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Abstract: Carbon dioxide produced by human activities is one of the main contributions responsible
for the greenhouse effect, which is modifying the Earth’s climate. Therefore, post-combustion CO2

capture and its conversion into high value-added chemicals are integral parts of today’s green industry.
On the other hand, carbon dioxide is a ubiquitous, cheap, abundant, non-toxic, non-flammable and
renewable C1 source. Among CO2 usages, this review aims to summarize and discuss the advances
in the reaction of CO2, in the synthesis of cyclic carbonates, carbamates, and ureas appeared in the
literature since 2017.

Keywords: carbon dioxide; carbonylated heterocycles; carbonylation with carbon dioxide; carboxylation;
cyclic carbamates; cyclic carbonates; cyclic ureas; oxazolidinones

1. Introduction

The combustion of fossil fuels produces large amounts of waste gases. Among them, carbon
dioxide is one of the main contributions responsible for the greenhouse effect, which is modifying the
Earth’s climate [1]. Thus, post-combustion CO2 capture and its conversion into high value-added
chemicals are integral parts of today’s green energy industry. In fact, the usage of carbon dioxide as a
ubiquitous, cheap, abundant, non-toxic, non-flammable and renewable C1 source has great importance
from the viewpoint of both environmental protection and resource utilization.

Carbon dioxide has two polar carbonyl bonds, but its linear shape makes it non-polar, thus it
is a thermodynamically and kinetically relatively stable molecule. This feature represents the major
obstacle for CO2 utilization, which still remains rather limited. The CO2 conversion mainly depends
on efficient activation by appropriate catalysts, to enhance electrophilicity of the central carbon atom.

Over the past decade, the usage of CO2 as a building block to prepare valuable organic molecules
has attracted increasing attention [2–9]. Even a journal completely devoted to CO2 utilization started
to be published by Elsevier in 2013. Moreover, Poliakoff and Leitner proposed twelve principles of
CO2 chemistry that are a set of criteria for assessing the viability of different reactions in which CO2 is
the feedstock for making organic chemicals [10].

In addition to the carbon dioxide fixation [11,12], the classical carboxylation reaction [13–17],
the reduction to carbon monoxide or formic acid [18–21], and polymerization [22–24], the preparation
of useful heterocyclic carbonyl compounds such as cyclic carbonates, carbamates, and ureas attracted
the interest of many research groups. Recently, an account has been published on the reaction of CO2

with alcohols and amines into carbonates, ureas, and carbamates in the presence of ceric oxide as the
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catalyst [25]. Another recent report described some porous catalysts for CO2 capture and conversions
and aimed to be a guide to prepare new porous catalysts for the synthesis of cyclic carbonates [26].
Finally, a very recent review covered the synthetic strategies to cyclic urethanes from amines and CO2

and N-methylation, N-formylation from amines, CO2 and H2 [27].
Heterocyclic systems are widespread structures in natural products and artificial compounds

(over 90% of new drugs contain at least one heterocyclic moiety). Heterocycles are also important
building blocks for multistep synthesis. Therefore, the development of new methods for their synthesis
is always welcome in the chemical community, in particular if these methods benefit from cheap,
simple, and readily available starting materials. Notwithstanding the strong effort of Vessally [28–33]
and others [34–37] to review large part of the synthesis of heterocycles by CO2 fixation, many papers
appeared in the literature in the last years, making an update necessary. Therefore, this review aims to
summarize and discuss the recent advances in the reaction of CO2, for the synthesis of cyclic carbonates,
carbamates, and ureas.

The synthesis of these heterocycles can occur by two main mechanisms on molecules carrying a
nucleophilic and an electrophilic site:

• The nucleophilic site (eventually enforced by a base) can add to the carbon atom, to form the
corresponding carboxylate, which in turn adds at the electrophilic site to close the cycle (Scheme 1,
Equation (1)).

• A catalyst is able to fix the carbon dioxide leading to a zwitterionic species. The carboxylate
moiety of this activated species attacks an electrophilic site of the substrate molecule. Then the
nucleophilic site closes the cycle, releasing the catalyst (Scheme 1, Equation (2)). N-heterocyclic
carbenes (NHCs), N-heterocyclic olefins (NHOs), phosphorus ylides, polyoxometalates (POMs),
ionic liquids (ILs), frustrated Lewis pairs (FLPs), metal-organic frameworks (MOFs) or superbases
have been used for this scope.
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2. Cyclic Carbonates

Cyclic carbonates find applications as electrolytes in lithium ion batteries in pharmaceuticals,
products for agriculture, and as starting materials for polycarbonates [38–40]. Moreover, propylene
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carbonate is considered as a green polar aprotic solvent, because it has high boiling and flash points,
low odor level and toxicity and biodegradability. The production of cyclic carbonates from CO2 is fully
atom-economical and uses a safe gas, instead of toxic gases such as phosgene.

The reaction of carbon dioxide with epoxides [41–45] as well as with propargyl alcohols [2] has
been widely reviewed in the past years. However, in the last two years a large production of research
articles on this topic has appeared in the literature and they are summarized in Table 1. The generally
accepted mechanism for the reaction of epoxides and carbon dioxide described in Table 1 is depicted in
Scheme 2.

Catalysts 2019, 9, x FOR PEER REVIEW 3 of 59 

 

The reaction of carbon dioxide with epoxides [41–45] as well as with propargyl alcohols [2] has 
been widely reviewed in the past years. However, in the last two years a large production of research 
articles on this topic has appeared in the literature and they are summarized in Table 1. The generally 
accepted mechanism for the reaction of epoxides and carbon dioxide described in Table 1 is depicted 
in Scheme 2.  

 
Scheme 2. The mechanism of the addition of CO2 to epoxides. 

Table 1. Catalysts for the reaction of epoxides and carbon dioxide (R and R1 see Scheme 2). 

Entry R, R1 
PCO2 

(MPa) 
Conditions Yield 

(%) 
Ref 

Homogenous metal catalysts 

1 
R=H, R1=Me, Ph, 

CH2Cl, CH2OAllyl 
R=R1=(CH2)4 

1.2  or  
Bu4NBr (0.3 mol% each), 80 °C, 6 h 

16–92 [46] 

2 
R=H, R1=Me, Ph 

R=R1=(CH2)4 2.0 
 

(0.2 mol%) Bu4NBr (0.4 mol%),  
120 °C, 5–18 h 

87–99 [47] 

3 

R=H, R1=Me, Et, Bu, 
Ph, n-C6H13, CH2Cl, 

, Me2, 
CH2OPh, CH2OBn, 

CH2O(9H-carbazol-4-
yl), 

R=R1=(CH2)4, 

CH2CH(vinyl)(CH2)2 

0.5 

  
(0.3 mol%), Bu4NBr (3 mol%), 25 °C (80 

°C for internal epoxides), 24 h  

49–99 [48] 

O

R R1

OO

O

R R1

catalyst

O

R R1

catalyst
source of
halide

R
R1

O

X

catalyst

CO2R
R1

O

X

O

O
catalyst

N N

N
NH2

NN

N
H2N

Zn N N

N

FZn

N
V

O O
t -Bu

t-Bu

t -Bu

t -Bu
O

O OMe

O
Cl

NN N
NN

Pr

N NN
N N

PrFe

2+

2 I-

Scheme 2. The mechanism of the addition of CO2 to epoxides.

Table 1. Catalysts for the reaction of epoxides and carbon dioxide (R and R1 see Scheme 2).

Entry R, R1 PCO2 (MPa) Conditions Yield (%) Ref

Homogenous metal catalysts

1
R=H, R1=Me, Ph,

CH2Cl, CH2OAllyl
R=R1=(CH2)4

1.2
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Table 1. Cont.

Entry R, R1 PCO2 (MPa) Conditions Yield (%) Ref

Homogenous metal catalysts

4

R=H, R1=Ph, Me, Bu,
n-C8H17, n-C10H23,
CH2OH, CH2OPh,
CH2Cl, 4-ClC6H4,

4-BrC6H4

1.0
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Table 1. Cont.

Entry R, R1 PCO2 (MPa) Conditions Yield (%) Ref

Homogenous metal catalysts

9

R=H, R1=Et, Me2,
(R)-Me, (R)-Ph,

4-FC6H4, n-C6H13,
(CH2)2CH=CH2, vinyl,

CH2Cl, CH2OH,
CH2Ot-Bu,

CH2OPropargyl,
CH2OCH2furyl,

CH2Ometacrylate
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Table 1. Cont.

Entry R, R1 PCO2 (MPa) Conditions Yield (%) Ref
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Table 1. Cont.

Entry R, R1 PCO2 (MPa) Conditions Yield (%) Ref

Homogenous metal catalysts

19 R=H, R1=Ph,
4-ClC6H4, Bu, CH2Cl

5.0
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Table 1. Cont.

Entry R, R1 PCO2 (MPa) Conditions Yield (%) Ref

Homogenous organocatalysts

25

R=R1=(CH2)4, (CH2)3,
CH2OCH2,

CH2N(Bn)CH2, Me

(c:t=94:6),
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Table 1. Cont.

Entry R, R1 PCO2 (MPa) Conditions Yield (%) Ref

Homogenous organocatalysts

33 R=H, R1=Me, Ph, Bu,
n-C6H13, CH2Cl

0.5
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Table 1. Cont.

Entry R, R1 PCO2 (MPa) Conditions Yield (%) Ref

Homogenous organocatalysts
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Table 1. Cont.

