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Abstract: A mild in situ method was developed to construct an iron doped rutile TiO2 photocatalyst
like cauliflower for degradation synthetic textile dye-methyl orange. The synthesized photocatalysts
presented distinguished photocatalytic activity. At the optimal Fe concentration (0.5%), the
decomposition rate of methyl orange (MO) was about 90% under 40 min of ultraviolet (UV)
light irradiation. Whereas, to our knowledge, only 70% of the decomposition rate of MO was
achieved by commercial photocatalyst P25 under the similar reaction condition. Additionally, the
rutile preparation temperature did not exceed 100 ◦C, which was much lower than the traditional
preparation calcination temperature (e.g., 600 ◦C). The specific surface area of Fe doped catalysts
was bigger than that of the control sample and the catalyst characterization indicated that the doped
iron was incorporated into the rutile TiO2 lattice and resulted in the lattice disorder. The lattice
disorder would have generated surface defects in the crystal structure, which was in favor of the
photocatalytic reaction. The UV-Vis diffuse refection characterization and Density Functional Theory
(DFT) calculation suggested that doping a small amount of Fe into the lattice of rutile would lead to a
narrower band gap and the formation of a doping energy level between conduction and valence bands
of TiO2. This further increased the degradation efficiency of synthetic textile dyes in wastewaters.
Our study has provided a relatively easy operation for synthesis Fe doped rutile TiO2, which is a
benefit to decrease the cost in wastewater treatment process.

Keywords: photocatalysts; TiO2; wastewater; degradation; organic dye

1. Introduction

Fresh water is one of the significant natural resources for human beings. However, fresh water
only accounts for 3% of the total water resource on earth. Since the 19th century, with the rapid
development of the chemistry industry, limited and precious fresh water resources have been seriously
polluted. The dyeing industry is one of the main pollution sources of fresh water; the discharged
wastewaters containing dyes are toxic to human beings, aquatic life and microorganisms [1–3].

Scientists and researchers have made great efforts to degrade dyes in wastewaters. The most
common methods used in industries are physical techniques, such as adsorption by ultrafiltration,
reverse osmosis, activated carbon, ion exchange on synthetic adsorbent resins, coagulation by
chemical agents, etc. [4–9]. These methods have only succeeded in accumulating contaminative
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organic compounds from water and becoming solid-wastes, which will require regeneration of
the adsorbent and further treatment of solid-wastes. To overcome such drawbacks, scientists and
researchers have developed biochemical techniques, such as enzymatic decomposition, biodegradation,
microbiological, ozonation, and advanced oxidation processes, H2O2/UV processes, for dyes removal
from wastewaters [10–14].

Unfortunately, due to the chemical stability of pollutants in wastewaters, all those aforementioned
wastewater treatment technologies have proven to be ineffective for processing wastewater containing
synthetic textile dyes. In one investigation, researchers found that 61% of selected dyes were practically
untreated [15].

Photocatalysis has been proven to have the ability to distinguish decomposing organic compound
in wastewaters, which arouse the great interest of scientists for studying the removal of dyes from
wastewaters [16–20]. Photocatalysis is a photoinduced reaction, which is accelerated by the presence
of a catalyst [21]. Generally, semiconductors (such as ZnO, TiO2, CdS, Fe2O3, and ZnS) were chosen
as catalysts for photo-catalysis [22]. Semiconductors are materials containing a valence band and
conduction band which are separated by a band-gap. An electron–hole pair is generated by two steps:
(1) A semiconductor molecule absorbs photons with enough energy which is equal or greater than
its band-gap; (2) the electrons in the valence band are excited by the energetic photons and jump up
into the conduction band. The generated electron–hole pairs can either interact separately with other
molecules or can recombine. For the photocatalytic reaction, the less recombination of electron–hole
pairs the better.

Because of its photochemical stability, non-toxic nature and low cost, titanium dioxide (TiO2) is
widely utilized as a photocatalyst [23,24]. Anatase and rutile phases are the two important phases
of TiO2 in photocatalysis. Anatase TiO2 exhibits a higher photocatalytic activity compared to rutile
TiO2 [25,26]. Therefore, anatase TiO2 has been the most investigated photocatalysts in the past decades.
Compared to anatase TiO2, rutile TiO2 has a higher positive conduction band edge potential and faster
recombination rate of electron-hole pairs, which leads to its lower photocatalytic activity [27–29].

