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Abstract: Due to its low cost, environmentally friendly process, and lack of secondary contamination,
the photodegradation of dyes is regarded as a promising technology for industrial wastewater
treatment. This technology demonstrates the light-enhanced generation of charge carriers and
reactive radicals that non-selectively degrade various organic dyes into water, CO2, and other
organic compounds via direct photodegradation or a sensitization-mediated degradation process.
The overall efficiency of the photocatalysis system is closely dependent upon operational parameters
that govern the adsorption and photodegradation of dye molecules, including the initial dye
concentration, pH of the solution, temperature of the reaction medium, and light intensity. Additionally,
the charge-carrier properties of the photocatalyst strongly affect the generation of reactive species in
the heterogeneous photodegradation and thereby dictate the photodegradation efficiency. Herein,
this comprehensive review discusses the pseudo kinetics and mechanisms of the photodegradation
reactions. The operational factors affecting the photodegradation of either cationic or anionic dye
molecules, as well as the charge-carrier properties of the photocatalyst, are also fully explored.
By further analyzing past works to clarify key active species for photodegradation reactions
and optimal conditions, this review provides helpful guidelines that can be applied to foster
the development of efficient photodegradation systems.

Keywords: cationic dye; anionic dye; direct photoderadation; sensitization-mediated degradation;
quantum yield

1. Introduction

The widespread presence of organic dyes in industrial wastewaters from the textile, apparel,
and paper industries results in significant environmental contamination. These dye-polluted effluents
contain highly hazardous, carcinogenic, non-biodegradable, and colored pigments that can cause
damage to humans [1,2]. Even at very low concentrations (below 1 ppm), dyes are clearly visible
in water and seriously deteriorate aqueous environments [3–5]. Therefore, the removal of colored
organic dyes from wastes is imperative and important. For conventional treatment on industrial
wastewater, adsorption [6] and coagulation [7] are common methods used to remove the organic
dyes. However, these processes cause secondary hazardous pollution because dyes are only changed
from a liquid phase into a solid phase. Thus, further treatments are necessary to resolve the problem
of secondary pollution [8,9]. Over the past few years, photocatalysis was regarded as a promising

Catalysts 2019, 9, 430; doi:10.3390/catal9050430 www.mdpi.com/journal/catalysts

http://www.mdpi.com/journal/catalysts
http://www.mdpi.com
https://orcid.org/0000-0002-8424-121X
https://orcid.org/0000-0003-3243-2644
http://www.mdpi.com/2073-4344/9/5/430?type=check_update&version=1
http://dx.doi.org/10.3390/catal9050430
http://www.mdpi.com/journal/catalysts


Catalysts 2019, 9, 430 2 of 32

alternative treatment in the aspect of water purification [10]. Essentially, the photocatalytic reaction
involves heterogeneous catalysis, where a light-absorbing catalyst is put in contact with the target
reactants, in either a solution or gas phase. This heterogeneous approach was successfully employed as
an effective tool for the degradation of various hazardous materials, including atmospheric and aquatic
organic pollutants, and shows many advantages over traditional wastewater treatment techniques. For
instance, the complete degradation of organic pollutants using active photocatalysts can occur within a
few hours at room temperature. In addition, organic pollutants can be entirely mineralized to relatively
non-toxic products (CO2 and water) without the formation of secondary hazardous products [11,12].

The typical mechanism for the photodegradation of organic dyes is shown in Scheme 1. Upon
irradiation with incident photons, electrons are excited to the conduction band (CB) of the photocatalyst,
while holes are formed in the valance band (VB). The photoexcited electrons and holes can either
recombine to generate thermal energy or diffuse to the photocatalyst surface reacting with the adsorbed
molecules. The reactive radical species, such as superoxide radicals (·O2

−) and hydroxyl radicals
(·OH), are further derived from the photoexcited electrons and holes, respectively. Moreover, the
photosensitization of dye molecules can provide photocatalysts with additional electrons, which are
also capable of generating radicals like ·O2

−. These reactive species can quickly and non-selectively
decompose organic pollutants. The whole photodegradation process, from the adsorption of dye
molecules on the surface of the photocatalyst to the decomposition of dye molecules by reactive
radicals, is affected by operational parameters such as the pH of solution, initial dye concentration,
reaction temperature, and irradiation intensity [13–17]. For example, Neppolian et al. reported
that the degradation of reactive yellow 17, reactive red 2, and reactive blue 4 over Degussa P-25
followed pseudo first-order kinetics [14], in which increasing initial dye concentration depressed the
photodegradation efficiency. Shahwan et al. performed photodegradation of methyl blue and methyl
orange [13], and found that the pH of solution and steric structure were highly related to photocatalytic
efficiency. In addition to these operational parameters, the band position and charge-carrier utilization
of the photocatalysts also have an impact on the generation of reactive radicals and the subsequent
photodegradation performance. To improve the carrier utilization and thereby achieve efficient reactive
radical generation, heterostructure photocatalysts with enhanced photocatalytic activity are proposed
and employed [18–25].
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different dyes, providing helpful guidelines that could be applied to foster the development of efficient
photodegradation systems.

2. Classification of Organic Dyes

Basically, the chemical structure of dye molecules determines their color and properties. Therefore,
they can be classified according to their chemical structure (functional groups), color, or aspects of
usage [26]. In the textile industry, commonly used dyes include acid, basic, direct, azo, naphtha,
reactive, mordant, vat, disperse, and sulfur dyes [27], with azo dyes being the most used at present.
To study their properties with regard to photodegradation reactions, dyes are usually classified using
their molecular charge upon dissociation in aqueous-based applications. Table 1 presents the chemical
properties of several representative dyes that are frequently used in photodegradation applications.
According to the chemical structure, they are divided into cationic and anionic dyes. The cationic dyes,
including methylene blue (MB), rhodamine B (RhB), malachite green (MG), rhodamine 6G (Rh6G),
crystal violet (CV), and safranin O (SO), contain cationic functional groups that can dissociate into
positively charged ions [28] in an aqueous solution. The most common cationic functional group is
the onium group and, thus, most of the cations are N+ ions. On the other hand, the anionic dyes
cover direct, acid, and reactive dyes [29], such as acid orange 7 (AO7), eosin Y (EY), methyl orange
(MO), acid red 14 (AR14), alizarin red S (ARS), rose bengal (RB), and phenol red (PR). All anionic dyes
contain anionic functional groups, e.g., sulfonic or carboxylic acid groups [5]. These functional groups
are water-soluble and can effectively interact with photocatalysts with hydrophilic surfaces. Hence,
cationic and anionic dyes are also known as basic and acidic dyes, respectively.

Table 1. Chemical properties of representative cationic and anionic dyes. MW—molecular weight.

Cationic Dyes Abbreviation MW Structure λmax (nm)

Methylene blue MB 799.81
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Table 1. Cont.

Cationic Dyes Abbreviation MW Structure λmax (nm)
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3. Kinetics Study for Photodegradation Reactions

The kinetics for photodegradation reactions are examined based on the dye concentration change
by measuring the characteristic absorbance peak at different irradiation times. All the common dyes
have their specific characteristic absorptions in the visible range (400–700 nm), as shown in Table 1.
Herein, the efficiency of photodegradation (also known as the decolorizing ratio) is determined using
the following equation:

Degradation Efficiency (%) =
C0 −C

C0
× 100, (1)

where C0 and C are the solution concentration at t = 0 and after some irradiation time. However, the
absorption peak shift or excitation of the dye molecules may cause the inaccurate estimation of the
photodegradation efficiency, which is further discussed in Sections 3.1 and 3.2.