Entry R, R1 PCO2 (MPa) Conditions Yield (%) Ref

Homogenous organocatalysts

44

R=H, R1=Me, Et, Bu,
(CH2)2CH=CH2,

n-C6H13, Ph, CH2Cl,
CH2OBu, CH2OPh,

CH2OAllyl, Me2,
Me(CH2Cl),

CH2O(9H-carbazol-4-yl)

0.1
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(4 mol%), 80 °C, 24 h 

43–95 

46 

R=H, R1=Ph, n-C6H13, 
Bu, CH2OAllyl, 

CH2OBn, CH2Cl, 
CH2OH, 

0.1 
 

(10 mol%), 70 °C, 4 h 

65–87 [85] 

Heterogeneous catalysts 

47 R=H, R1=Me, Et, Ph, 
CH2Cl, CH2Br, 

0.1 HUST-1-Co (0.8 mg/mmol), Bu4NBr (7 
mol%), rt, 30–48 h  

93–97 [86] 

48 
R=H, R1=Me, Et, Ph, 
CH2Cl, n-C6H13, n-
C10H21, CH2OAllyl 

1.0 Al-HPC (0.25 mmol%), Bu4NBr (2 
mol%), 40 °C, 1–24 h 

85–99 [87] 

49 

R=H, R1=Me, Et, Ph, 
CH2Cl, n-C6H13, n-
C10H21, CH2OAllyl 

R=R1=(CH2)4 

1.0 Al-iPOP-1 or Al-iPOP-2  
(0.1 mol%) 40 °C, 3–36 h 

8–99 (1) 
14–99 

(2) 
[88] 

50 R=H, R1=CH2Cl 0.1 Zn-Co/ZIF, 80 °C, 24 h 57 [89] 

51 

R=H, R1=Me, Ph, 
CH2OPh, CH2Cl, 

CH2OAllyl, 

R=R1=(CH2)4, (CH2)6 

0.7 
Zn-Co/ZIF-67 (Zn:Co 1:9)  

(50 mg), 100 °C, 2–18 h 8–99 [90] 

52 R=H, R1=Me, Ph, Bn, 
CH2Cl 

1.0 cCTF-500 (4% wt), 90 °C, 12 h 36–99 [91] 

53 0.4 PGDBr-5–2OH (1.9 mol %),  
70 °C, 4–48 h 90–98 [92] 
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95–73

[84]

45

R=R1=Me, (CH2)3,
(CH2)4, CH2OCH2,

R=C8H17,
R1=(CH2)7CO2Me,

(CH2)7CO2Et,
(CH2)11CO2Me,
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(50 mg), 100 °C, 2–18 h 8–99 [90] 
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(10 mol%), 70 ◦C, 4 h

65–87 [85]

Heterogeneous catalysts

47 R=H, R1=Me, Et, Ph,
CH2Cl, CH2Br,

0.1 HUST-1-Co (0.8 mg/mmol), Bu4NBr (7
mol%), rt, 30–48 h 93–97 [86]

48
R=H, R1=Me, Et, Ph,

CH2Cl, n-C6H13,
n-C10H21, CH2OAllyl

1.0 Al-HPC (0.25 mmol%), Bu4NBr (2 mol%),
40 ◦C, 1–24 h 85–99 [87]

49

R=H, R1=Me, Et, Ph,
CH2Cl, n-C6H13,

n-C10H21, CH2OAllyl
R=R1=(CH2)4

1.0 Al-iPOP-1 or Al-iPOP-2
(0.1 mol%) 40 ◦C, 3–36 h

8–99 (1)
14–99 (2) [88]

50 R=H, R1=CH2Cl 0.1 Zn-Co/ZIF, 80 ◦C, 24 h 57 [89]

51

R=H, R1=Me, Ph,
CH2OPh, CH2Cl,

CH2OAllyl,
R=R1=(CH2)4, (CH2)6

0.7 Zn-Co/ZIF-67 (Zn:Co 1:9)
(50 mg), 100 ◦C, 2–18 h 8–99 [90]

52 R=H, R1=Me, Ph, Bn,
CH2Cl

1.0 cCTF-500 (4% wt), 90 ◦C, 12 h 36–99 [91]

53

R=H, R1=Ph, Bu,
CH2OPh, CH2Cl,

CH2OAllyl
R=R1=(CH2)4

0.4 PGDBr-5–2OH (1.9 mol %),
70 ◦C, 4–48 h 90–98

[92]0.1 PGDBr-5–2OH (1.9 mol %),
70 ◦C, 24–96 h 90–97

0.1 PGDBr-5–2OH (1.9 mol %),
n-Bu4NI (8 mol %), r. t., 18–120 h 80–93

54 R=H, R1=Me, Et,
CH2Cl, CH2Br

0.1 Cu2[(C20H12N2O2)(COO)4] (0.2 mol%),
Bu4NBr (8 mol%), r.t., 48 h 88–96 [93]



Catalysts 2019, 9, 511 12 of 59

Table 1. Cont.

Entry R, R1 PCO2 (MPa) Conditions Yield (%) Ref

Heterogeneous catalysts

55

R=H, R1=Ph, Bu,
CH2OPh, CH2OBu,
CH2OBn, CH2Cl,
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R=H, R1=Ph, Bu, 
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R=R1=(CH2)4 

0.1 PGDBr-5–2OH (1.9 mol %),  
70 °C, 24–96 h 

90–97 

0.1 
PGDBr-5–2OH (1.9 mol %), 

n-Bu4NI (8 mol %), r. t., 18–120 h 80–93 

54 
R=H, R1=Me, Et, 
CH2Cl, CH2Br 

0.1 
Cu2[(C20H12N2O2)(COO)4] (0.2 mol%),  

Bu4NBr (8 mol%), r.t., 48 h 88–96 [93] 

55 

R=H, R1=Ph, Bu, 
CH2OPh, CH2OBu, 
CH2OBn, CH2Cl, 

 

0.1 
[Co2(resorcin-4-arene0.5)V4O12]·3DMF· 

5H2O (0.2 mol%, based on V), 
Bu4NBr (5 mol%), 80 °C, 12 h 

87–99 [94] 

56 R=H, R1=Me, Ph, 
CH2Cl, CH2OPh 

0.8 Zn2[1,4-(CO2)2C6H4](DABCO) (17 mg 
per mmol substrate), 100 °C, 12–30 h 

90–99 [95] 

57 
R=H, R1=Me, Pr, Ph, 

CH2Cl, CH2Br, 
CH2OPh 

0.1 
ZnO@NPC-Ox-700 (50 mg per mmol 

substrate), Bu4NBr (20 mol%), 25–60 °C, 
1–3 h 

85–99 [96] 

58 R=H, R1=CH2Cl 1.0 
KCo3(C6H4O7) (C6H5O7) (H2O)2 (UTSA-

16) (0.15 mmol), 120 °C, 6 h 98 [97] 

59 R=H, R1=Me, Et, Ph, 
CH2Cl 

1.5 UDIL-I-60%U (5% wt) 120 °C, 3 h 83–99 [98] 

60 R=H, R1=Bu 0.5 

  
(0.89 mol%), 80 °C, 18 h 

>99 [65] 

61 
R=H, R1=CH2Cl, 

CH2OAllyl, CH2OPh, 
n-C6H13 

0.1 
  

(5 mol %) 100 °C, 24 h 

78–99 [99] 

62 
R=H, R1=Ph, CH2Cl, 
CH2OAllyl, n-C6H13 

R=R1=(CH2)4 
2.5   

(0.5 mol%) 130 °C, 15 h  
(140 °C, 86 h for cyclohexene oxide) 

94–99 [100] 

63 
R=H, R1=Me, Ph, 
CH2Cl, CH2OPh 

R=R1=(CH2)4 
2.5  

(1.4 mol%), 140 °C, 3 h  
(24 h for cyclohexene oxide) 

66–98 [101] 

64 R=H, R1=Me, Ph, 
CH2Cl, CH2OAllyl, 

(CH2)2CH=CH2 
1.0 

CBAP-1(EDA) (2 mol% of N sites), 130 
°C, 4 h 77–98 

[102] 

65 
CBAP-1(EDA) (2 mol% of N sites),  

Bu4NBr (1.8 mol%), 25 °C, 36 h 81–95 
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0.1
[Co2(resorcin-4-arene0.5)V4O12]·3DMF

5H2O (0.2 mol%, based on V),
Bu4NBr (5 mol%), 80 ◦C, 12 h

87–99 [94]

56 R=H, R1=Me, Ph,
CH2Cl, CH2OPh

0.8 Zn2[1,4-(CO2)2C6H4](DABCO) (17 mg per
mmol substrate), 100 ◦C, 12–30 h 90–99 [95]

57
R=H, R1=Me, Pr, Ph,

CH2Cl, CH2Br,
CH2OPh

0.1
ZnO@NPC-Ox-700 (50 mg per mmol

substrate), Bu4NBr (20 mol%), 25–60 ◦C,
1–3 h

85–99 [96]

58 R=H, R1=CH2Cl 1.0 KCo3(C6H4O7) (C6H5O7) (H2O)2
(UTSA-16) (0.15 mmol), 120 ◦C, 6 h 98 [97]

59 R=H, R1=Me, Et, Ph,
CH2Cl

1.5 UDIL-I-60%U (5% wt) 120 ◦C, 3 h 83–99 [98]

60 R=H, R1=Bu 0.5
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>99 [65]

61
R=H, R1=CH2Cl,
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n-C6H13
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Table 1. Cont.

Entry R, R1 PCO2 (MPa) Conditions Yield (%) Ref

Heterogeneous catalysts

66

R=H, R1=Me, Et, Bu,
Ph, n-C6H13, t-BuO,

(CH2)8CO2Me, CH2Cl,
(CH2)2CH=CH2, i-PrO,

CH2OAllyl,
Me(CH2Cl)

R=R1=(CH2)4,
R=C8H17,

R1=(CH2)7CO2Me

1.0
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Table 1. Cont.