Nevertheless, Rutile TiO2 has proven to be the most stable phase, which can bear strongly acidic
or basic environments. Hence, rutile TiO2 has potential applications in optical communication, energy
resources and photosensitive reactions, etc. [30,31]. In addition, rutile TiO2 has smaller band gap
energy (Rutile: 3.0 ev, Anatase: 3.2 ev), lower production cost, better chemical stability and higher
light scattering efficiency in contrast with anatase TiO2 [29]. Therefore, rutile TiO2 as a photocatalyst
has gradually attracted the interest of scientists due to its unique advantages.

So far, the disadvantage of TiO2 is the relatively large band gap energy, which results in the low
photocatalytic efficiency. Large band gap energy signifies the narrow light-response range and low
separation probability of the photoinduced electron-hole pairs in TiO2 photocatalysts [32,33].

In order to increase the photocatalytic activity of TiO2, various methods have been developed,
for instance, optimization of particle sizes, increasing its surface to volume ratio, dispersion of TiO2

species in zeolite cavities, coupling of TiO2 with other semiconductor particles, doping with metal or
non-metal ions into TiO2 [34,35]. The introduced transition metal ions can lead to the formation of a
doping energy level between conduction and valence bands of TiO2. Additionally, dopant ions may
act as a trap for holes or electrons, which increases the catalytic activity of TiO2 [36–38].

Iron has been viewed as a suitable candidate due to its low cost among the numerous transitional
metals. In addition, the radius of Fe3+ (0.65 Å) is similar to that of Ti4+ (0.61 Å), so Fe3+ can be doped
into the crystal lattice of TiO2 easily [39–42]. Additionally, because the energy level of Fe2+/Fe3+ lies
close to that of Ti3+/Ti4+, Fe3+ can provide a shallow trap for a photo-generated hole and electron,
which is of benefit to the separation of the photo-generated electron-hole pair, and finally leads to the
increment of quantum yield [43].

Traditional synthetic methods to produce rutile TiO2 is calcination either amorphous titania or
anatase TiO2 at high temperature (e.g., 600 ◦C) [44,45]. However, high temperature calcination could
result in agglomeration, which leads to small surface areas and large particle sizes. A study indicated
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that, in comparison with rutile TiO2 prepared at a high temperature, the rutile produced at a low
temperature exhibited better photocatalytic performance [46]. Researchers have reported a number
of methods to prepare rutile TiO2 at relatively low temperatures. However, these methods usually
need to introduce acids, solvents or other chemicals, which finally increase synthesis complexity and
cost [47,48].

In this paper, a mild in situ method has been proposed to construct an iron-doped rutile TiO2

photocatalyst for the degradation of organic dye in wastewater. The synthesized photocatalysts
samples were characterized by Transmission electron microscope (TEM), scanning electron microscope
(SEM), X-ray diffraction (XRD), Raman, X-ray photoelectron spectroscopy (XPS), and nitrogen
adsorption–desorption methods. Methyl orange (MO, see Figure 1) is a common contaminant
in industrial wastewater and cannot be photodegraded in the absence of photocatalyst under light
irradiation. Hence, the photocatalytic performances of synthesized photocatalysts were evaluated by
degrading MO with UV light irradiation. Finally, the reason for the photocatalytic activity increment
of Fe doped rutile TiO2 was tentatively discussed.
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Figure 1. Molecular structure of MO.

2. Results

Four photocatalysts have been synthesised, among which one is the control sample (0.0%Fe-TiO2),
the other three are Fe-doped rutile TiO2 photocatalysts. The iron mass fraction of doped rutile TiO2

photocatalyst was 0.5% (0.5%Fe-TiO2), 1.0% (1.0%Fe-TiO2) and 2.0% (2.0%Fe-TiO2), respectively.

2.1. Phase Analysis of Synthesised Photocatalyst

According to the JCPDS NO.21-1276, the diffraction peaks at 2θ = 27.4◦, 36.0◦, 41.3◦, 54.5◦, 62.9◦,
69.1◦ correspond to the (110), (101), (111), (211), (220), (301) facets of rutile TiO2, respectively.

