOT photoanode decays less than 10% of the initial value after 4 h of continuous
illumination. Meanwhile, the H-TiO2-PEDOT photoanode can completely split pure water into
hydrogen and oxygen under simulated sunlight illumination. Thus, oxygen vacancy and PEDOT
co-modification is a promising method for TiO2 photoanode PEC performance improving.
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