Entry R, R1 PCO2 (MPa) Conditions Yield (%) Ref

Heterogeneous catalysts

74
R=H, R1=Me, Ph, Bu,

CH2Cl, CH2OBu
R=R1=(CH2)4

1.5 SBA-Zn-TPy+PBr− (0.1 mol%),
120 ◦C, 4.5–5 h 23–99 [111]

75
R=H, R1=Me, Ph, Bu,

CH2Cl, CH2OBu
R=R1=(CH2)4

1.5 ZnTPy-BIM4/CNTs-3,
(POSS-Imi, 0.07 mol%) 120 ◦C, 2.5–24 h 51–98 [112]

76

R=H, R1=Ph, Bn,
4-ClC6H4, 4-FC6H4,

CH2Cl, CH2OPh,
CH2OBn

0.1
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recycles, while yield decreased in each cycle with Zn(3-amino-1,2,4-triazole)2. Entry 3: enantiopure 
(S)-benzyloxymethylepoxide was converted into the corresponding cyclic carbonates with retention 
of the configuration, while both (R) and (S)-styrene oxides gave partial racemization. An 82% yield of 
propylene oxide carbonate was obtained at 100 °C, 1 h without a co-catalyst. For internal epoxides, 
the cis/trans ratio ranged from 98:2 to 96:4. The catalyst could be precipitated from the reaction mixture 
with ethyl acetate, filtered and reused six times with no decrease in carbonate yield. Entry 4: the trans-
isomers gave exclusively the trans-cyclic carbonates; the cis-isomers gave a 90:10 cis:trans mixture of 
cyclic carbonates. The use of monometallic aluminum catalysts resulted in much lower conversions 
(27% vs 85–94%), thus supporting a cooperative intervention of both aluminum ions in the reaction 
mechanism, one activating the epoxide and the other the carbon dioxide. Entry 6: catalyst can be 
separated by precipitation in Et2O and recycled eight times without any significant loss in activity. 
Cyclohexene oxide did not react. Entry 7: enantiopure (S)-styrene oxide gave cyclic carbonate in 93% 
ee. The reaction was scaled up to 50 mmol with 79% yield after 15 days. Entry 8: enantiopure epoxides 
gave carbonates with no loss of enantiomeric purity. Trans-stilbene oxide reacted in very low yield. 
Product was distilled from reaction mixture and to the resultant residual catalyst in the reaction flask 
was added a fresh substrate and CO2. This procedure was repeated 10 times without any significant 
yield decrease. Entry 9: the ee was >99% for R1=(R)-Me and 90% for R1=(R)-Ph. Reaction scale-up 
allowed the isolation of 98% yield of product starting from 42 g of substrate. Bis-epoxides gave bis-
carbonates. Entry 11: (R)-propylene oxide was converted to carbonate with full retention of the 
configuration, but (R)-styrene oxide underwent partial racemization (42% ee). Entry 12: internal 

epoxides retained configuration (>99:1) except cis-stilbene oxide which gave c:t = 43:57. 
Gave also a rearranged product (81% overall yield, 12:88 ratio). Entry 13: mixtures of cis:trans cyclic 
carbonates or of all possible diastereomers were always obtained. Entry 14: cyclic carbonate from 
limonene oxides was recovered as a c:t = 14:86 mixture. Entry 15: epichlorohydrin and cyclohexene 
oxide gave the worse yields, the former because of substitution of the chlorine with N-
methyldiethanolamine, the latter for steric hindrance. The reaction was scaled up to 100 mmol. (R)-
styrene oxide was converted into cyclic (R)-carbonate in 97% yield with 99% ee. Catalyst could be 
separated by precipitation in Et2O and recycled six times with very low decrease in activity. Entry 17: 
cyclohexene oxide gave only 4% yield. Other cobaloximes were tested with lower results. Entry 18: 
conversions, not yields (selectivity >99%), cis-butene oxide gave cyclic carbonate in c:t = 98:2 ratio. 
Epichlorohydrin and disubstituted substrates required a catalyst loading of 0.4 mol%. Entry 19: it 
should be noted that the catalyst recovered by CCl4 precipitation and reused produced only 33–40% 
yield of styrene carbonate, but increased the yield of hexane oxide from 40% to 98%. Very likely some 
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Gave also a rearranged product (81% overall yield, 12:88 ratio). Entry 13: mixtures of cis:trans cyclic carbonates or of

all possible diastereomers were always obtained. Entry 14: cyclic carbonate from limonene oxides was recovered as

a c:t = 14:86 mixture. Entry 15: epichlorohydrin and cyclohexene oxide gave the worse yields, the former because of
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substitution of the chlorine with N-methyldiethanolamine, the latter for steric hindrance. The reaction was scaled up

to 100 mmol. (R)-styrene oxide was converted into cyclic (R)-carbonate in 97% yield with 99% ee. Catalyst could be

separated by precipitation in Et2O and recycled six times with very low decrease in activity. Entry 17: cyclohexene

oxide gave only 4% yield. Other cobaloximes were tested with lower results. Entry 18: conversions, not yields

(selectivity >99%), cis-butene oxide gave cyclic carbonate in c:t = 98:2 ratio. Epichlorohydrin and disubstituted

substrates required a catalyst loading of 0.4 mol%. Entry 19: it should be noted that the catalyst recovered by CCl4
precipitation and reused produced only 33–40% yield of styrene carbonate, but increased the yield of hexane oxide

from 40% to 98%. Very likely some water molecules remained coordinated to the catalyst. The catalyst then remained

active in, at least, five consecutive runs without loss of its activity. Entry 20: conversion not yields, with >99%

selectivity. Cyclohexene oxide did not react. Entry 21: cyclohexene oxide gave only 21% yield after 48 h. Catalyst

could be recovered by solvent precipitation and reused in ten consecutive runs without loss of its activity. Entry 22:

complexes with Fe and Cu or the presence of a second ortho-methyl group on the S-phenyl group were less efficient.

Interestingly when this second ligand was allowed to react with copper, it is reduced from Cu(II) to Cu(I). Entry 23:

epichlorohydrin and cyclohexene oxide were also tested but the isolated yields were not determined. Styrene oxide

required 48 h. Entry 24: the best reaction conditions depended on the substrate. Cyclohexene epoxide was also tested

and required 2.0 MPa at 100 ◦C. A DFT calculation of the reaction pathway was performed. Entry 25: all reactions

occurred with retention of configuration, according to a double-inversion mechanism as depicted in Scheme 2. Even

styrene carbonate from (S)-styrene oxide was obtained with 99% ee, (45 ◦C, 1.0 MPa). Entry 26: substituted styrene

oxides required 60 ◦C. The reactions with 1,2-disubstituted epoxides led to very low yields (5–8%), with retention
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required 40 ◦C. (R)-styrene oxide gave (R)-carbonate with 70% ee. Entry 45: fatty acid oxides required 0.5 MPa

of CO2 and 100 ◦C and trans-carbonate was the most abundant isomer (83:17 to 99:1). Entry 46: when [HDBU]I

was insoluble in epoxide dimethylformamide was added as the solvent. Cyclohexene oxide reacted at 140 ◦C,

with 3 MPa after 48 h in dimethylformamide leading to the product in 76% yield. The catalyst could be recovered

after reduced pressure distillation of the products and reused five times with no significant loss in its catalytic

activity. DFT calculations were performed to elucidate the mechanism. Entry 47: HUST-1-Co was a crosslinked

cobalt porphyrin obtained from 5,10,15,20-tetraphenylporphyrin, dichloromethane as cross-linker and cobalt acetate.

The catalyst could be used fifteen times with no significant loss in its catalytic activity. Entry 48: Al-HPC was a

crosslinked aluminum porphyrin obtained from 5,10,15,20-tetraphenylporphyrin, fomaldehyde dimethyl acetal

as cross-linker and diethylaluminum chloride. The catalyst could be used ten times with no significant loss in its

catalytic activity. Cyclohexene oxide gave only 28% yield. Entry 49: Al-iPOP was a crosslinked aluminum porphyrin

obtained from 5,10,15,20-tetra(4-bromophenyl)porphyrin linked by Yamamoto–Ullmann coupling, coupled with a

polymeric ionic liquid from (4-bromophenyl)- (1) and (4-bromobenzyl)imidazolium bromide (2). Al-iPOP-2 was

generally more efficient. The catalysts could be used six times with no significant loss in its catalytic activity. Entry 50:

the catalyst was obtained from 2-methylimidazole (8 mmol), Co(NO3).6H2O (0.5 mmol) and Zn(NO3)2.6H2O

(0.5 mmol) in methanol. The catalyst could be used four times with no significant loss in its catalytic activity. Entry 51:

the catalyst was obtained from 2-methylimidazole, Co(NO3).6H2O and Zn(NO3)2.4H2O in water. The amount refers

to a 9 mmol scale. It was also recycled four times with little deactivation (from >99 to 91% yield). The substrates were

lacking in the paper table and were furnished by private communication. Entry 52: porous charged covalent triazine

framework obtained at 500 ◦C by reaction of 1,1′-bis(4-cyanophenyl)-[4,4′-bipyridine]-1,1′-diium dichloride in

melted anhydrous ZnCl2. It was also recycled 4 times without deactivation. Entry 53: a mesoporous poly(ionic liquid)

obtained from 1-glycidyl-3-vinylimidazolium bromide and divinylbenzene then opened in hot water. The catalyst

was recycled 10 times without deactivation. Entry 54: larger R1 groups gave very poor yields (6–10%). The catalyst

was recycled 5 times without deactivation. Entry 55: samples of Cu-DABCO, Ni-DABCO, and Co-DABCO were

also tested but with worse results. The catalyst was used three times without deactivation. Entry 57: ZnO@NPC-Ox

was obtained from ZIF-8 (see entries 42–43) which was pyrolyzed and subsequently oxidized by NaOCl to produce