3.1. Absorption Peak Shift of Dye Molecules

During the photodegradation reaction, a redshift or blueshift can be sometimes seen in the
characteristic absorption of dye molecules, possibly caused by the aggregation of organic dyes [13,30].
Furthermore, the decomposition process of dye molecules could also cause an absorption peak shift.
These spectral shifts bring difficulty in determining the concentration of the remaining dyes from
the absorbance of the characteristic peak. Special care is, therefore, necessary in order to represent
accurate photodegradation efficiency. As shown in Figure 1a, a typical example can be found for RhB
photodegradation on Ag3PO4 nanoparticles [31]. The blueshift of the absorption band from 554 to
530 nm was caused by the de-ethylation of RhB molecules. The generation of intermediates can be
further observed by steady-state photoluminescence (PL) spectroscopy in Figure 1b. The emission
at 575 nm decreased, while a new emission appeared after 7 min of light illumination, confirming
the formation of the de-ethylated intermediate. Figure 1c shows the de-ethylation process of RhB
molecules. Upon light illumination, the four ethyl groups of RhB can be sequentially removed until it
is totally converted into rhodamine without any ethyl groups. This process causes a large blueshift
in absorption from 553 nm to 498 nm [32,33], as shown in Figure 2d. The further decomposition of
rhodamine with its conjugated ring structure causes a further decrease of the absorption peak without
a corresponding peak shift [34]. In the presence of benzoquinone (BQ) as an ·O2− scavenger (see
Section 5.1), the peak intensity decreases without shifting, while the peak shows a blueshift in the
presence of 2-propanol (IPA) as an ·OH scavenger, further confirming that the blueshift is caused by
the attack of active oxygen species on the N-ethyl groups. Moreover, it was found that the formation of
N-de-methylated MG products through the attack of active oxygen species accounts for the observed
absorption blueshift of the MG absorption during the MG photodegradation over TiO2 [35].
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3.2. Photobleaching of dye molecules 

The direct excitation of dye molecules may induce the formation of colorless and unstable 
transition forms, instead of complete mineralization, especially in the presence of dissolved oxygen, 
which also causes the inaccurate estimation of the photocatalytic activity. Taking the TiO2/MB 
system as an example [36], the photoexcited electrons within TiO2 can transform blue MB molecules 

Figure 1. Photodegradation of RhB over Ag3PO4 nanoparticles under visible illumination recorded as
(a) ultraviolet–visible light (UV–Vis) absorption spectra (inset shows the correlation between absorbance
changes of maxima absorption peak (blue line) and the corresponding wavelength shifts (red curve)),
and (b) steady-state PL spectra. (reproduced with permission from [31]. Copyright Royal Society of
Chemistry, 2017). (c) Scheme of the de-ethylation process of RhB molecules. (d) Photodegradation of
RhB over CoFe2O4/BiOCl microflowers under visible irradiation (i) without and with scavengers of (ii)
BQ and (iii) IPA. (inset shows photographs of color change of dye molecules with photodegradation
time; reproduced with permission from [34]. Copyright Royal Society of Chemistry, 2015).

3.2. Photobleaching of Dye Molecules

The direct excitation of dye molecules may induce the formation of colorless and unstable
transition forms, instead of complete mineralization, especially in the presence of dissolved oxygen,
which also causes the inaccurate estimation of the photocatalytic activity. Taking the TiO2/MB system
as an example [36], the photoexcited electrons within TiO2 can transform blue MB molecules into their
colorless leuco form (LMB) upon UV irradiation, resulting in the photobleaching of MB (step i), as
shown in Figure 2a. In an oxygen-free atmosphere (N2) without UV irradiation, the bleached condition
persists (step ii), with the formation of the stable LMB. In contrast, recoloration takes place if the system
is exposed to air (step iii), leading to back electron transfer from LMB to electron acceptors, and causing
a reversion to the blue oxidized form of MB. As shown in Figure 2b, the recovery process becomes
faster in an oxygen atmosphere (step iv), revealing the recovery rate is proportional to the level of
O2 [37]. A similar observation can be found in the carbon-doped TiO2/MB system [38]. As Figure 2c
shows, under UV irradiation, the excitation of TiO2 makes the photobleaching reaction (step 1) become
dominant. On the other hand, visible light irradiation can drive self-catalyzed LMB oxidation to MB,
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thus dramatically enhancing the recoloration rate (step 3). A competing reaction (step 4) usually exists
due to the visible photoactivity of carbon-doped TiO2, whereas this reaction is drastically suppressed in
the presence of O2; thus, the oxidative LMB to MB transition is predominant under visible irradiation
in O2 atmosphere. Thus, the transformation of MB and LMB can be achieved and repeated by changing
the irradiation from UV to visible light, as shown in Figure 2d. This photobleaching phenomenon
and recovery process was also found for RhB. The recoloration of RhB from leuco RhB (LRhB) can be
observed in 55 min of visible irradiation, and the decoloration–recoloration process can be repeated
under sequential UV and visible light irradiations (Figure 2e).
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photodegradation, COD and TOC analyses are usually utilized. COD is an indicative measure of 
oxygen amount that is consumed by oxidation reactions in the solution, which can be used to deduce 
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amount in organic compounds, which can more accurately reflect the total amount of organic 
compounds in the solution. As shown in Figure 3, the photodegradation of bisphenol A (BPA) was 

Figure 2. (a) UV–Vis absorption spectra of the TiO2/MB system upon irradiation for 2.5 min (i)
with UV-A light and in (ii) N2, (iii) air, and (iv) O2 atmospheres. (reproduced with permission
from [36]. Copyright Royal Society of Chemistry, 2004). (b) Change of recovery rate with the O2 content
(reproduced with permission from [37]. Copyright American Chemical Society, 2005). (c) Schematic
illustration for photoreversible color switching between MB (blue) and its leuco form (LMB, colourless)
on carbon-doped TiO2 nanocrystals. Test of photoreversible color switch of (d) MB and (e) RhB
on carbon-doped TiO2 nanocrystals under repeated UV and visible irradiation. (reproduced with
permission from [38]. Copyright American Chemical Society, 2014).

3.3. Chemical Oxygen Demand (COD) and Total Organic Carbon (TOC) Analysis

To precisely evaluate the extent of decomposition of organic dye molecules during
photodegradation, COD and TOC analyses are usually utilized. COD is an indicative measure
of oxygen amount that is consumed by oxidation reactions in the solution, which can be used to
deduce the number of organic molecules in water. TOC on the other hand is an indicative measure of
carbon amount in organic compounds, which can more accurately reflect the total amount of organic
compounds in the solution. As shown in Figure 3, the photodegradation of bisphenol A (BPA) was
demonstrated using BiOI as photocatalysts [39]. The morphology of BiOI with two specific facets ((110)
and (001)) is shown in Figure 3a. Under visible irradiation, BiOI-110 exhibited better photodegradation
efficiency than BiOI-001 did because it has a higher capability of adsorbing O2, thereby facilitating
the generation of reactive radicals. The TOC value of the BiOI-110 system decreased to 5% of the
initial TOC value, indicating almost complete mineralization of BPA. In contrast, the TOC value of
the BiOI-001 system was reduced by only 44%. This observation is consistent with the change in the
photodegradation results. Zhao et al. reported the photodegradation of anionic sulforhodamine B
(SRB) over TiO2-Pt photocatalysts [40] under visible irradiation, in which TiO2-Pt (0.2 wt.%) showed
the fastest photodegradation rate, capable of degrading SRB molecules within 130 min (Figure 3d).
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To confirm the mineralization of SRB, Figure 3e,f respectively show the temporal changes of COD
and TOC during the SRB photodegradation. In the presence of TiO2/Pt, approximately 64% of the
total COD was reduced after 210 min of irradiation. Conversely, the SRB/TiO2 system required a
much longer irradiation time (around 480 min) to attain a similar decrease. In both cases, the COD
remained constant with further irradiation, indicating the total discoloration of SRB molecules. This
observation was consistent with the changes in TOC. TOC’s increase in the first hour of irradiation
is due to photodesorption of the dye or the formation of intermediates. After a gradual decrease to
the steady state, the TOC remained unchanged because the degraded fragments were not further
decomposed with longer irradiation.
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Figure 3. (a) TEM images of (i) BiOI-110 and (ii) BiOI-001. (b) Photodegradation of BPA and (c)
reduction of TOC under different conditions: A—without photocatalyst and visible light, B—with
BiOI-001 in the dark, C—with BiOI-110 in the dark, D—with BiOI-001 and visible light, and E—with
BiOI-110 and visible light (reproduced with permission from [39]. Copyright American Chemical
Society, 2015). (d) Photodegradation of SRB and changes in (e) COD and (f) TOC under light irradiation
over (i) TiO2, (ii) TiO2-Pt (0.1 wt.%), (iii) TiO2-Pt (0.2 wt.%), and (iv) TiO2-Pt (0.5 wt.%) (reproduced
with permission from [40]. Copyright American Chemical Society, 2002).