As displayed in Figure 2, the XRD spectrum of four synthesized photocatalysts was well matched
with the standard rutile TiO2 XRD patterns. It should be noted that no crystalline phase ascribed to
iron oxide could be found in the XRD patterns. There are two reasons responsible for this result: (1) Fe
content in the synthesized photocatalysts was below the detection limit of this technique; (2) Fe3+ ions
might have substituted Ti4+ ions and incorporated into the crystal lattice of TiO2, because the radius of
Ti4+ was similar to the Fe3+ ions (Fe3+: 0.65Å, Ti4+: 0.61Å) [49,50]. More, accurately, the XRD spectrum
was in favour of the second reason. The introduction of Fe3+ would slightly affect the crystal structure
of synthesized photocatalyst, which would lead to the peak slightly shifting. The position of the facet
(110) peak slightly shifted from 27.2◦to 27.4◦ (see Figure 3), which probably indicated that Fe3+ ions
were incorporated into the TiO2 lattice.
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Figure 3. Partial enlarged detail of XRD patterns of synthesised photocatalysts.

The Raman spectrum of synthesised photocatalysts was reported in Figure 4. The rutile structure
had two TiO2 molecules in the unit cell with the space group D14

4h (P42/mnm). The frequencies of the
Raman bands observed were located at ~143 cm−1 (B1g), ~447 cm−1 (Eg), ~612 cm−1 (A1g) and ~235 cm−1

(anomalously), which were well in agreement with previous published work [51–53]. The Raman
spectrum further demonstrated that the synthesized photocatalyst was Rutile phase. The strong
anomalously broad band about 235 cm−1 of Rutile has been extensively investigated, and is generally
assigned as a multi-photon process [54]. The introduction of Fe didn’t significantly affect the lattice
structure of Rutile TiO2 as displayed in Figure 4. Nevertheless, a slightly blue-shift of the Raman peak
(Eg) was observed. In addition, the intensity of the Eg peak decreased and full width at half maxima
(Eg and A1g) increased with the increase of Fe content. The Eg mode was much more sensitive to
oxygen vacancies as they were related to planar O–O interactions [51]. Combining the broadening and
shifting of the characteristic diffraction peaks of d110, this indicates that the iron ions appeared to be
doped into the lattice structure of TiO2, which leads to the generation of oxygen vacancies in order to
compensate for the charge [39,55].
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2.2. The Morphology of Synthesised Photocatalysts

Figure 5 shows the representative SEM images of synthesised photocatalyst. The morphology of
photocatalyst was like a cauliflower bud at Nano-size. The synthesised nanoflower photocatalysts
were assembled in irregular slices and lattice fringes were clearly visible as showed in Figure 6. All the
synthesised photocatalysts contained the lattice fringe spacing 0.324 nm, which corresponded to the
(110) lattice plane of rutile TiO2. Though the SAED pattern of Fe, doped photocatalysts demonstrated
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the existence of (211) lattice facets, the HRTEM images did not clearly show them. It is probably
because of their narrow fringe spacing (0.169 nm). In addition, the electron diffraction results insets in
Figure 6 (a-2, b-2, c-2, d-2) indicated that all samples were highly crystalline, which was consistent
with the XRD results.
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2.3. The Performance of the Synthesized Photocatalyst

The performances of synthesized photocatalysts were evaluated by the decomposition of methyl
orange (MO) under the UV light irradiation. The degradation curves of MO as a function of irradiation
time are shown in Figure 7. Compared to the control experiment (without photocatalyst, green
line), the concentration of MO demonstrated a downward trend with the increase of irradiation
time. The photocatalyst 0.5%Fe-TiO2 presented the highest activity, the degradation rate of MO
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was about 90% under 40 min of UV light irradiation. The photocatalyst 1.0% Fe-TiO2 and 2.0%
Fe-TiO2 exhibited degradation rates of 77% and 73% under 40 min of UV light irradiation, respectively.
The degradation rate of MO for 0.0%Fe-TiO2 was about 62% under the same irradiation time, which
was the lowest among the four synthesized photocatalyst. Introduction of iron element into rutile TiO2

seemed beneficial to the degradation of MO. However, the photocatalytic performance of synthesized
photocatalyst was decreased with the increase of Fe concentration; the optimal concentration of Fe
was 0.5%. The MO photo-degradation kinetic study was presented in Figure 8. The reaction rate
constants were in order: 0.5% Fe-TiO2, 1.0% Fe-TiO2, 2.0% Fe-TiO2 and 0.0%Fe-TiO2. The sequence of
the reaction rate constants was in line with the activity of the synthesised photocatalyst.
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It is difficult to compare the results reported in the literature, because the catalyst preparation
methods and the experimental conditions were usually different. Tong et al. [56] reported a Fe-doped
Anatase for the degradation of MO. In their work, at the optimal doping levels of Fe3+ (0.1%) and
6h UV light irradiation, the degradation rate of MO was 79%; under the same reaction condition,
the degradation rate of MO by commercial photocatalyst P25 was only 70%. Leong et al. prepared
a Ni(OH)2 decorated rutile TiO2 photocatalyst and the highest removal rates of model compound
tetracycline was 68% under 2 h visible light irradiation [29]. So far, our photocatalyst seems to have
presented the prominent photoactivity for a decomposing organic compound in wastewater.
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3. Discussion