ZnO nanoparticles (NPs) encapsulated into N-doped porous carbon. The catalyst was used 10 times without

deactivation. Entry 58: the catalyst was used five times without deactivation, but it required a tedious purification

procedure from the reaction mixture. Other epoxides gave very low conversions (24–26%), albeit with high

selectivity (99%) and styrene oxide did not react. Entry 59: UDIL= urea-derivative-based ionic liquids, I=iodide,

60%U is the relative mass of urea added to UDIL. Cyclohexene oxide gave 45% yield, at 130 ◦C, after 9 h and

with 3.0 MPa of CO2. The catalyst was used five times without deactivation and was tolerant of the presence

of water. Entry 60: The catalyst was used for 12 runs. Quantitative yield was recovered in the first four runs,

then a slight decrease (up to 85% in the twelfth run) together a loss of catalyst (0.69 mol% recovered from the

last run) was observed. Entry 61 other imidazolium-based ionic polymers gave worse results. The catalyst was

used 10 times without deactivation. Entry 62: the catalyst was used four times without deactivation. Entry 63:

the catalyst was used 10 times without deactivation and was also used in a continuous flow reactor for 120 h

without deactivation. Entry 64: CBAP-1(EDA) was prepared from 1,3,5-triphenylbenzene and terephthaloyl chloride.

The obtained polymer was then reductively aminated with ethylene diamine. Cyclohexene oxide gave only 14%

yield after 6 h at 140 ◦C. The catalyst was used 5 times without deactivation. Entry 65: CBAP-1(EDA-Zn) was

obtained by treatment of CBAP-1(EDA) with Zn(OAc)2. Cyclohexene oxide gave 45% yield after 48 h at 60 ◦C.

The catalyst was used five times without deactivation. Entry 66: most of reactions were carried out with the

same catalyst sample recycled from the previous reaction. Its efficiency was verified repeating the reaction with

butane oxide every seven times and comparing the yield. Catalyst efficiency significantly decreased after 14 runs.

Oleate oxide gave 43:57 c:t mixture. Entry 67: COF-JLU7 was prepared from 2,4,6-tris(4-aminophenoxy)triazine

and 2,5-dihydroxy-1,4-benzenedicarboxaldehyde under acidic catalysis. The reaction with (R)- or (S)-styrene oxide

exhibited excellent enantioselectivity (97% and 93% ee, respectively). The catalyst was used five times without

deactivation. Entry 68: cyclohexene oxide gave only 30% of conversion. The catalyst could be reused but poisoning

of the active sites was observed. Thus, to maintain high conversion and selectivity, the catalyst had to be regenerated,

by treatment with diluted NaOH. Entry 69: cyclohexene oxide gave only 9% yield. The yield of carbonate decreased
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sharply from 97% to 64% in the third cycle and then slowly (until 59% after other two runs). After the five cycles, less

than the original catalyst amount was recovered, thus authors explained the lesser efficiency with this loss of catalyst

amount. Entry 70: the catalyst was used 10 times without deactivation. Entry 71: Zn-C3N4(25) was prepared by

thermal polymerization of Zn(OAc)2·2H2O/dicyandiamine in mass ratio of 25%. The catalyst was used five times

without deactivation. Entry 72: cyclohexene oxide gave only 6% yield together many byproducts. The catalyst

was used five times without deactivation. Entry 73: the addition of N-(3-aminopropyl)-imidazole increased the

fiber weight of 20%. The fiber was intertwined on the stirring paddle of the reactor and could be used 21 times in

gram-scale reactions. Entry 74: obtained by refluxing 5,10,15,20-tetrakis(4-pyridyl)porphyrin zinc(II), mesoporous

silica SBA-15, and 3-(trimethoxysilyl)propyl bromide in dimethylformamide. Other solvents gave a catalyst with

worse catalytic activity. The catalyst was used five times without deactivation. Entry 75: obtained by the reaction of

5,10,15,20-tetrakis(4-pyridyl)porphyrin zinc(II), di(1H-imidazol-1-yl)methane, and 1,4-bis(bromomethyl)benzene in

the presence of carbon nanotubes (CNTs). The catalyst was used seven times without deactivation. Entry 76: the

catalyst was used five times without deactivation. 4-nitrostyrene oxide and (but-3-en-1-yl)oxirane did not react

or decomposed. Entry 77: regular hexahedral (RH) ZIF-8 and rhombic dodecahedral (RD) ZIF-8 homometallic

nanoparticles (see entries 50-51) underwent cation exchange with Au3+ ions from NaAuCl4. The catalyst was used

6 times without deactivation. Entry 78: there is a discrepancy between text (chloro- and bromo-methyloxirane

reported) and table (bromo- and chloro-oxirane reported). We think that the text is right. Catalyst was prepared

from nickel wires and 4,6-bis(triazol-1-yl)isophthalic acid in acidic solution. Entry 79: the catalyst was obtained from

reaction of carbon nanotubes (CNT) with N-vinyl-N’-allylimidazole silver complex (NHC-Ag). Cyclohexene and

isobutene oxides gave poor yields (10 and 11% respectively). The reusability was tested with propargyl alcohols (see

footnote Table 2, entry 5). Entry 80: obtained by reaction between triethoxy-3-(2-imidazolin-1-yl)propylsilane and

octakis(3-bromopropyl)-octasilsesquioxane then grafted onto SiO2 and finally by reaction with 1-methylimidazole.

The catalyst was used five times without significant deactivation.

In this mechanism, the rate determining step is the epoxide ring opening, and the nucleophilicity
of the generated alkoxide species becomes significant for the attack at CO2. This pathway involves
two consecutive Sn2 steps, thus the configuration is generally maintained with enantiopure epoxides.
However, styrene oxide, as well as other epoxides giving stable carbocations, often gave partial
racemization, which is accounted for a partial Sn1 mechanism. It should be noted that the scorpionate
catalyst (entry 43) was rationally designed by authors on the basis of the mechanism and combining
experimental and computational efforts [84].

A comparative study on the activity of a series of fifteen aluminum-based complexes has been
recently reported, providing a useful comparison of activity metrics and explaining what are the most
important features of the catalyst for cyclic organic carbonate formation [118].

Another challenging task was the research of organocatalysts as efficient as metal catalysts. In these
cases, the intervention of hydrogen bond donors in the catalyst is often necessary to activate the ring
opening step (see entries 24, 25, 27, 29, 34, 35, 37, 38, 39, 40, 44, 45, 46, 62, 66, 69, 70). Very recently,
the activity of a diverse selection of hydrogen bond donors has been correlated to their pKa [119]. It was
found that hydroxyl protons with Brønsted acidity in the range 9 < pKa < 11 gave the best catalytic
performance, therefore phenol and ascorbic acid derivatives are ideal for cycloaddition reaction of
epoxides and CO2. Density functional theory (DFT) calculations supported this hypothesis, low energy
barriers have been calculated for the reaction catalyzed by phenols and the occurrence of aggregation
between molecules of ascorbic acid further lowers the energy barriers increasing the catalytic activity.
The halide source can be external (e.g., an ammonium halide salt) or internal (e.g., the counterion of
the metal ion or of salt moieties in the catalyst). When no halide source is present as co-catalyst or
catalyst counterion, a labile nucleophilic moiety has to be anyway present, for instance a tertiary amine
(entries 17, 22, 26, 29, 35, 41, 44, 45, 56, 68, 69, 70, 75) or the carboxylate ions in histidine (entry 28) or
aspartate (entry 33) catalysts.
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A quite different mechanism was proposed by Liu, Wei, Dai and co-workers, whose paper is
mentioned in entries 44–45 [85]. On the basis of their results, of some experiments with modified
catalysts and DFT calculations they proposed the mechanism depicted in Scheme 3.
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Scheme 3. Mechanism proposed for cooperative multifunctional organocatalysts.

Conditions set up by Werner and co-workers (entry 11) [55] allowed the selective reaction
of the monosubstituted oxirane in the presence of a di-substituted one. In fact, 3-(oxiran-2-yl)-7-
oxabicyclo[4.1.0]heptane gave only the monocarbonate at the external epoxide moiety in 92% yield at
23 ◦C, and the bis-carbonate in 67% yield at 45 ◦C.

Moreover, the re-use of the catalyst is very important. Thus some simple catalysts were recovered
by distillation or precipitation from the reaction mixture (entries 3, 6, 8, 15, 19, 26, 29, 32, 33, 35, 46),
and many examples of heterogeneous catalysts have been reported (Table 1, third part). It should be
particularly outlined the apparatus setup by Shi, Hu and co-workers (entry 73), who interweaved
their catalyst in the stirring paddle, thus providing a very simple method to recover the catalyst [111].
In addition, the interweaved paddle could be reused more than twenty times, just increasing reaction
times after the 20th time, in a gram scale reaction.

The coupling of internal epoxides and CO2 is generally more difficult for the steric hindrance of
the two substituents. Thus reaction described in entries 10, 12, 13, 14, 25, 27, 31, 45 are particularly
worthy of note for their good results.