3.4. Pseudo Kinetics

To quantify the heterogeneous photodegradation activity, the Langmuir–Hinshelwood (L-H)
model is usually considered, as shown in Equation (2).

−
dC
dt

=
kKC

1 + KC
, (2)

where K and k are the thermodynamic adsorption constant and photodegradation rate constant,
respectively. Because one of the reactants acts as a photocatalyst whose concentration remains
unchanged, the reaction kinetics can be simplified, and the term “pseudo” is used to prefix the reaction
rate expression. At high concentrations of dye, the photocatalyst surfaces are fully covered, leading to
the approximation of (1 + KC) to KC. A pseudo zero-order reaction is, thus, observed for saturation
coverage on the surface of the photocatalyst [41], since the photodegradation rate is independent of
the change in the dye concentration, as shown in Equation (3).

−
dC
dt

= k. (3)
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Integrating the equation under the boundary conditions C = C0 at t = 0 and C = 1
2 C0 at t = t1/2

respectively yields
C0 −C = k0t, (4)

t1/2 =
C0

2k
. (5)

A plot of C0 − C vs. irradiation time gives a slope equal to the zero-order rate constant (k0).
Additionally, the half-life (t1/2) is the time required to photodegrade half of the initial dye concentration,
which is used to quantitatively compare the photodegradation reaction. Therefore, the zero-order t1/2

can be expressed by Equation (5), and it increases with the initial concentration of dye molecules. On
the other hand, at low initial concentrations of dye molecules, i.e., (KC + 1)–1, a pseudo first-order rate
expression is obtained [42], as shown in Equation (6). The equation is valid by assuming the driving
force of degradation is constantly proportional to the dye concentration.

−
dC
dt

= k1C, (6)

where k1 corresponds to the first-order rate constant. Integrating the equation under the two boundary
conditions yields

ln
(C0

C

)
= k1t, (7)

t1/2 =
ln 2

k
=

0.6932
k

. (8)

The linear region can be obtained from the plot of ln(C0/C) vs. irradiation time, in which the slope
gives the rate constant of photodegradation. This model is the most common one used to represent the
entire photodegradation process. Here, the half-life is derived from Equation (8). Obviously, the t1/2 of
the first-order model is independent of the dye concentration.

Conversely, Kumara et al. reported that the photodegradation of AO over ZnO photocatalysts
followed second-order kinetics [43]. A second-order reaction in which a single reactant is involved is
characterized by the chemical reaction (2 C→ products).

At equilibrium, the second-order kinetics depends on the amount of dye molecules adsorbed on
the photocatalyst surface, which is calculated as follows:

−
dC
dt

= k2C2. (9)

Similarly, by integrating the equation under the two boundary conditions, the second-order rate
constant (k2), as well as t1/2, can be obtained. The second-order t1/2 increases as the initial concentration
is decreased.

1
C
−

1
C0

= k2t; (10)

t1/2 =
1

kC0
. (11)

3.5. Quantum Yield of Photodegradation

The photodegradation efficiency is difficult to directly compare with other reported values, since
the photodegradation rate constant is affected by various operational effects (see Section 4). In order
to objectively estimate the efficiency of the photodegradation reaction, quantum yield (φ) is used
and defined as the number of reacted charge carries for dye molecule decomposition per absorbed
photon. The apparent quantum yield (AQY) on the other hand is calculated by dividing the number of
charge carries participating in degrading dye molecules by the incident photons. Because the absorbed
photons are a certain fraction of the incident photons, the φ value is basically higher than the AQY.
Bora et al. estimated the AQY of MB photodegradation over Au nanoparticle-decorated ZnO nanorods
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(Au–ZnO NRs) [44]. The morphology of Au–ZnO is shown in Figure 4a. It was reported that the
photodegradation of MB is initiated by accepting one electron to form semi-reduced MB, followed by
further accepting one electron to produce LMB. As a result, two electrons are required for the complete
degradation of MB molecules, and the AQY of MB photodegradation can be calculated as follows:

AQY(%) =
2×number o f MB molecules
number o f incident photons × 100%

= 2nMBNAhc
PlightSλt × 100%,

(12)

where nMB (mol) stands for the amount of MB degraded during the irradiation period, NA (mol−1) is
Avogadro’s constant, Plight (W/m2) is the incident power density, S (m2) is the irradiation area, t (s) is
irradiation time, h is Planck’s constant, and λ is the wavelength of incident light. As shown in Figure 4b,
all the AQY values of Au–ZnO from 300 to 600 nm were higher than those of bare ZnO NRs and MB
only, which was ascribed to the enhanced charge separation at the Au–ZnO interface. The highest AQY
value obtained from Au–ZnO exceeded 30% in the UV region, while the bare ZnO NRs showed fairly
low photodegradation activity in the visible region and almost no activity at wavelength longer than
450 nm. On the other hand, Au–ZnO NRs showed a six-fold increase of AQY over bare ZnO NRs in
the visible region, which can be attributed to the plasmonic effect of Au. In addition, the BiOBr/Bi2O3

heterostructures were demonstrated for photodegradation of an RhB/p-cresol mixture [45]. The SEM
image showed that the composites comprised BiOBr platelets arranging in whorls perpendicular to the
Bi2O3 surface (Figure 4c). Under blue light-emitting diode (LED) light (430–470 nm) irradiation, the
AQY value of p-cresol photodegradation in the mixture was substantially higher than the value of RhB
due to the carrier transfer from RhB to the co-adsorbed p-cresol. Note that there is no photobleaching
of RhB as the RhB is unable to absorb blue light (Figure 4d).Catalysts 2019, 9, x FOR PEER REVIEW 11 of 32 
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Figure 4. (a) SEM image of Au–ZnO and (b) AQY of MB photodegradation on MB only, ZnO NRs,
and Au–ZnO NRs in the wavelength range from 300–600 nm (reproduced with permission from [44].
Copyright Nature Publishing Group, 2016). (c) SEM image of BiOBr/Bi2O3 composites and (d) the
corresponding AQY of RhB (red) and p-cresol (green) photodegradation under blue, green, and red
light-emitting diode (LED) light irradiation (reproduced with permission from [45]. Copyright Royal
Society of Chemistry, 2017).
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In addition, Shams-Ghahfarokhi et al. reported the calculation of the φ value from the first-order
rate constant of photodegradation process [15,46] using the following equation:

φ =
k1

2.303× I0,λ × ελ × l
, (13)

where k1 (s−1) stands for the photodegradation first-order rate constant, Io,λ (Einstein l−1s−1) is the
incident intensity at wavelength λ, ελ (cm−1M−1) represents the molar absorptivity at wavelength λ,
and l states the cell path length (cm).