The Fe doped cauliflower-like rutile TiO2 photocatalysts could significantly increase the
photo-degradation rate of MO under the UV irradiation. In this section, we tentatively discussed the
reason for the incremental photocatalytic activity of Fe-doped rutile TiO2 photocatalyst.

The nitrogen adsorption-desorption and pore diameter distribution is shown in Figure 9. All the
samples could be categorized as isotherms of type IV, indicating the presence of mesoporous materials
according to the International Union of Pure and Applied Chemistry classification [57]. H3-type
hysteresis loops were obtained, which implied the formation slit-like pores that were associated with
nanobeam aggregation [58].
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Figure 9. N2 adsorption-desorption and pore diameter distribution of synthesized photocatalysts;
(a): 0.0% Fe-TiO2, (b): 0.5% Fe-TiO2 (c): 1.0% Fe-TiO2 (d): 2.0% Fe-TiO2.

As indicated in Table 1, the specific surface areas of the Fe-doped photocatalysts were larger
than that of the control sample (0.0% Fe-TiO2). A Bigger and more specific surface area benefitted the
adsorption of reactants, because it offered more active sites for photocatalytic reaction. It is worth
noting that the specific surface area of Fe-doped photocatalysts decreased with the increment of Fe
concentration. Other researchers have also observed a similar phenomenon. They consider the reason
for this increased surface area of Fe-doped TiO2 may be explained as follows: The decreased lattice
spacing of TiO2 resulting from Fe dopant changes the pore diameter and pore volume of synthesized
photocatalysts, which further increases the surface area of Fe-doped TiO2 [56,59].
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Table 1. Physicochemical properties of the photocatalysts.

Sample Surface Area (m2/g) Pore Volume (cm3/g) Pore Size (nm)

0.0%Fe-TiO2 69.2 0.36 26.2
0.5%Fe-TiO2 120.4 0.26 10.8
1.0%Fe-TiO2 115.6 0.24 10.3
2.0%Fe-TiO2 107.2 0.21 10.5

Due to the small doped Fe concentration, no crystalline phase attributed to iron oxide could be
found in the surface of rutile TiO2 by the aforementioned catalysts characterization. Hence, X-ray
photoelectron spectroscopy (XPS) measurements were carried out to study the chemical composition
and the elemental valence state on the surface of the synthesized photocatalysts. As expected, O1s
and Ti2p peaks could be clearly observed, but no obvious Fe2p peak could be found (see Figure 10).
XPS measurement suggested that the introduced iron element did not exist on the surface of the
synthesized photocatalyst.
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In order to investigate the presence of Fe, EDX and HAADF-STEM characterization of 0.0%
Fe-doped TiO2 and 0.5% Fe-TiO2 were carried out (see Figure 11). It was found that there was no
energy spectrum of Fe in 0.0% Fe-doped TiO2 (Figure 11a), while a small amount of Fe element existed
in the spectrum of 0.5% Fe-TiO2 sample (Figure 11b). The high angle on the annular dark field image of
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scanning transmission electron microscope (HAADF-STEM shown in Figure 11c–f) also demonstrated
the presence of the Fe element.
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Figure 11. EDX spectrum of 0.0% Fe-TiO2 (a) and 0.5% Fe-TiO2 (b); The HAADF-STEM image of the
observed area of 0.5% Fe-TiO2 (c), and the corresponding energy-dispersive X-ray spectroscopy (EDX)
elements mapping of 0.5% Fe-TiO2; Ti (d: yellow), O (e: purple) and Fe element (f: orange ).