In this regard, it should be mentioned the work of Kleij and co-workers, who were able to obtain
trisubstituted cyclic organic carbonates with well-defined stereochemical configurations, starting from
cyclic (5–8 membered) hydroxy epoxides and CO2 (Scheme 4) [120]. Syn/cis carbonates were always
obtained only from addition of 25 mol% of NBu4Br. The anti/cis bicyclic carbonates instead required
individual reaction conditions (different aluminum catalyst, halide source, solvent) and only five-, six-,
and seven-membered cyclic epoxides reacted. Larger seven- and eight-membered cyclic epoxides could
be converted to anti/trans carbonate in the presence of aluminum catalyst and dimethylaminopyridine
(DMAP).
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These different behaviors were attributed to different mechanisms of formation: syn/cis from
carbonate polymer depolymerization, anti/cis from OH-assisted depolymerization (larger ring did not
allow a conformation in which OH is near enough) and anti/trans from substrate-assisted activation
of CO2. Then some different hydroxycyclohexene oxides were successfully transformed into anti/cis
bicyclic carbonates. The reaction suffers from steric hindrance (ortho-substituted phenyl groups needed
longer reaction times as 66 h, and afforded only 41% yield). Some products were then submitted for
further modifications.

The style used by authors to present the results reported in Table 1 was quite different. Some were
more oriented to the synthesis, other to the catalyst performance. Therefore it is not simple to compare
results and efficiency at a glance. For example, turn over number (TON), a key to evaluating a catalyst,
if a green, sustainable atom-economy is pursued, is often not reported. So we suggest that readers
point their attention to yields, catalyst amount and CO2 pressure to evaluate the best catalyst among
the eighty entries of Table 1. This difficulty in the choice of the best catalyst was also shown by D’Elia
in his fine review, which showed also the harsh increase of documents in the last few years [45].

Kim and co-workers set up a divergent synthesis to cyclic carbonate and oxazolidinones in the
coupling reactions between CO2 and epoxy alcohols or amines, respectively (Scheme 5) [121]. It is also
worth noting that the starting materials are enantiopure and the reaction is completely enantiospecific.
The divergent pathway is induced by the cocatalyst: tetrabutylammonium iodide triggers a mechanism
superimposable with Scheme 2, while dimethylaminopyridine acts as a base on the amino group, which
in turn attacks carbon dioxide. On the basis of this mechanism, it is clear that N-aryl groups highly
influence the reactivity (electron-donating groups worked better than electron-withdrawing groups).
Finally, the inversion of the stereochemistry, when oxazolidinones are prepared, allowed the synthesis
of both enantiomers of 3-(arylamino)-propane-1,2-diols from a single enantiopure epoxyamine.
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Scheme 5. Stereodivergent synthesis starting from epoxyamines and CO2.

Reactions reported in Table 1 are general, although more or less efficient. There are also some papers
that reported only one example of conversion of epoxides into carbonates. Two cases reported in Table 1
are the work of Verpoort on Zn-Co/ZIF (entry 50) [88], because it was then extended to other substrates
(entry 51) [89]; and the work of Kleij and co-workers on bifunctional resorcinarenes [74], because they
reported the only example for their catalyst on polymeric support (entry 60). Other catalysts have
been proposed for CO2 addition to epoxides in which only one substrate was studied. For instance,
Rownaghi and co-workers were able to permanently immobilize bromide on microstructured zirconium
doped polyamide-imide hollow fibers crosslinked with 3-aminopropyltrimethoxysilane, followed
by alkylation with 1,2-dibromoethane. This fiber acts as bifunctional catalysts for the cycloaddition
of CO2 to styrene oxide (100% conversion of oxide and 98% selectivity of carbonate). This catalyst
did not significantly leach ZrO2, amine, or bromine under the employed reaction conditions (120 ◦C,
8 h, 2.0 MPa) [122]. This work should be further developed to better compare these results with the
catalytic and efficient fibers described in entry 73 [109].

The nitrogen doped ordered mesoporous polymers prepared by the Huang and Dai group showed
excellent catalytic activity (conversion >95%) in the reaction of CO2 with propylene oxide (100 ◦C,
1.5 h, 1.2 MPa), when charged with zinc or cobalt ions [123].

The porous cationic polymers (5% wt.), obtained from condensation of tris(1,10-phenanthroline-
5,6-dione)Ru(II) dichloride with ortho-aromatic amines in AlCl3 at 400 ◦C, allowed the conversion of
propylene oxide to carbonate (almost quantitative conversion of oxide and exclusive selectivity toward
carbonate, at 100 ◦C, 24 h, 0.1 MPa) [124].

Dufaud and co-workers presented a study on the binding strength of cavitand receptors of
ammonium salts. Thus, tetraphosphonate showed a higher binding strength toward the ammonium
cation. However, the presence of acidic phenol groups, which cooperatively activated the hexene oxide
in a triphosphonate cavitand host, gave quantitative yields of cyclic carbonate at atmospheric pressure
of CO2 and 100 ◦C. Moreover, Bu4NI turned out to be the most efficient halide donor [125].

Propylene carbonate was also obtained from propylene oxide at atmospheric CO2 pressure and at
ambient temperature, by using various metal carbamates, such as Ti(O2CNEt2)4, Al(O2CNR2)3 (R=Et,
i-Pr), Cu(O2CNEt2)2 and Sn(O2CNEt2)4, in combination with NBu4X (X=Br or Cl) as a cocatalyst [126].
With different catalyst and cocatalyst amounts, conversion up to 71% and selectivity up to >99% were
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reached. Solid catalysts were prepared from titanium and zirconium carbamates with amorphous
silica, but these heterogeneous catalysts were less efficient than the homogeneous ones.

Graphitic carbon nitride (prepared with 1:1 urea–thiourea mixture) treated with aqueous H2SO4

produced a catalyst bifunctional acidic (–SO3H) and basic (–NH2) sites. The concentration of H2SO4

influenced the number of sites and the highest catalytic activity was reached with 60 wt. % acid.
At 100 ◦C and 1.0 MPa CO2 pressure for 1 h, the synthesis of cyclic carbonates from epichlorohydrin
(92.8% conversion, 99.2% selectivity) and propylene oxide (61.5% conversion, 99.3% selectivity),
was obtained [127]. The catalyst was easily recovered and recycled six times with negligible loss
of activity.

Seven alkanol amine catalysts derived from reactants containing two or three epoxy moieties and
secondary amines were synthesized by Chung and co-workers [128]. Among them, bis(methylpiperazinyl)
triol (1.4 mol%, at 1 MPa, 120 ◦C, 3 h) revealed the best catalyst in the formation of propylene carbonate
(98% yield). Under milder conditions (5.6 mol% catalyst 0.5 MPa, 100 ◦C, 8 h) yield decreased to 90%.
Comparing all the set of catalysts, the catalyst performance was affected by the number of hydroxyl and
amine groups, and by the synergistic effects of these groups as demonstrated by DFT calculations of the
stable conformational state. The proposed reaction mechanism is depicted in Scheme 6.
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Scheme 6. Plausible mechanism of the cycloaddition of CO2 to propylene oxide catalyzed by
bis(methylpiperazinyl)triol.

The synthesis of 1,2-butylene carbonate from 1,2-butylene oxide was obtained in a selectivity of
76% and 64% yield at 135 ◦C and 7.5 MPa pressure of CO2 in 20 h in the absence of organic solvent
with a ceria-lanthana-zirconia/graphene nanocomposite catalyst [129].

The merit of the synthesis of carbonates from internal epoxides has already been outlined above.
Recently, polyethylene glycol (PEG-400) and KI (4 mol%) were found able to catalyze the reaction of
methyl soyate epoxide to the corresponding carbonated fatty acid methyl esters in 99% yield at 120 ◦C
with 3.0 MPa pressure of CO2 in 20 h. Longer reaction times (30 h) are requested to obtain the methyl
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linoleate tricarbonate [130]. However, for these catalysts further studies would be required to better
understand their importance in this reaction.

The kinetic resolution of epoxides was employed to prepare enantioenriched epoxides [131].
Recently, Ema and co-workers reported the kinetic resolution of epoxides with CO2 by a chiral
macrocyclic organocatalyst (catalyst-1, Scheme 7) [132]. The s factor {(ln[1-c(1+ee)])/(ln[1-c(1-ee)]),
where c is the conversion} is satisfactory for disubstituted epoxides (9–13), but it is low for terminal
epoxides (2.5–4.1). These values make this reaction very interesting for internal epoxides, taking also
into account the trouble in performing the synthesis of 4,5-disubstituted 1,3-dioxolan-2-ones. The X-ray
analysis showed multiple hydrogen-bonding sites for the enantioselective activation of epoxides into
the chiral cavity of the catalyst. DFT calculations confirmed a classical mechanism as depicted in
Scheme 2.
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Scheme 7. Kinetic resolution of epoxides with organocatalyst.

Later they reported another macrocyclic organocatalyst (catalyst-2, Scheme 7) but its efficiency
was comparable for terminal epoxides (s = 1.7–5.0). However, with respect to catalyst-1, catalyst-2
showed some advantages, that are the low catalyst loading (only 0.2–0.5 mol%) and the opposite
resolution of the epoxide and some drawbacks, that are higher CO2 pressure and longer reaction
times [133].

On the other hand, Meggers and co-workers set up reaction conditions for the kinetic resolution
of chiral terminal epoxides with s factors up to 16.6 [134]. They employed an iridium(III) complex
(1 mol%) of iridium catalyst and 1.5 mol% of NEt4Br as the co-catalyst (Scheme 8). It should be noted
that no polymerization side reaction is observed. Authors provided a mechanism in agreement with
Scheme 2. While the decrease of enantiomeric excess with the progress in conversion was expected,
the decrease of the s factor with increasing conversion was surprising, but authors did not give a
satisfactory explanation for this phenomenon. Moreover, they did not also explain the different
enantiomers obtained with simple alkyl epoxides.
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Scheme 8. Kinetic resolution of epoxides with iridium catalyst.