4. Factors Influencing the Photodegradation Reaction

A heterogeneous photocatalytic reaction is composed of two consecutive steps. Firstly, dye
molecules interact with the photocatalyst and are adsorbed onto its surface; then, the photodegradation
of the dye commences. The overall efficiency of a photocatalysis system is closely dependent on
operational parameters that dictate the adsorption and photodegradation of dye molecules. Herein,
possible factors affecting the photodegradation reactions are discussed in detail.

4.1. Interaction between Dye Molecules and Photocatalysts

Adsorption is the initial step of the photodegradation reaction prior to the decoloration of dye
molecules, which is, thus, an important process for initiating the photodegradation reaction. Both the
surface of the photocatalyst and the structure of the dye molecule affect their interactions. Two of the
most important interactions between the dye molecules and the photocatalysts are direct bonding and
electrostatic interactions. Chemical bonding between functional groups of the dyes and the surface
sites of the photocatalysts is a strong interaction to anchor dyes on to photocatalysts [47,48]. For
example, RhB with a carboxylic group was demonstrated to bond onto the surface hydroxyls of TiO2

via an esterification reaction [48]. On the other hand, dye adsorption via electrostatic interaction
depends on the nature of dyes, surface properties of photocatalysts, and solution pH. Essentially, the
dye adsorption is determined by the strength of the ionic interactions between photocatalysts and
dye molecules. An aqueous solution containing salts has a certain value of ionic strength (I), which is
defined as

I =
1
2

(
C1z2

1 + C2z2
2 + . . .+ Cnz2

n

)
=

1
2

∑
Ciz2

i , (14)

where zi is the charge of the salts, and Ci is molar concentration. Higher ionic strength of the solution
is obtained as the concentration of salts increases. Chen et al. demonstrated the influence of ionic
strength on the adsorption of PR dye by tuning the concentration of NaCl [49]. The results showed a
decreased adsorption capacity upon increasing the ionic strength because the adsorption of charged
moieties competed with that of dye molecules or adsorbents in the solution. Similar results were also
published [50–52].

Furthermore, the variation of pH value in the solution modifies the electrical double layer of the
photocatalysts, which is composed of the charged surface of the photocatalyst and dye molecules in
solution. Thus, a high adsorption capacity can be found when anionic or cationic dyes are respectively
adsorbed on the photocatalyst surface at acidic or basic pH. The electrical double layer refers to the two
layers between the photocatalyst and the bulk solution. Here, the region with dye molecules adsorbed
onto the surface-charged photocatalyst is called the Stern layer. The surface-charged photocatalysts
create an electrostatic field which affects the dye molecules in the solution, forming the first layer of the
electrical double layer. The second diffusion layer is loosely associated with the photocatalyst and is
composed of dye molecules that diffuse in the solution under the influence of electrostatic attraction.
The electric potential at this plane is called the zeta potential, while the point of zero charge (pzc) forms
where the zeta potential is 0. Depending on the solution pH, either positive or negative charges can be
formed on a surface, since H+ and OH− are the charge-determining ions for most surfaces.
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Amphoteric characteristics were observed in many photocatalyst materials, for example,
g-C3N4 [53], TiO2 [54], and most metal oxides. The formation of metal hydroxyl groups (M–OH) is
attributed to the adsorption of H2O molecules and dissociation of OH− groups at surface metal sites.
When the solution pH is higher than the pzc of photocatalysts, their surface is negatively charged; it
is positively charged at pH value < pzc of the photocatalysts. The equilibrium of amphoteric metal
hydroxides under acidic and alkali conditions can be considered as

M-OH + H+
→M-OH−H+

→M−H2O+, (15)

M-OH + OH−→M−O− + H2O. (16)

Therefore, at lower pH, protonation of the photocatalyst creates a surface with a positive charge,
making the photocatalyst behave as a strong Lewis acid [55]. The anionic dye, with strongly ionized
anionic groups, serves as a strong Lewis base and can be readily adsorbed on the positively charged
photocatalyst surface, as shown in Figure 5a. This adsorption process is not favorable for negatively
charged photocatalysts because of electrostatic repulsion [56], giving rise to negligible adsorption and
a subsequent low degradation rate when pH > pzc of the photocatalyst. Bourikas et al. reported that
the adsorption of AO7 on the surface of TiO2 cannot occur at a pH value higher than 7 [57] due to the
electrostatic repulsion arising from the negative sulfonic group of the azo dye. Similar results were
also observed for other anionic dye systems [58–60]. On the other hand, cationic dyes preferred to
adsorb on the negatively charged photocatalysts in alkaline media. Bubacz et al. observed an increased
photodegradation rate of MB on anatase TiO2 with an increase in pH [61]. Fan et al. demonstrated that
polyacrylonitrile fiber–hyperbranched polyethylenimine (PANF-g-HPEIs) activated with solutions at
different pH may selectively adsorb cationic or anionic dyes [62]. Figure 5b,c show that PANF-g-HPEIs
pre-treated with solution at pH = 5 can selectively adsorb the anionic MO dye from an MB/MO mixture,
while PANF-g-HPEIs can selectively adsorb the cationic MB molecules after being pre-treated with
solution at pH = 10.Catalysts 2019, 9, x FOR PEER REVIEW 13 of 32 
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under acidic and alkali conditions. Evolution of UV–visible absorption spectra of MO/MB mixed
solution in the presence of PANF-g-HPEIs pre-treated at (b) pH = 5 and (c) pH = 10 (reproduced with
permission from [62]. Copyright Elsevier Science Publishers, 2015).

Zhao et al. investigated the photodegradation efficiency for RhB-sensitized BiOCl nanostructures
at pH 3.36 and pH 11.08 [63], as shown in Figure 6. Note that the self-photosensitization of cationic
RhB adsorbed on negatively charged BiOCl nanostructures can degrade MO and RhB molecules at
pH 3.36 and pH 11.08 (see Section 5.2). Both RhB and MO display efficient photodegradation within
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5 min of visible irradiation at pH 3.36. However, the photodegradation of both RhB and MO was
suddenly depressed in an alkali solution with pH 11.08, indicating the pH of solution strongly affects
the electrical double layer, even though RhB can adsorb onto BiOCl nanostructures at both pH 3.36
and pH 11.08. In an acidic solution with pH 3.36, the presence of a high concentration of H+ ions may
push the cationic RhB molecules into the Stern layer, because of the electrostatic repulsion between H+

ions and cationic RhB molecules in the diffusion layer, thus improving the electron transfer from RhB
to BiOCl and the following photodegradation reaction. On the other hand, the electrostatic attraction
of the increased OH− ions to the cationic RhB molecules causes more RhB to stay in the diffusion layer
in an alkali solution with pH 11.08, hindering the electron transfer from RhB to BiOCl and resulting in
less efficient photodegradation.
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Chen et al. further utilized the amphoteric properties of organosilica nanoparticles (OSNPs) to
recover anionic PR molecules [49], based on the surface charge change of the OSNPs in acidic and
alkali solutions. The morphology of the OSNP is shown in Figure 7a,b, which displays the apparent
color of OSNP changing from white to pink. Interestingly, by controlling the pH of the solvent,
PR was desorbed from the surface of the OSNPs in an NaOH solution, and the color of the OSNP
returned to white, due to the negatively charged surface of the OSNP in NaOH solution. As can be
seen in Figure 7c, the zeta potential of OSNPs returned to its initial value after PR desorption, which
confirmed that OSNPs were stable during adsorption and desorption. Additionally, Figure 7d shows
that adsorption/desorption tests of anionic PR molecules can be repeated for 10 cycles, further pointing
out the high stability of OSNPs.