Therefore, it is reasonable to speculate that the introduced iron element was incorporated into the
crystal lattice of rutile TiO2. The radius of Fe3+ (0.65Å) was similar to that of Ti4+ (0.61Å), so less Fe3+

ions could be easily doped into the crystal lattice of TiO2 and have caused the slight disorder of the
rutile phase structure. This slight disorder was demonstrated by XRD measurement (see Figure 3).
The lattice disorder would have generated surface defects (e.g., oxygen vacancies) in the crystal
structure, which was in favour of the photocatalytic reaction.

It is generally accepted that the introduction of transition metal ions can result in lattice
disorder, which further leads to a narrower band gap and the formation of a doping energy level
between conduction and valence bands of TiO2 [60,61]. We carried out the UV-Vis diffuse refection
characterization to confirm the decrease of band-gap of Fe-TiO2 samples. All the samples exhibited
absorption in the ultraviolet and visible range. For Fe-TiO2 samples, an obvious red shift at 400–500 nm
was observed in Figure 12a. The band gap decreased from 3.04 eV for 0.0% Fe-TiO2 to 2.98 eV for 2.0%
Fe-TiO2 as showed in Figure 12b. This further proved that Fe had been doped into the TiO2 lattice.

This view was further demonstrated by our density functional theory (DFT) calculation. A new
energy level and narrower band gap signified high separation probability of the photoinduced
electron-hole pairs in the TiO2 semiconductor photocatalysts. The band gaps of synthesized
photocatalysts were calculated by the VCA approach based on DFT. The calculation suggested
that the introduction of Fe into the TiO2 lattice could narrow the band gap of TiO2 (see Figure 13) and
with an increase in the Fe dopant concentration, the calculated band gap at G (gamma point) decreased
accordingly. This was caused by the conduction band minimum (CBM), which moved down. It should
be noted that extremely narrow band gap implied the high recombination rate of photo-hole pairs,
which was also averse to the photocatalytic reaction. Therefore, there was an optimal band gap energy
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value that corresponded to the highest photocatalytic activity. Namely, an optimal introduced Fe
concentration needed to be determined for the optimal band gap energy, which corresponded to the
highest photocatalytic activity. In this study, the optimal introduced Fe concentration was 0.5%wt.

Catalysts 2019, 9, x FOR PEER REVIEW 9 of 17 

 

 

 

Figure 11. EDX spectrum of 0.0% Fe-TiO2 (a) and 0.5% Fe-TiO2 (b); The HAADF-STEM image 
of the observed area of 0.5% Fe-TiO2 (c), and the corresponding energy-dispersive X-ray 
spectroscopy (EDX) elements mapping of 0.5% Fe-TiO2;Ti (d: yellow), O (e: purple) and Fe 
element (f: orange ). 

Therefore, it is reasonable to speculate that the introduced iron element was incorporated into the 
crystal lattice of rutile TiO2. The radius of Fe3+ (0.65Å) was similar to that of Ti4+ (0.61Å), so less Fe3+ 
ions could be easily doped into the crystal lattice of TiO2 and have caused the slight disorder of the 
rutile phase structure. This slight disorder was demonstrated by XRD measurement (see Figure 3). The 
lattice disorder would have generated surface defects (e.g., oxygen vacancies) in the crystal structure, 
which was in favour of the photocatalytic reaction. 

It is generally accepted that the introduction of transition metal ions can result in lattice disorder, 
which further leads to a narrower band gap and the formation of a doping energy level between 
conduction and valence bands of TiO2 [60,61]. We carried out the UV-Vis diffuse refection 
characterization to confirm the decrease of band-gap of Fe-TiO2 samples. All the samples exhibited 
absorption in the ultraviolet and visible range. For Fe-TiO2 samples, an obvious red shift at 400–500 nm 
was observed in Figure 12a. The band gap decreased from 3.04 eV for 0.0% Fe-TiO2 to 2.98 eV for 2.0% 
Fe-TiO2 as showed in Figure 12b. This further proved that Fe had been doped into the TiO2 lattice. 

  

Figure 12. (a) Uv-vis diffuse reflection spectra of synthesised photocatalyst; (b).Band gap derived 
from Uv-vis diffuse reflection spectra 

0 1k 2k 3k 4k 5k 6k 7k
0

1k

2k

3k
Element Wt.% At.%

Ti-K 54.41 71.49
O-K 45.59 28.51

Ti

Ti

Cu

oK
C

nt
.

Energy-eV

C (a) TiO2

5.5k 6.0k 6.5k 7.0k

0 1k 2k 3k 4k 5k 6k 7k
0

1k

2k

3k

Fe

Element Wt.% At.%
Ti K 53.76 71.19
O K 45.59 28.51
Fe K 00.58 00.30

Ti

Ti

Cu

oK
C

nt
.