The synthesis of six membered cyclic carbonates from the addition of CO2 to oxetanes is more
difficult, because the four-membered ring is less reactive than epoxide and for the higher thermodynamic
stability of the polymers with respect to the cyclic carbonates. Therefore, examples of this reaction are
less common in the literature. In the last two years isolate examples are reported:

• under the conditions described in Table 1 entry 4, 1,3-dioxan-2-one was recovered in 67% yield at
80 ◦C, and 1.0 MPa CO2 pressure [47];

• with the POSS-Imi catalyst (0.067 mol%, Table 1, entry 70) but the conversion is very low (16%)
albeit selectivity was almost quantitative [116].

Tassaing, Jérôme et al. studied the influence of the main reaction parameters (organocatalytic
mixture, pressure, and temperature) on the yield and the selectivity in the product distribution of the
reaction of CO2 with oxetanes with an organocatalytic combination of ammonium salts and aromatic
alcohols [135]. Cyclic carbonate was favored at lower temperatures, pressures, and conversions,
as well as in the absence of alcohol. It should also be noted that substituted oxetanes were unreactive.
They also investigated the mechanism of the synthesis of the six membered cyclic carbonate using DFT
calculations performed at the M06-2X/6-311G(d,p) level. The mechanism is not far from that accepted
for epoxides (Scheme 9).
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Very recently, Dove and Coulembier found trimethylene carbonate as byproduct in the
co-polymerization of oxetane and CO2 catalyzed by 1,5,7-triazabicyclo[4.4.0]dec-5-ene and I2 [136].
However, trimethylene carbonate was the sole product, albeit in low yields (30% after 5 days) when
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1-tert-butyl-4,4,4-tris(dimethylamino)-2,2-bis-[tris(dimethylamino)-phosphoranylidenamino]-2λ5,4λ5-
catenadi(phosphazene) was used as a cocatalyst together with iodine. Authors affirmed that the strong
complexation between the two catalysts was very likely the reason of this selectivity.

The cycloaddition of propargylic alcohols with CO2 is another manner to prepare five-membered
cyclic carbonates. As for the addition to epoxides, this is also a 100% atom economical reaction.
Moreover, the resulting α-alkylidene cyclic carbonates are important compounds with many
applications in organic synthesis. The reaction has been widely studied in the past years and
reviewed in the literatures cited in the introduction, thus here we restrict the description to the last two
years again (Table 2). The reaction is generally catalyzed by a base which deprotonates the alcohol
to start the catalytic cycle, as described in Scheme 10. Sometimes the alcoholate can open the cyclic
carbonate leading to an oxoalkyl acyclic carbonate.
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a magnetically separable catalyst prepared from corn starch, magnetite and ZnI2. 4-Phenyl-2-methylbut-3-yn-2-ol
was unreactive. The catalyst was recovered with an external magnet, and used 4 times without significant
deactivation. Entry 5: the NHC-Ag complex was also supported on graphene (GN) and the reaction gave similar
results. CNT-NHC-Cu and GN-NHC-Cu complexes gave lesser yields. However, CNT-NHC-Cu was used in the
recycle tests and reused eight times without significant deactivation. Entry 6: Propargyl alcohol and but-3-yn-2-ol
were unreactive, owing to the well-known Thorpe–Ingold effect [141], 1-(2-Phenylethynyl)cyclohexanol and
3,6-dimethylocta-1,7-diyne-3,6-diol gave low conversion (12% and 35%, respectively), but selectivity near 100%.
A higher catalyst loading was necessary for sterically hindered alcohols.
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Scheme 10. Mechanism of the cycloaddition of propargylic alcohols with CO2.

A detailed mechanistic investigation was recently performed by Tassaing’s research group for the
conversion of 2-methyl-3-butyn-2-ol [142]. Authors found an influence of the temperature, pressure,
solvent, and catalyst nature and loading on the rates and yields of the reaction. Moreover, in contrast
to our previous results [143], they did not detect other secondary products. Finally they confirmed
the mechanism depicted in Scheme 10 by DFT calculation at the M06-2X/6-311G(d, p) level. Then,
the same research group tested a series of n-tetrabutylammonium organic salts as catalysts for the
same reaction [144]. In particular, tetrabutylammonium acetate and azide allowed yields up to 98% in
less than 10 h at 80 ◦C and 3.0 MPa under solvent-free conditions. Once more, they supported their
data by kinetic studies and mechanism by DFT calculations.

The mechanism described in Scheme 10 involved, after cyclization a vinyl anion intermediate,
which sequentially underwent protonation. However, this anion could be trapped by every electrophile.
In fact, under palladium catalysis it was trapped by aryl halides [145]. The reaction suffered from steric
factors. In fact, 2-chloro-1-iodobenzene and 1,2,4-trichloro-5-iodobenzene gave 45% and 6% yields,
respectively. Iodomethane gave the corresponding product, albeit in only 31% yield. Among the
propargyl alcohol tested, only 2-methyl-4-(pyridin-2-yl)but-3-yn-2-ol gave no reaction. The reaction
exclusively gave the stereoisomer in which the Ar group arising from the aryl halide is located trans
to the oxygen attached to the double bond. Authors after some control experiments proposed the
mechanism depicted in Scheme 11.

The reaction of diols and CO2 under basic conditions is another method to obtain cyclic carbonates
of different ring size. Ongoing their study on this reaction [146], Buchard and co-workers reported the
synthesis of 5-, 6-, 7- and 8-membered cyclic carbonates using 2,2,6,6-tetramethylpiperidine as the base
catalyst (Scheme 12, Equation (1)) [147]. As expected, larger cycles were recovered with increasing
amounts of polymers.
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Scheme 12. Synthesis of 5-, 6-, 7- and 8-membered cyclic carbonates.

From DFT calculations, authors suggested a mechanism in which CO2 is attacked by the alcoholate,
then tosylation of the carbonate occurred and, finally, the second alcoholate moiety closed the cycle by
addition/elimination process. It should be noted that sugar diols also reacted, which gave poor yields
with the classical reaction with phosgene.
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Another reaction of sugar diols and CO2 was introduced by Feng, Gnanou and co-workers.
They already found that unprotected α-methyl D-glucopyranoside reacted with CO2, leading to
water soluble oligoglycocarbonates [148]. Further studies from the same group showed that the
reaction of CO2 with cis vicinal hydroxy groups of sugars afforded instead 5-membered bicyclic
glycocarbonates, in particular in the cis-2,3 or cis-3,4 positions of methyl α-D-mannopyranoside
and methyl α-D-galactopyranoside, respectively (Scheme 12, Equations (2)–(4)) [149]. Also, a six-
membered bicyclic glycocarbonate was prepared from methyl 6-bromo-6-deoxy2,3-di-O-methyl
α-D-galactopyranoside. The cyclic glycocarbonates were further allowed to react in good yield with
amines or polymerized.

These two interesting procedures summarize two environmental benign features: the use of CO2

as starting material and the avoidance of phosgene or its derivatives

3. Cyclic Carbamates

Carbamates are widely employed in agricultural chemistry, medicinal chemistry, and polyurethane
preparation. In particular, cyclic carbamates (2-oxazolidinones, 2-oxazinanones) are the core structures
of many valuable drugs. For a long time phosgene was the classical C1 synthon for their synthesis;
but its high toxicity has led researchers to explore greener C1 sources. Thus the use of CO2 has been
gaining increasing importance.

Many strategies for CO2-based preparation of cyclic carbamates parallel those already seen above:
for instance the cycloaddition to aziridines, oxetanes, or amino epoxides or the addition to alkenes,
alkynes, and propargylic amines or alcohols. Most of these syntheses are already reviewed in the
literature cited in the introduction, but in the last two years other papers appeared in the literature and
they are collected in this section.

The synthesis of substituted 2-oxazolidinones by coupling of CO2 with aziridines is another
reaction which allows the chemical fixation of CO2 with 100% atom efficiency. A first example has been
reported in the previous section (Scheme 5) [106]. Other syntheses of substituted 2-oxazolidinones by
coupling of CO2 with aziridines published in the last two years are collected in Table 3.

While regioselectivity is not a problem with epoxides, because the oxygen atoms are
indistinguishable, the synthesis of oxazolidinones often gives mixture of regioisomers (Scheme 13).
The most striking difference with the mechanism of epoxides is the higher nucleophilicity of the
nitrogen, which give raise a zwitterionic intermediate.
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Table 3. Catalysts for the reaction of aziridines and carbon dioxide (R, R1, and R2 see Scheme 13).

Entry R R1,R2 PCO2
(MPa) Conditions Yield (%) Regio.

(R25:R24) Ref

1
R=Pr, Bu,
n-C5H11,

(CH2)2-i-Pr

R1=H, R2=Ph,
4-MeC6H4

1.0
ISA 6 (1 mol%),

(entry 6, Table 1),
50 ◦C, 2–8 h

80–99 95:5 to 98:2 [49]

2 R=H, Me, Et, Bn

R1=H, R2=Ph,
4-MeC6H4,
4-ClC6H4,

4-(MeOCH2)C6H4,
2-naphthyl

0.1

SalenCoI (2.5 mol%),
Ph3P=CHCOPh

(2.5 mol%),
(entry 7, Table 1),

25 ◦C, 48 h

38–90 100:0 [50]

3 R=Pr, Bu, i-Bu,
n-C5H11,

R1=H, R2=Ph,
4-MeC6H4

2.0

IL-Zn-TPP
(0.1 mol%),

(entry 21, Table 1)
90 ◦C, 2–10 h

82–96 97:3 to 98:2 [61]

4

Ph, 4-MeC6H4,
4-ClC6H4,
4-BrC6H4,
CH2OPh,
2-thienyl

R1=H, R2=Et, Pr,
Bu, i-Pr,

c-C6H11, Bn
2.0

CDC–CO2
(5 mol%),

(entry 39, Table 1),
80 ◦C, 12 h

52–99 90:10 to
97:3 [115]

5

Ph, 4-MeC6H4,
4-ClC6H4,
4-BrC6H4,

4-MeOC6H4,
4-t-BuC6H4

R1=H, R2=Et, Pr,
Bu, i-Bu

0.1
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Entry 2: the reaction with (R)-N-methyl-2-phenylaziridine completely retained the ee. Entry 4: the four-substituted
oxazolidinone (86:14) was preferentially produced when R = CH2OPh very likely for its electron-donating nature.
Halo-substituted phenyl rings needed high catalyst loading (10 mol%).