However, Kong et al. found a decline of the MB photodegradation reaction rates at high alkali
pH [64], as shown in Figure 8. Although electrostatic attraction occurs between the cationic MB
molecules and negatively charged surface of Ta-doped ZnO at alkali pH, the otherwise Coulombic
repulsion of the negatively charged Ta-doped ZnO surface against the OH− ions results in the breakage
of hydroxylation of the ZnO surface. The Coulombic repulsion was reported for other cationic
dyes (MB, RhB) at pH 9.5, which can reduce the number of ·OH radicals and thereby decrease the
photodegradation rate [65]. The steric structure of dyes also affects the adsorption process. Both MB
and RhB are cationic dyes; however, research shows that MB exhibits a higher photodegradation
rate than RhB, which can be attributed to the steric repulsion of the carboxylate anions in RhB which
inhibits the extent of adsorption [65].
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4.2. Operational Parameters

4.2.1. Initial Dye Concentration

The initial concentration of organic dyes strongly affects the photodegradation reaction. Saquib et al.
demonstrated the photodegradation of gentian violet (also known as CV) with varying concentrations
from 0.18 mM to 0.5 mM [66]. The photodegradation rate and TOC increased with the concentration of
gentian violet up to 0.25 mM and then declined, as shown in Figure 9a. Kumar et al. reported that the
degradation efficiency of VBB over TiO2/polyaniline (PAni)/graphene oxide (GO) decreased with an
increase in initial dye concentration [67], as shown in Figure 9b. This phenomenon was studied for
other dye molecules, including the AR14/TiO2 [3] and other systems [13,14,68,69]. Figure 9c shows the
photodegradation of three different dye molecules (MG, MB, and RhB) over Fe3O4/reduced graphene
oxide (rGO) photocatalysts [70]. The photodegradation efficiency also decreased with the increase in
dye concentration.
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Figure 9. Effect of dye concentration for (a) gentian violet photodegradation on TiO2 (reproduced with
permission from [66]. Copyright Elsevier Science Publishers, 2003); (b) VBB photodegradation on TiO2,
TiO2/PAni, and TiO2/PAni/GO (reproduced with permission from [67]. Copyright John Wiley and Sons,
2018); (c) MG, MB, and RhB photodegradation on Fe3O4/rGO. (reproduced with permission from [70].
Copyright Royal Society of Chemistry, 2016). Insets of (b) and (c) are TEM images of TiO2/PAni/GO
and Fe3O4/rGO, respectively.

The adsorption of dye molecules on the photocatalyst surface affects its ability of photon absorption
and the subsequent generation of reactive radicals, posing a significant impact on the photodegradation
rate. As the initial dye concentration increased, several monolayers of adsorbed dye formed, resulting
in more adsorbed dye molecules available for photodegradation. Until reaching the critical level,
constant reaction rate is obtained because the surface is completely covered. The photodegradation
rate is, however, decreased with further increases in dye concentration. A high amount of adsorbed
dye may have an inhibitive effect on the reactions between dye molecules and reactive radicals [71],
since the excessive dye concentration may hinder light penetration to the solution [72] and fewer
photons can reach the photocatalyst surface. Therefore, the generation of charge carriers and reactive
radicals is simultaneously reduced, resulting in a decrease of photodegradation efficiency.

4.2.2. Light Intensity

It was shown that the photodegradation rate increases linearly with increasing light intensity at
low light intensity. Figure 10a shows that the photodegradation of 2,4-dichlorophenoxyacetic acid
(2,4-D) increased as light intensity increased from 100 to 600 lx [73], with the efficiency proportional to
the light intensity. In Figure 10b, the photodegradation of benzene on nitrogen-doped TiO2 was still
enhanced by increasing light intensity, but the efficiency was nonlinearly increased [74]. With further
increases to higher light intensity, the photodegradation rate became independent of light intensity. It is
proposed that, at low light intensity, the separation of photoexcited electrons and holes competes with
their recombination, thus impeding the generation of reactive radicals. The electron–hole generation
becomes the predominant process as light intensity increases, resulting in a higher photodegradation
rate. However, the total active sites for photodegradation remains constant and, therefore, the reaction
rate shows a maximum value, even though the light intensity continues to increase [75].
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4.2.3. Reaction Temperature

Not only do initial dye concentration and light intensity possess optimal conditions, but an optimal
temperature range also exists for photodegradation. Low temperature favors the adsorption of the
reactant, which is a spontaneous exothermic process, whereas the apparent activation energy increases
as the temperature decreases close to 0 ◦C. Low temperature also favors the adsorption of the final
product, albeit while decreasing the number of active sites. Therefore, compared to photodegradation
and the adsorption of reactants, the slower desorption of product inhibits the reaction and serves as
the rate-limiting step under low reaction temperatures. In contrast, when the temperature increases up
to the boiling point of the solvent (water for most of the cases), the exothermic adsorption of reactants
becomes disfavored, thus limiting the photodegradation reaction [76]. Charge-carrier recombination is
also substantially promoted [77] as the reaction temperature exceeds 80 ◦C. At higher temperatures,
the enhanced kinetic energy of dye molecules might allow them escape from the the photocatalyst
surface [78], leading to decreased photodegradation efficiency. Thus, the adsorption of dye molecules
becomes the limiting step at high temperatures. As a result, reaction temperatures between 20 and
80 ◦C [15] are considered as the desired temperature for the effective photodegradation of dye molecules.

4.3. Intrinsic Properties of Photocatalysts

The photodegradation efficiency can be enhanced by increasing the photocatalyst amount, which
is a feature of heterogeneous photocatalysis. The increased photocatalyst amount provides more active
sites for the discoloration of dye solution. However, beyond a certain amount, the reaction solution
turns into turbid and is subjected to limited light penetration to the photocatalyst surface, leading to
the inhibition of the photodegradation reaction.

In addition, the intrinsic properties of the photocatalyst, such as light absorption range, redox
potential, charge separation efficiency, and stability, strongly affect the photodegradation activity.
The fast charge recombination of a single-component material limits its photodegradation efficiency.
Additionally, the single-component photocatalyst cannot simultaneously satisfy the requirement
of large redox potential and wide light absorption. To improve the photocatalytic efficiency,
a variety of studies were devoted to exploring new heterostructure systems and using them in
the photodegradation reaction. Typical strategies include element doping, metal decoration, and
semiconductor modification (type II and Z-scheme heterostructures), which can broaden the light
absorption range to enhance the light utilization and inhibit charge recombination. Among the
aforementioned factors, charge-carrier dynamics are crucial for determining the overall photocatalytic
efficiency. It is, thus, of great importance to study the underlying charge-carrier dynamics in
semiconductor photocatalysts. Time-resolved PL (TRPL) techniques were demonstrated to be a
powerful tool to observe the charge transfer processes of semiconductor heterostructures. In this
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section, the implication of charge-carrier dynamics in the photodegradation efficiency for the three most
relevant heterostructure systems, i.e., metal–semiconductor, type II semiconductor–semiconductor,
and Z-scheme semiconductor–metal–semiconductor heterostructures, is discussed.