Energy-eV

C (b) 0.5%Fe-TiO2

5.5k 6.0k 6.5k 7.0k

Figure 12. (a) Uv-vis diffuse reflection spectra of synthesised photocatalyst; (b) Band gap derived from
Uv-vis diffuse reflection spectra
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There was a disparity that existed between the result of the DFT calculation and that of the
experiment. However, this difference was also observed by other researchers [62–66]. The disparity
can be explained by not considering the discontinuity in the exchange-correlation potential in the
DFT calculation [63,67]. Nevertheless, the DFT calculation results were still advisable for qualitative
analysis and did not affect the accuracy of the comparison of the related properties of crystals [61,68].

The doping mechanism of in-situ synthesis was also proposed as below. In the catalyst synthesis
process, Ti2O3 nanostructure was first formed via TiCl3 hydrolysis in acidic aqueous solution containing

excessive Cl−, which had a strong reducing ability. According Fe3+ ϕ=0.77v
→ Fe2+ ϕ=−0.447v

→ Fe, electrode
potential of Fe3+

→ Fe was ϕ = 0.0367v. The electrode potential of Ti4+ → Ti3+ was −0.37v. Once the
Fe3+ ions were in contact with Ti2O3 deposit in acidic environment, they were easily reduced to Fe
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by Ti2O3. Meanwhile, corresponding Ti2O3 was oxidized into TiO2. Oxygen vacancies, described by
standard Kröger-Vink notation, were created during this chemical reduction [52]. The oxygen vacancies
would slowly disappear when the material was exposed to air. However, Fe3+ acted to stabilize oxygen
vacancies. This mild in-situ redox process could be described by the following formula [49,52]:

3Ti2O3 + 2Fe3+ + 3H2O→ 2Fe0 + 6TiO2 + 6H+ (1)

Ti2O3 +
1
2

O2 = 2TiO2 (2)

OX
O

TiO2
⇔ V..

O +
1
2

O2(g) + 2e′ (3)

2Fe +
3
2

O2 = Fe2O3 (4)

Fe2O3
TiO2
→ 2Fe′Ti + 3OX

O + V..

O (5)

Fe2O3 +
1
2

O2(g) + 2e′
TiO2
→ 2Fe′Ti + 4OX

O (6)

where V×O represents an O2− ion in the oxygen lattice site, V..

O is an oxygen vacancy, Fe′Ti indicates Fe3+

ion in the titanium lattice site, which can stabilize the oxygen vacancies as ionic charge-compensating
species. Alternatively, the Fe3+ acceptor can be compensated by a decrease in the concentration of free
electrons in the TiO2.

Other researchers have used the similarly method to synthesize the photocatalyst [69]. However,
in their study, the introduced metals were loaded on to the surface rather than doped into the TiO2

lattice. The probably reason is that, in their work, the radii of selected metals (Pt, Au, Ru, etc.) ions
are much larger than that of Ti4+. Hence, selected metal ions couldn’t substitute the Ti4+ in the rutile
TiO2 lattice.

4. Materials and Methods

4.1. Photocatalysts Synthesis

Four photocatalysts have been synthesised, among which one is the control sample, the other
three are Fe-doped rutile TiO2 photocatalysts. The iron mass fraction of doped rutile TiO2 photocatalyst
was 0.5% (0.5% Fe-TiO2), 1.0% (1.0% Fe-TiO2) and 2.0% (2.0% Fe-TiO2), respectively.

For control sample synthesis, first, 20 g TiCl3 solution (Alfa Aesar, Haverhill, MA, USA, 20% in 3%
hydrochloric acid aqueous solution) was mixed with 60 g of 30 wt% NaCl aqueous solution. Then, the
mixed solution was heated at 100 ◦C for 12 h under N2 atmosphere to get the blue deposit (Ti2O3).
This process could be described by the following equation:

Ti3+ + H2O = Ti(OH)3 + 3H+ (7)

2Ti(OH)3 , Ti2O3 + H2O (8)

Next, the blue deposit was quickly washed by deionized water several times to remove the
unreacted TiCl3. The existence of TiCl3 (purple) was identified by the colour of washed deionized
water (purple to colourless). Afterwards, the washed blue deposit was re-dispersed in deionized water
under an acidic environment and exposed to the air at room temperature for 24 h, which could oxide
the blue deposit (Ti2O3) and turn it into white deposit (rutile TiO2). The auto-oxidation process could
be described according to the Kröger–Vink formula [70]:

Ti2O3 +
1
2

O2 = 2TiO2 (9)
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Finally, the white deposit (rutile TiO2) was separated by filtration, the Cl− ions were washed
off by deionized water. The existence of Cl− ions was identified by AgNO3 solution (0.1mol/L).
The synthesized sample was vacuum-dried at 80 ◦C for 24 h and was used as a control sample.