The positive charge on the nitrogen atom generally favors the attack of the halide source
on the carbon which better carries the positive charge, leading to the five-substituted product
from N,C-disubstituted aziridines. Recently, Pinhas and co-workers reported DFT calculations at
the B3LYP/6-31+G(d,p) level of theory, kinetic studies and experiments in order to elucidate the
mechanism [151]. Their calculations demonstrated that the reaction could not proceed at room
temperature without a catalyst. Moreover, their data were unable to distinguish between two possible
pathways involving either initial capture of CO2 or ring opening by X− from the catalyst. In fact,
both mechanisms are influenced by polar solvents. The reaction is zero order with respect to aziridine,
thus isolate aziridine is not involved in the rate determining step, which was the addition of CO2.

The synthesis of oxazolidin-2-ones from unsaturated amines by using CO2 has attracted much
attention in the last years [152]. A study of the reaction mechanism with the ωB97XD functional
theory was conducted by Yuan and co-workers under Ag(I) catalysis [153]. Authors discovered
that the substrate is incorporated into the AgNO3 salt, followed by isomerization (Scheme 14).
Then this intermediate attacks CO2 leading to a carbamate intermediate. The five-membered
versus the six-membered ring closure has transition states the energy of which is influenced by
the diazabicycloundecene (DBU) amount (an increasing of DBU amount increases the energy gap
between the two transition states, favoring the oxazolidinone). Moreover, solvents with larger proton
affinities also favor the formation of oxazolidinones.

The papers regarding propargylamines and published in the last two years are collected in Table 4.
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Table 4. Catalysts for the reaction of propargylamines and carbon dioxide (R, R1, R2 see Scheme 14,
NR3 indicates the nitrogen substituent).

Entry R R1,R2 NR3 PCO2
(MPa) Conditions Yield (%) Ref

1 H, Ph, Me R1=R2=H, Me,
(CH2)4

H, Me, i-Pr,
t-Bu, Bn,

4-MeOC6H4

0.1
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Cd(ClO4)2.6H2O. Increasing the substrate size the yields decreased and with R = 1-naphthyl no reaction occurred.

Diprop-2-ynylamine gave 5-methylene-3-(prop-2-ynyl)oxazolidin-2-one in 62% isolated yield. The catalyst could

be reused up to four times without deactivation. Entry 5: both amino-activated and CO2-activated mechanisms

were investigated by DFT calculations and CO2-activated resulted in a low energy barrier in the first step.

Entry 6: primary amines were unreactive. Entry 7: electron withdrawing groups in R favored tautomerization to

2-oxazolones. (oxazolidinone/oxazolone ratio 12:57 and 2:64 for R = 4-CF3C6H4, 4-CNC6H4, respectively. In these

cases oxazolidinones were obtained at 70 ◦C in 24 and 3 h for R = 4-CF3C6H4, 4-CNC6H4, respectively. Entry 8:

internal bulky alkynes gave the lowest yields. N-Phenyl amines were unreactive and primary amines gave only

4% yield. Entry 9: KCC-1/IL/Ni@Pd NPs was prepared in three steps: KCC-1 NPs from tetraethyl orthosilicate,

cetylpyridinium bromide and urea; KCC-1/IL NPs from KCC-1 NPs, bis(trimethoxysilylpropyl)imidazolium iodide

and NaH by sonication; finally KCC-1/IL/Ni@Pd NPs from KCC-1/IL NPs, Ni(OAc)2.4H2O and PdBr2. The catalyst

could be reused up to ten times without deactivation.
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Scheme 14. Mechanism of diazabicycloundecene (DBU)-AgNO3-catalyzed CO2 incorporation into
propargylic amine.

With the catalyst reported in entry 1, some homopropargylic amines were tested (Scheme 15) [134].
However, at 40 ◦C and with 5 mol% of catalyst loading only 36–37% yields were recovered, albeit
the starting amine was completely consumed. Authors also observed that, in the absence of CO2,
internal alkynes were unreactive, while terminal alkynes gave some side reactions. Thus, in order
to improve yield, they tested a homopropargylamine with an internal (phenyl-substituted) alkyne
moiety. However, CO2 was not incorporated and dehydropyrrole was favored over the carboxylative
cyclization. The same reaction was observed with 2-alkynylaniline, which led to indole.
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Scheme 15. Other reactions carried out with the catalyst described in Table 4 entry 1.

The reactions described in entries 3 [156] and 8 [161] are very interesting, because they were
carried out under air. All reactions described in entry 8 were carried out under these conditions,
while only three different oxazolidinones were prepared in 66–95% yields with cyanuric acid. Actually,
the 2-oxazolidinone syntheses in low-concentration CO2 in air are rare (See also: [163,164]).

The observation by Fujita and co-workers [140] that some amounts of tautomer 2-oxazolinone
was found under their reaction conditions, prompted them to set up the best conditions for this
tautomerization (5 mol% of Bu4NOH, at 80 ◦C for 6 h).

As shown in Table 4, N-alkyl propargylamines are generally employed in these reactions, because
N-aryl derivatives undergo alkyne hydroarylation more easily than CO2 incorporation owing to the
lower nucleophilicity of the nitrogen atom. Only in Table 4, entry 1, N-p-methoxyphenylpropargylamine
was reported to react in 74% yield, but simple N-phenylpropargylamine did not give any
oxazolidinone [134]. In the recent literature, however, an interesting work was performed by Zhou
and his research group, who were able to carry out a four component one-pot sequence reaction to
give enantioenriched oxazolidinones (Scheme 16) [165]. Authors separately tested the preparation
of the enantioenriched propargyl amines and their cyclization, and, when the best conditions were
found, they successfully performed the one-pot reaction. The absolute configuration of the chiral
2-oxazolidinone was determined to be R by X-ray analysis. The reaction was scaled up to 4.0 mmol
scale with only 5 mol % of copper catalyst, and product was achieved in 84% yield and 94% ee.

Finally, the CO2-fixation to propargyl amines-pyridine co-polymers promoted by a two-fold
amount of DBU should be mentioned [166,167]. The polyoxazolidinone was obtained in 100%
conversion (86% yields) in 48 h, even under air. In the same paper also three examples of propargyl
amines are reported and it should be noted that N-benzyl-2-methyl-4-(pyridin-2-yl)but-3-yn-2-amine
afforded a E/Z mixture of oxazolidinone that is the only example in the two years covered by this review.
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Scheme 16. Tandem asymmetric aldehyde-alkyne-amine coupling-carboxylative cyclization one-pot
sequence.



Catalysts 2019, 9, 511 32 of 59

Another three-component reaction involving propargylic amines, CO2 and N-bromosuccinimide
(NBS) allowed the stereoselective synthesis of (E)-bromovinyloxazolidinones [168]. The reaction
was catalyzed by silver acetate in the presence of a base. Among the bases, a guanidine derivative
was found the most efficient (Scheme 17). The reaction mechanism is similar to that reported in
Scheme 14, but the vinylsilver intermediate is trapped by bromine atom and not by hydrogen from the
amine. This is another example of vinyl anion trapping by an electrophile different from hydrogen as
already reported in Section 2 (Scheme 11) [145]. It should also be noted that in this reaction only the
(E)-vinylsilver isomer is formed.
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Scheme 17. Synthesis of (E)-bromovinyloxazolidinones.

Also allylamines have been employed for carbon dioxide fixation into cyclic carbamates.
The reactions had three components and also involved alkyl halides and the presence of light,

because generally the alkyl halide is homolitically broken by an irradiated metal catalyst. For instance
tris(bipyridine)ruthenium(II) chloride allowed the synthesis of many oxazolidinones (Scheme 18,
Equation (1)), as well as 3-benzyl-6-phenyl-6-(2,2-difluoro-3-ethoxy-3-oxopropyl)-1,3-oxazinan2-one
and 3-benzyl-6-phenyl-5-(2,2difluoro-3-ethoxy-3-oxopropyl)-1,3-oxazinan-2-one (54 and 38% yields,
respectively) [169]. The reaction of primary allylamines, allylamines with electron withdrawing
nitrogen protecting groups or aliphatic R2 substituents failed as well as the synthesis of cyclic
carbonates from allyl alcohols and of oxazinone from 2-(prop-1-en-2-yl)aniline. The reaction was
scaled up to 1.31 g of recovered product. Some manipulations of the products were also successfully
carried out. Then the same research group carried out a similar reaction under palladium catalysis
and found the same features, except for primary allylamines, which smoothly reacted. (Scheme 18,
Equation (2)) [170]. Scheme 18 also reported the mechanism surmised by authors for the reaction.
Both reactions were scaled up to gram-scale and oxazolidinone was recovered in 84% yield under
ruthenium catalysis and 77% yield under palladium catalysis. Products of both reactions were also
manipulated to give open-chain compounds.
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Scheme 18. Visible-light photoredox induced reaction of allylamines with CO2.