4.3.1. Modification with Metals

Au–CdS metal–semiconductor nanocrystals were demonstrated to photodegrade RhB
molecules [79]. Using TRPL to study the photoexcited charge transfer kinetics, Figure 11a,b display
the TRPL spectra for two Au–CdS nanocrystals with different shell thicknesses (14.0 nm and 18.6 nm).
Compared with their CdS counterpart, obtained by etching Au cores, a fast decay was found in Au–CdS
samples, indicating electron transfer from CdS to Au. This difference became more noticeable for
Au–CdS with shell thickness increasing to 18.6 nm, suggesting much more pronounced electronic
interaction between CdS and Au. By further analysis with biexponential kinetics, the interfacial
charge transfer rate constant (ket) was estimated. In addition, the photodegradation rate constant
(kRhB) changed with CdS thickness in the core–shell nanocrystals, as shown in Figure 11c. It was
enhanced with increasing shell thickness due to the raised ratio of CdS to Au, which led to greater
light absorption and, thus, generation of more charge carriers. The correlation among kRhB, ket, and
CdS shell thickness is shown in Figure 11d. The change in kct with CdS shell thickness was consistent
with the trend of kRhB, revealing that efficient charge separation can provide a hole-enriched CdS shell
for the photodegradation reaction and further enhance the photodegradation efficiency.Catalysts 2019, 9, x FOR PEER REVIEW 18 of 32 
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Figure 11. TRPL spectra (dots) and fitting results (solid curves) of Au–CdS and pure CdS nanocrystals
with shell thicknesses of (a) 14.0 nm and (b) 18.6 nm (inset shows the corresponding TEM images, with
scale bar of 20 nm). (c) RhB photodegradation under visible irradiation and (d) correlations of ket and
kRhB for Au–CdS nanocrystals with different shell thicknesses (reproduced with permission from [79].
Copyright American Chemical Society, 2010).

Moreover, the metal content and composition were tuned in a metal (Ag, Au, Pd)-decorated
ZnO system for photodegradation of MB in ethanol [80]. The morphology of ZnO–Au with different
Au contents is shown in Figure 12a. The Au content is obviously increasing and was measured
to be 0.6 at.%, 1.0 at.%, 1.3 at.%, 2.0 at.%, and 2.3 at.%. As shown in Figure 12b,c, an optimal Au
content for the photodegradation reaction was found, as excess metal loading for metal–semiconductor
heterostructures may compromise the effectiveness of the overall charge separation. Figure 12d also
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indicates that the photodegradation rate of ZnO–Pd was higher than that of ZnO–Au, while ZnO–Ag
was the worst. This is due to the most positive Fermi level potential of Pd. Larger differences between
the CB of ZnO and the Fermi level (EF) of the metal result in stronger driving forces for interfacial
charge transfer, giving rise to the most efficient charge separation for ZnO–Pd and the most effective
photodegradation of MB molecules.Catalysts 2019, 9, x FOR PEER REVIEW 19 of 32 
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This observation was in accordance with their interfacial charge transfer kinetics, indicating that an 
excess amount of CdSnO3 would reduce the overall charge separation efficiency and result in the 
depressed photocatalytic efficiency, as shown in Figure 13d. The amounts affecting the subsequent 
photodegradation performance were also proposed in ZnSe–ZnO [82], In2O3–TiO2–Pt [83], and 
Cu2O–rGO [84] heterostructures. These observations indicate that the interfacial charge transfer 
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and ZnS–Cu2O [86] also influence the photodegradation efficiency. 

Figure 12. SEM observations for (a1) pure ZnO and (a2–a6) ZnO–Au nanocrystals with increasing Au
content from 0.1 at.% to 2.3 at.%. (b) Photodegradation of MB on relevant photocatalysts under UV
irradiation. (c) Correlations of ket and kMB for ZnO–Au with different Au content and for (d) ZnO–metal
(Ag, Au, Pd) with different metal content (reproduced with permission from [80]. Copyright American
Chemical Society, 2016).

4.3.2. Modification with Semiconductors

CdS–CdSnO3 type-II heterostructures were also employed to investigate the effect of CdSnO3

content for the photodegradation of RhB [81]. Figure 13a shows the direct contact of CdS and CdSnO3,
and the content of CdSnO3 was precisely controlled. The surface-decorated CdSnO3 acts as an
efficient electron scavenger for CdS because of its lower CB level (+0.9 V vs. NHE) than the CB
level of CdS (−0.5 V vs. NHE), giving rise to the fast PL decay of CdS–CdSnO3, as shown in the
TRPL analysis in Figure 13b. As a result, the photoexcited electrons of CdS nanowires preferentially
transferred to CdSnO3 nanocrystals, leaving photoexcited holes in the CdS domain to react with RhB
molecules. As shown in Figure 13c, the photodegradation rate was enhanced with CdSnO3 content
increasing from 1.25 at.% to 2.5 at.%, and then depressed with further increases in CdSnO3 content.
This observation was in accordance with their interfacial charge transfer kinetics, indicating that an
excess amount of CdSnO3 would reduce the overall charge separation efficiency and result in the
depressed photocatalytic efficiency, as shown in Figure 13d. The amounts affecting the subsequent
photodegradation performance were also proposed in ZnSe–ZnO [82], In2O3–TiO2–Pt [83], and
Cu2O–rGO [84] heterostructures. These observations indicate that the interfacial charge transfer
kinetics of the photocatalysts play an important role for the photodegradation of dye molecules.
Moreover, the composition and facet effects of heterostructure systems such as TiO2–Au@Cu7S4 [85]
and ZnS–Cu2O [86] also influence the photodegradation efficiency.
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Au nanoparticles on ST and the further growth of Cu2O on Au surface. By decreasing the volume of 
the Cu2+–citrate precursor, the shell thickness of the grown Cu2O can be tuned from 1.4 nm and 1.2 
nm to 1.1 nm, resulting in the modulation of interfacial charge transfer dynamics and, thus, the 
enhancement of photodegradation efficiency. As shown in Figure 14c, the ST–Au–Cu2O Z-scheme 
NBs showed higher photodegradation efficiency than ST–Au and ST–Cu2O type-II NBs, illustrating 
the superiority of Z-scheme heterostructures in photodegradation applications. Meanwhile, the 
highest photodegradation efficiency was achieved for ST–Au–Cu2O prepared with 50 µL of Cu2+–
citrate, which can be attributed to the most efficient charge transfer dynamics at the Cu2O thickness 
of 1.1 nm. As Figure 14d presents, the electron-scavenging rate constant (kes) for ST–Au–Cu2O was 
enhanced with decrease in Cu2O shell thickness, which can be ascribed to the quantum size effect of 
Cu2O. Since decreasing Cu2O shell simultaneously expanded the bandgap of Cu2O, its CB and VB 
respectively shifted toward higher and lower potential, giving a larger driving force of interfacial 
electron transfer for ST–Au–Cu2O and thereby improving the photodegradation efficiency. 

Figure 13. (a1–a4) TEM images for CdS–CdSnO3 with increasing CdSnO3 content from 1.25 at.% to
10.0 at.%. (b) TRPL analysis. (c) RhB photodegradation under visible irradiation and (d) correlations of
ket and kRhB for CdS–CdSnO3 with increasing CdSnO3 content (reproduced with permission from [81].
Copyright Elsevier Science Publishers, 2010).