For the Fe doped photocatalyst, the first two steps were the same as the control sample synthesis
steps. Third step, the washed blue deposit (Ti2O3) was re-dispersed in deionized water and the
suspension was heated to 80 ◦C with N2 atmosphere protection in a water bath. Fourth step, the
calculated amount of 0.01 mol/L FeCl3·6H2O (AR, Alfa Aesar, Haverhill, MA, USA) aqueous solution
was subsequently added into the blue suspension (Ti2O3) at 80 ◦C. After being maintained at 80 ◦C for
3 h, the mixture was naturally cooled to room temperature and exposed to air for 24 h. Finally, the
white deposit (rutile TiO2) was separated by filtration, the Cl− ions were washed off by deionized water.
The existence of Cl− ions was identified by AgNO3 solution (0.1mol/L). The synthesized samples were
vacuum-dried at 80 ◦C for 24 h and were used as the Fe-doped photocatalyst.

4.2. Photocatalysts Characterization

X-ray powder diffraction (XRD) patterns were measured on a PANalytical/Empyrean diffractometer
at room temperature. The patterns were recorded over the angular range 10–80◦ (2θ), using a scanning
step 2◦/s and Cu(Kα) radiation (λ = 1.5418 Å) with working voltage and current of 40 kV and 200 mA,
respectively. Raman spectra were obtained on a RENISHAW (Staffordshire, UK). The wavelength of
the laser was 532 nm and scanning range was 100–1000 cm−1. Exposure time was 1 s. Scanning electron
micrographs (SEM) were recorded with a Hitachi S-3400N (Tokyo, Japan), which was used to
determine the morphology of the sample. Transmission electron microscopy (TEM) and high-resolution
transmission electron microscope (HRTEM) energy-dispersive X-ray spectroscopy (EDX) and High
angle annular dark field image of scanning transmission electron microscope (HAADF-STEM) were
performed with a FEI TECNAI F30 microscope (Hillsboro, OR, USA). The control voltage was 300 kV,
and samples were dropped on a holey carbon-coated copper 400-mesh grid (2SPI, Shanghai, China).
X-ray photoelectron spectroscopy (XPS) measurements were carried out on a Shimadzu/KRATOS
AMICUS X-ray photoelectron spectrometer (Kyoto, Japan) with an AlKα (1486.67 eV) excitation source,
which determines the existence and valence states of synthesised photocatalysts. UV-Vis diffuse
refection was carried on a Perkin Elmer UV/VS/NIR Lambda 750s spectrometer (Waltham, MA, USA)
to confirm band-gap of Fe-TiO2 samples. The BET surface areas (SBET) and pore diameter distribution
of the synthesized photocatalysts were determined by the N2 adsorption–desorption test performed
on a Micrometrics ASAP2020 analyser (Norcross, GA, USA).

4.3. Photocatalysts Evaluation

The photocatalytic performance of synthesized photocatalysts was evaluated in a homemade
setup, which was equipped with a 300 W mercury lamp. Methyl orange (MO, see Figure 1) was
selected as the model compound, which was illuminated by UV light (λ ≤ 420 nm).

A synthesized photocatalyst (25 mg) was suspended into a quartz tube, which contained 50 mL of
MO aqueous solution (6 mg/mL). The suspension mixture was magnetically stirred for 120 min in the
dark to attain the adsorption-desorption equilibrium for MO and dissolved oxygen on the surface of
synthesized photocatalyst surface. Subsequently, the obtained suspensions were illuminated with UV
light (λ ≤ 420 nm) under magnetic stirring. During the reaction, 1.5 mL of suspensions was collected
at a regular interval. The collected sample was centrifuged to separate the photocatalyst from the
suspension sample. The supernatant was transferred into a transparent cuvette and the concentration
of MO was measured with a UV–vis absorption spectrometer (Beijing Purkinje General Instrument
Co., Ltd., Beijing, China).