4.3.3. Modification with Metals and Semiconductors

Na2-xTi3O7–Au–Cu2O Z-scheme heterostructure nanobelts (denoted as ST–Au–Cu2O NBs) were
demonstrated to photodegrade MB molecules [87]. Figure 14a,b display the successful decoration of
Au nanoparticles on ST and the further growth of Cu2O on Au surface. By decreasing the volume
of the Cu2+–citrate precursor, the shell thickness of the grown Cu2O can be tuned from 1.4 nm and
1.2 nm to 1.1 nm, resulting in the modulation of interfacial charge transfer dynamics and, thus, the
enhancement of photodegradation efficiency. As shown in Figure 14c, the ST–Au–Cu2O Z-scheme NBs
showed higher photodegradation efficiency than ST–Au and ST–Cu2O type-II NBs, illustrating the
superiority of Z-scheme heterostructures in photodegradation applications. Meanwhile, the highest
photodegradation efficiency was achieved for ST–Au–Cu2O prepared with 50 µL of Cu2+–citrate,
which can be attributed to the most efficient charge transfer dynamics at the Cu2O thickness of 1.1 nm.
As Figure 14d presents, the electron-scavenging rate constant (kes) for ST–Au–Cu2O was enhanced
with decrease in Cu2O shell thickness, which can be ascribed to the quantum size effect of Cu2O. Since
decreasing Cu2O shell simultaneously expanded the bandgap of Cu2O, its CB and VB respectively
shifted toward higher and lower potential, giving a larger driving force of interfacial electron transfer
for ST–Au–Cu2O and thereby improving the photodegradation efficiency.



Catalysts 2019, 9, 430 21 of 32
Catalysts 2019, 9, x FOR PEER REVIEW 21 of 32 

 

 
Figure 14. TEM images of (a) ST–Au and (b) ST–Au–Cu2O NBs. (c) Photodegradation of MB on 
relevant photocatalysts under visible irradiation (inset shows the TEM image of ST–Cu2O NBs). (d) 
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electron transfer for ST–Au–Cu2O (reproduced with permission from [87]. Copyright Elsevier 
Science Publishers, 2015.). 
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occupied molecular orbital (HOMO) levels of five representative dye molecules. Based on their band 
positions, the generation of reactive species in semiconductor photocatalysts can directly degrade 
dye molecules (see Section 5.1). Alternatively, the self-photosensitization of dye may occur to 
improve the generation of reactive species when the CB of photocatalysts is more negative than the 
LUMO level of dye molecules (see Section 5.2), finally dissociating the dye molecules. 

 
Figure 15. Scheme for the band structures of common photocatalysts, and potentials of the radical 
generation and HOMO and LUMO levels of five representative dye molecules. 
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In principle, the direct photodegradation of dye molecules involves the excitation of 
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Figure 14. TEM images of (a) ST–Au and (b) ST–Au–Cu2ONBs. (c) Photodegradation of MB on relevant
photocatalysts under visible irradiation (inset shows the TEM image of ST–Cu2O NBs). (d) Correlations
of kes and kMB with the amount of Cu2+–citrate and the driving force (−∆G) of interfacial electron transfer
for ST–Au–Cu2O (reproduced with permission from [87]. Copyright Elsevier Science Publishers, 2015).

5. Mechanism for Photodegradation of Dye

Figure 15 displays the redox potentials for the reactive species and the band structures of common
photocatalysts, along with the lowest unoccupied molecular orbital (LUMO) and highest occupied
molecular orbital (HOMO) levels of five representative dye molecules. Based on their band positions,
the generation of reactive species in semiconductor photocatalysts can directly degrade dye molecules
(see Section 5.1). Alternatively, the self-photosensitization of dye may occur to improve the generation
of reactive species when the CB of photocatalysts is more negative than the LUMO level of dye
molecules (see Section 5.2), finally dissociating the dye molecules.
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5.1. Direct Photodegradation Process

In principle, the direct photodegradation of dye molecules involves the excitation of semiconductor
photocatalysts under light irradiation, leading to the scavenging of photoexcited electrons by dissolved
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O2 in the solution, as the CB of the photocatalyst is more negative than the reduction potential
E(O2/·O2

−). The ·O2
- anion and H2O2 are, thus, formed. H2O2 can further transform into ·OH.

Meanwhile, the photoexcited holes can oxidize the adsorbed water to generate ·OH, as the VB of
photocatalysts are more positive than the oxidation potential E(H2O/·OH). These highly reactive
·O2
− and ·OH can oxidize or degrade the adsorbed dye molecules. In addition, the photoexcited

electrons and holes which are essentially active may also attack the dye molecules to complete the
photodegradation process.

To clarify the major contributor in the photodegradation reaction, several studies investigated the
change of the photodegradation rate in the presence of different scavengers, as listed in Table 2. Pu et
al. developed a Cu2O–rGO system (Figure 16a) and explored the photodegradation mechanism of
MO, with TBA used as the ·OH scavenger [84]. Figure 16b shows various control experiments for the
photodegradation of MO. No obvious change on MO photodegradation was found with the addition
of TBA, indicating that the photoexcited holes of Cu2O and the subsequent ·OH radicals were minor
factors. Furthermore, the photodegradation reaction was performed with purging using O2 and N2.
The MO photodegradation was abated under an N2 purge, whereas the photodegradation rate was
slightly enhanced under O2 purging, confirming that dissolved O2 in the solution played a crucial
role for the MO photodegradation. Figure 16c shows the pathway for the MO photodegradation in
the Cu2O/rGO system. Upon light irradiation, the photoexcited electrons transfer to the EF of rGO,
and the generation of ·O2

− occurs, degrading the MO molecules. As demonstrated by Zhao’s group,
·O2
− is one of the main active species for MO photodegradation [88], which was also confirmed by

the seriously depressed photodegradation of MO (to almost no activity) in the absence of O2. Li et al.
also confirmed that photoexcited holes are a minor active species and the dissolved O2 dominates the
MO photodegradation on g-C3N4 photocatalyst [89] because the formation of ·O2

- is affected by direct
reduction of O2. The presence of O2 also determines the production of ·OH via multistep reduction
of O2.

Table 2. Common scavengers used for active species trapping experiments.

Type Sacrifice Reagent Abbreviation

Electron scavenger
AgNO3 -

CCl4 -
K2Cr2O7 -

Hole scavenger

KI -
Ethylenediaminetetraacetic

acid EDTA, EDTA-2Na

Tri-ethanolamine TEOA
Ammonium oxalate AO

Sodium oxalate (Na2C2O4) -
Methanol -

Ascorbic acid AA

·OH scavenger tert-Butyl alcohol TBA, t-BuOH
2-Propanol IPA

·O2
− scavenger

Benzoquinone BQ
Acrylamide AC

Superoxide dismutase SOD
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Figure 16. (a) SEM and TEM (inset) observations and (b) MO photodegradation over Cu2O–rGO under
different experimental conditions. (c) Schematic illustration of the band structure and relevant redox
potentials for Cu2O–rGO (reproduced with permission from [84]. Copyright Elsevier Science Publishers,
2015). (d) High-resolution (HR) TEM image of AgSiO/Ag2CO3. (e) MB photodegradation under visible
irradiation in the presence of scavengers and (f) proposed mechanisms of photodegradation pathways of
MB on AgSiO/Ag2CO3 (reproduced with permission from [90]. Copyright Nature Publishing Group, 2017).

Cao et al. proposed that the photodegradation of MB on AgSiO/Ag2CO3 photocatalysts in
water was dominated by ·O2

− and photoexcited holes [90]. Figure 16d shows the morphology of
AgSiO/Ag2CO3 photocatalysts. With addition of IPA, the photodegradation rate slightly decreased,
suggesting ·OH was not the main active species (Figure 16e). Meanwhile, the addition of EDTA-2Na
and N2 purging resulted in a significant decrease of photodegradation efficiency, indicating the
important roles of ·O2

− and photoexcited holes in the photodegradation process of MB. The possible
photodegradation pathway is displayed in Figure 16f. This photodegradation pathway can be
supported by adding AgNO3 into the reaction solution. The suppression of the photodegradation
rate in the presence of AgNO3 is due to the decreased generation of ·O2

− from photoexcited electrons.
This outcome was also consistent with the g-C3N4 [91], ZnO/graphene [92], and C3N4–BiVO4 [93]
systems for the photodegradation of MB. The aforementioned scavenger experiments revealed that
major contributors for each dye molecule might be different. Table 3 specifies the dominating active
species for other commonly reported dye molecules.

Table 3. Active species for photodegradation of commonly reported dyes molecules.

Class Dye Active Species Photocatalysts

Cationic dye

RhB

H+ g-C3N4 [89]
H+ Ag/Ag3PO4 [94]

·O2
−/H+ BiVO4/TiO2 [95]

·O2
−/H+ BiOI/C [96]

H+ (major), ·O2
− (minor) CoFe2O4/BiO(Cl, Br, I) [34]

MB

·O2
−/H+ g-C3N4 [91]

·O2
−/ H+ ZnO/graphene [92]
·O2
− C3N4-BiVO4 [93]

·O2
−/H+ AgSiO/Ag2CO3 [90]

CV
·O2
− (major), h+/·OH (minor) BiOxCly/BiOmIn [97]

·O2
− (major), h+/·OH (minor) BiOxIy/GO [98]

·O2
−/h+ (major), ·OH (minor) BaFe2O4 [99]

MG
H+/·OH /·O2

− CuFe2O4 [100]
·OH/e−/H+ Fe3O4/TiO2/CuO [101]

·OH/e−/H+ (major), ·O2
− (minor) Ni-Bi2Se3 [102]

Rh6G
H+ (major) ·OH/·O2

− (minor) Curcumin/Bi0.5Na0.5TiO3 [103]
·O2
− Zn/Y [104]

H+/·O2
− Quantum dot/Eu-metal organic

framework [105]
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Table 3. Cont.

Class Dye Active Species Photocatalysts

Anionic dye

MO
·O2
− Cu2O-rGO [84]

·O2
−

2,9,16,23-tetracarboxyl
phthalocyanine/amorphous

TiO2 [88]
·O2
− (major) H+ (minor) g-C3N4 [89]

AO7
H+/·OH TiO2 [106]

h+ Ag/AgBr/SiO2-coated Fe3O4
[107]

CR
·OH ZrO2 [108]

H+/·OH CuS-Bi2CuxW1−xO6−2x [109]
H+ (major), ·OH (minor) SnO2 [110]

ARS ·OH/e−/H+ ZnS/carbon quantum dots [111]

AV7 ·O2
−/H+/·OH CdS/Ta2O5 [112]

RB5 H+ SrTiO3/CeO2 [113]

5.2. Sensitization-Mediated Degradation Process

When the photon energy is not high enough to excite photocatalysts to generate reactive charge
carriers and radicals, the photodegradation might occur via photosensitization process. Under visible
light illumination, a dye molecule can be excited to its excited state (LUMO level), producing abundant
excited electrons at the LUMO level. Provided that the LUMO of the dyes is more negative than the
CB of photocatalysts, these photoexcited electrons can then transfer from the dye molecules to the
photocatalysts, facilitating the generation of reactive species for commencing photodegradation. This
process is known as the photosensitization pathway. The LUMO levels for five representative dye
molecules in comparison with the CB levels of common photocatalysts are illustrated in Figure 15,
from which one can tell whether or not the photosensitization can occur. Zhao et al. demonstrated
the self-photosensitization process of RhB and MO over BiOCl hierarchical nanostructures [63], as
shown in Figure 17a. Note that the as-synthesized BiOCl exhibits a negatively charged surface in
the pH range from 2 to 11, suggesting the as-synthesized BiOCl can selectively adsorb cationic RhB
in RhB/MO mixtures. As shown in Figure 17b,c, RhB showed almost 40% adsorption prior to the
light irradiation, while MO showed a negligible adsorption. Upon visible light irradiation, although
BiOCl nanostructures cannot be excited with visible light since the bandgap of BiOCl is approximately
3.3 eV, the RhB dye was completely degraded within 15 min, whereas no photodegradation was
found for the MO/BiOCl system (Figure 17d). The RhB photodegradation was attributed to the
self-photosensitization of RhB, in which the photoexcited electrons are injected from the LUMO
level of RhB to the CB of the BiOCl nanostructures. The electrons on the BiOCl nanostructures
can subsequently reduce O2 to ·O2

− radicals, which further degrades the RhB molecules. The
self-photosensitization of MO should also be able to degrade the MO molecules; however, its poor
adsorption capacity inhibits the electron transfer from the excited MO to the CB of BiOCl. Therefore,
BiOCl nanostructures exhibited poor MO photodegradation efficiency. The self-photosensitization of
the RhB/BiOCl system can be further applied to the photodegradation of MO dye molecules, as shown in
Figure 17e. Compared to the extremely low MO photodegradation efficiency in the MO/BiOCl system,
apparently, the MO photodegradation efficiency was significantly enhanced in the MO/RhB/BiOCl
system, indicating that MO photodegradation is mediated by RhB via a photosensitization pathway.
Moreover, RhB still demonstrated a higher photodegradation efficiency in the MO/RhB/BiOCl system.
This photodegradation of dye molecules via the photosensitization process was reported in the cationic
new fuchsin/graphene quantum dots [114], RhB/Zn-doped BiOBr [115], MB and MO/Eu3+-doped
ZnO [116], and RhB/Nb2O5 [117] systems.
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6. Summary and Outlook

Most dyes have either a positive or a negative charge upon dissociation in aqueous solutions,
characteristic of cationic and anionic dyes, respectively. The pH of the solution modifies the electrical
double layer of the photocatalyst, affecting the interaction between dye molecules and photocatalysts,
the charge transfer for the self-photosensitization of dyes, and the subsequent decoloration efficiency, as
highlighted in this review. The optimization of other operational factors (i.e., initial dye concentration,
light intensity, reaction temperature) and charge-carrier properties of heterostructure photocatalysts
can establish the most efficient photodegradation system. In addition, research on the reactive species,
as well as the photosensitization pathway of dye molecules for photodegradation, is helpful to clarify
the overall decoloration mechanism, which is beneficial for further application to the degradation of
multicomponent industrial wastewaters. With strong progress in photocatalytic techniques, more
in-depth characterization and modeling of the photodegradation, and even mineralization processes
for multicomponent dyes in practical applications will be possible in the near future. Clearly, many
questions still remain unanswered or are poorly addressed, which are briefly outlined below.

Unlike other heterogeneous photocatalysis, such as photoelectrochemical water splitting and
CO2 reduction in which the solar-to-hydrogen (STH) and AQY are introduced to determine the
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photocatalytic efficiency for comparison, a quantitative comparison with AQY is relatively unexplored
for photodegradation reactions. The introduction of AQY into the photodegradation reaction provides
helpful information to understand the efficiency of semiconductor photocatalysts. However, for
visible-light-responsive photocatalysts, the feasible determination of photodegradation efficiency is
especially challenging due to the relatively high photoabsorption coefficient of dye molecules, as well
as the complicated mechanism of dye degradation [118].

Another major concern in reactions involving self-photosensitization of dye molecules is the
interactions between photocatalysts and multiple types of dye molecules, which are not always clear.
Limited studies described the underlying interactions and mechanisms. By using self-photosensitization
of dye molecules, both cationic and anionic dyes can be simultaneously decomposed, which has the
potential to degrade multicomponent dyes in real wastewater systems. However, for multicomponent
dye systems, the quantification of efficiency for each individual dye molecule is difficult to determine
with simple spectrophotometric methods especially when their absorption spectra overlap. The
development of a new method to easily and reliably obtain quantitative detection of dye molecules is
necessary for accurate estimation.
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