The degradation rate of MO was calculated using the following equation: Degradation
rate = 100% × (CMO − C)/CMO, where CMO is the initial concentration of MO, and C is the MO
concentration at the given time of irradiation, respectively. The photocatalytic degradation of MO
follows the pseudo-first order decay kinetics, which can be assumed to be calculated using the following
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formula: ln(CMO/C) = kapp × t [38]. In this equation, kapp is the apparent pseudo-first order degradation
rate constant (min−1), which can be used to measure the efficiency of the degradation of MO and the
photocatalytic performance of samples.

4.4. DFT Calculation Details

The DFT calculations were performed using the plane wave based periodic DFT method as
implemented in the CASTEP module of Materials Studio [71]. The electron exchange and correlation
energies were treated within the Generalized Gradient Approximation in the Perdew–Burke–Ernzerhof
functional (GGA-PBE). The plane wave basis was set up to 400 eV, and the Monkhorst–Pack scheme
K-point sampling was set as 4 × 4 × 3. The calculated Rutile TiO2 had a tetragonal structure
with lattice parameters a = b = 4.594 Å, c = 2.959 Å. A VCA approach was used to simulate our
Fe-doped photocatalysts. This method allowed us to replace each atom of a certain type in the
unit cell with a fictitious element with a non-integer atomic number [72]. For Fe-doped rutile TiO2,
Ti atoms were replaced with virtual pseudo-potentials, Ti-Fe atoms with different Fe contents (x), as
Vps

VCA[x] = xVps
Fe + (1− x)Vps

Ti, but maintained the rutile crystal structure [73–76].

5. Conclusions

A mild in situ method was developed to construct an iron-doped rutile TiO2 photocatalyst for
the degradation of organic dye in wastewater. The synthesized photocatalysts were like cauliflower
bud at Nano-size. XRD and Raman spectrum confirmed the rutile phase of TiO2. The Fe-doped
photocatalysts presented distinguished photocatalytic activity. At the optimal Fe concentration (0.5%),
the degradation rate of the methyl orange was 90% under 40 min of UV light irradiation. The specific
surface area of Fe doped catalysts was bigger than that of the control sample. EDX and HAADF-STEM
characterization suggested that there was no energy spectrum of Fe in 0.0% Fe-doped TiO2, while a
small amount of Fe element existed in the spectrum of 0.5% Fe-TiO2 sample. However, XPS indicated
that the introduced iron element didn’t exist on the surface of the synthesized photocatalyst. Due to
the radius of Fe3+ (0.65 Å) being similar to that of Ti4+ (0.61 Å), it was reasonable to speculate that less
Fe3+ ions could be easily doped into the crystal lattice of TiO2 and cause the slight disorder of rutile
phase structure. This slightly disorder was demonstrated by the slight shift of position of the facet (100)
peak in the XRD measurement. The UV-Vis diffuse reflection characterization and DFT calculation
further suggested that doping small amount of Fe into the lattice of rutile would lead to a narrower
band gap, formation of a doping energy level between conduction and valence bands of TiO2, which is
favourable for photo-decomposing the organic pollutants in waste water.

The novelty of this study can be emphasized as follows:

1. This study provided a mild and low cost method for the synthesis the Fe-doped rutile TiO2.
The rutile preparation temperature did not exceed 100 ◦C, which was much lower than the
traditional preparation calcination temperature (e.g., 600 ◦C). TiCl3 was used as a titanium source
other than expensive Ti(OC4H9)4. To our knowledge, doping Fe into rutile TiO2 using this method
was reported first in this paper.

2. The synthesized photocatalysts presented the prominent photoactivity for decomposing organic
dye in wastewater. It is difficult to compare with those results reported in the literature,
because the catalysts preparation methods and the experimental conditions were usually different.
Tong et al. [58] reported a Fe-doped Anatase for the degradation of MO. In their work, at the
optimal doping levels of Fe3+ (0.1%) and 6 h UV light irradiation, the degradation rate of MO was
79%; under the same reaction condition, the degradation rate of MO by commercial photocatalyst
P25 was only 70%. Leong et al. prepared a Ni(OH)2 decorated rutile TiO2 photocatalyst and
the highest removal rates of model compound tetracycline was 68% under 2 h visible light
irradiation [59]. So far, our photocatalyst seems to have presented the prominent photoactivity
for decomposing organic compounds in wastewater.
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