He and co-workers demonstrated that, in the presence of 1,5,7-triazabicyclo[4,4,0]dec-5-ene TDB
as the base, the metal catalyst is unnecessary with perfluoroalkyl halides [171]. They carried out some
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experiments to elucidate the mechanism and from the evidence they proposed the mechanism depicted
in Scheme 19.

Catalysts 2019, 9, x FOR PEER REVIEW 33 of 59 

 

He and co-workers demonstrated that, in the presence of 1,5,7-triazabicyclo[4,4,0]dec-5-ene TDB 
as the base, the metal catalyst is unnecessary with perfluoroalkyl halides [171]. They carried out some 
experiments to elucidate the mechanism and from the evidence they proposed the mechanism 
depicted in Scheme 19. 

 
Scheme 19. Visible-light photoredox induced reaction of allylamines with CO2 and perfluoro 
compounds. 

The N-heterocyclic carbene copper and silver complexes supported on graphene or nanotubes, 
introduced by Chen and co-workers (see also Table 1, entry 72 and Table 2, entry 5), allowed the 
synthesis of oxazolidinones in a three-component reaction (Scheme 20) [115]. Copper complexes gave 
generally higher yields. 

 
Scheme 20. Three-component coupling of CO2, primary amine, and various propargyl alcohols. 

An alternative and attractive strategy to produce oxazolidinones from less-toxic and easily 
available starting materials is a three-component reaction of CO2, epoxides, and amines. However, 
this reaction suffers from large amounts of epoxides because at least a molecule is transformed into 
a diol by-product (Scheme 21). Two alternative pathways have been suggested: 

• the first one involved the formation of cyclic carbonate by the classical mechanism (see Scheme 
2), then amine opened the carbonate by releasing of diol and formation of a isocyanate, which 
in turn added another molecule of epoxide (path a); 

• the second one involved the interaction between the cyclic carbonate and the amino-alcohol from 
nucleophilic opening of epoxide by amine(path b). 

N

N

N
H

H
N

R

(1.5 eq)
CO2 (0.1 MPa)
rt, 2 h

N
R

O O
H H
N

N

N

RFI
300 W Xe lamp

RF I N
R

O O
H H
N

N

N

I
RF

NO

O

R

RF

12 h

73-99%

R=Me, t-Bu, c-C6H11, Bn, 4-FC6H4CH2, 4-ClC6H4CH2, 4-BrC6H4CH2, 4-MeOC6H4CH2, 3,4-(OCH2O)C6H3CH2
RF=CF3, C3F7, C4F9, C8F13,

R
OH + CO2 + R1NH2

1 eq 2 eq3.0MPa

CNT-NHC-Cu
(8 mg/mmol)
120 °C, 24 h NO

R

R1

O

84-96%

R=Me,Et, i-Bu R1=Pr, Bu, Bn, n-C8H17

Scheme 19. Visible-light photoredox induced reaction of allylamines with CO2 and perfluoro
compounds.

The N-heterocyclic carbene copper and silver complexes supported on graphene or nanotubes,
introduced by Chen and co-workers (see also Table 1, entry 72 and Table 2, entry 5), allowed the
synthesis of oxazolidinones in a three-component reaction (Scheme 20) [115]. Copper complexes gave
generally higher yields.

Catalysts 2019, 9, x FOR PEER REVIEW 33 of 59 

 

He and co-workers demonstrated that, in the presence of 1,5,7-triazabicyclo[4,4,0]dec-5-ene TDB 
as the base, the metal catalyst is unnecessary with perfluoroalkyl halides [171]. They carried out some 
experiments to elucidate the mechanism and from the evidence they proposed the mechanism 
depicted in Scheme 19. 

 
Scheme 19. Visible-light photoredox induced reaction of allylamines with CO2 and perfluoro 
compounds. 

The N-heterocyclic carbene copper and silver complexes supported on graphene or nanotubes, 
introduced by Chen and co-workers (see also Table 1, entry 72 and Table 2, entry 5), allowed the 
synthesis of oxazolidinones in a three-component reaction (Scheme 20) [115]. Copper complexes gave 
generally higher yields. 

 
Scheme 20. Three-component coupling of CO2, primary amine, and various propargyl alcohols. 

An alternative and attractive strategy to produce oxazolidinones from less-toxic and easily 
available starting materials is a three-component reaction of CO2, epoxides, and amines. However, 
this reaction suffers from large amounts of epoxides because at least a molecule is transformed into 
a diol by-product (Scheme 21). Two alternative pathways have been suggested: 

• the first one involved the formation of cyclic carbonate by the classical mechanism (see Scheme 
2), then amine opened the carbonate by releasing of diol and formation of a isocyanate, which 
in turn added another molecule of epoxide (path a); 

• the second one involved the interaction between the cyclic carbonate and the amino-alcohol from 
nucleophilic opening of epoxide by amine(path b). 

N

N

N
H

H
N

R

(1.5 eq)
CO2 (0.1 MPa)
rt, 2 h

N
R

O O
H H
N

N

N

RFI
300 W Xe lamp

RF I N
R

O O
H H
N

N

N

I
RF

NO

O

R

RF

12 h

73-99%

R=Me, t-Bu, c-C6H11, Bn, 4-FC6H4CH2, 4-ClC6H4CH2, 4-BrC6H4CH2, 4-MeOC6H4CH2, 3,4-(OCH2O)C6H3CH2
RF=CF3, C3F7, C4F9, C8F13,

R
OH + CO2 + R1NH2

1 eq 2 eq3.0MPa

CNT-NHC-Cu
(8 mg/mmol)
120 °C, 24 h NO

R

R1

O

84-96%

R=Me,Et, i-Bu R1=Pr, Bu, Bn, n-C8H17

Scheme 20. Three-component coupling of CO2, primary amine, and various propargyl alcohols.

An alternative and attractive strategy to produce oxazolidinones from less-toxic and easily
available starting materials is a three-component reaction of CO2, epoxides, and amines. However,
this reaction suffers from large amounts of epoxides because at least a molecule is transformed into a
diol by-product (Scheme 21). Two alternative pathways have been suggested:

• the first one involved the formation of cyclic carbonate by the classical mechanism (see Scheme 2),
then amine opened the carbonate by releasing of diol and formation of a isocyanate, which in turn
added another molecule of epoxide (path a);

• the second one involved the interaction between the cyclic carbonate and the amino-alcohol from
nucleophilic opening of epoxide by amine(path b).
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Scheme 21. Three-component reactions among CO2, amines and epoxides.

For instance, potassium phosphate was found to be a highly active catalyst in this reaction mainly
for styrene oxide derivatives (Scheme 21, Equation (1)) [172]. A mixture of four- and five-substituted
oxazolidinones is generally obtained. However, aliphatic epoxides with a long chain alkyl group
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(R = C6H13, (CH2)6CH=CH2) afforded a single regioisomer albeit in 45% and 38% yields, respectively.
Also p-nitroaniline, benzyl- and octyl-amines gave a single regioisomer. In all cases, the five-substituted
oxazolidinone is recovered. Both isocyanates and aminoalcohols gave the products when submitted to
the reaction conditions.

Diazabicycloundecene, instead, allowed the reaction of aliphatic epoxides. However, increasing
the bulkiness of the epoxides yields lowered and cyclohexene oxide led to unidentified mixture of
products (Scheme 21, Equation (2)) [173]. The analysis of the reaction course by GC-MS did not show
the presence of isocyanate intermediates. Also, a Fe(II) N-heterocyclic carbene (NHC) complex was
found able to perform this reaction (Scheme 21, Equation (3)) [174]. Authors did not attempt reaction
with internal epoxides, and also found that styrene oxides gave lower yields than aliphatic epoxides.
Some experiments, carried out to elucidate the mechanism, suggested path b for the reaction.

KCC-1 nanoparticles have been already encountered in this review in Table 4, entry 9. On this
fibrous material was supported Cu (II)-β-cyclodextrin and the obtained catalyst afforded oxazolidinones
from reaction of anilines, CO2 and ethylene oxide (Scheme 21, Equation (4)) [175]. Albeit restricted
only to ethylene oxide and p-substituted anilines, this reaction is interesting because it did not use
epoxide excess. In fact, in the proposed mechanism, authors affirmed that the diol by-product could
be captured by the catalyst. Then, a molecule of aniline could nucleophilically remove it to give the
ethanolamine intermediate for a further catalytic cycle.

Conversely from CO, which can favorably add the ethanolamine [176], the direct reaction between
amino alcohols and CO2 is thermodynamically disfavored. To shift the equilibrium to 2-oxazolidinones
dehydrating agents or auxiliaries are often needed, with generation of waste. Among dehydrating
agents in the last two years, He and co-workers proposed propargyl alcohols and published some
papers with different catalysts to carry out this reaction [177–179].

The catalyst or the catalyst mixture should activate the OH groups both of propargyl alcohol
and of amino alcohol by hydrogen bonds and the CO2, as well as coordinate the triple bond and
act as a Lewis acid on the carbonyl group. In all the papers, yields of oxazolidinones and ketones
by-product are comparable. Authors performed control experiments, DFT calculation, kinetic and
NMR studies and from these data suggested the reaction pathway depicted in Scheme 22 [177],
which was confirmed in the other papers. The first proposed catalyst was the couple Ag2O and
tetramethylguanidine (Scheme 22) [177]. The reaction was also applied to diols; 1-phenylethan-1,2-diol
and 3-phenoxypropan-1,2-diol gave the corresponding cyclic carbonates in 95% and 58%, respectively.
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Scheme 22. Cascade reaction of propargyl alcohols, carbon dioxide, and 2-aminoethanols.

Then, the same research group proposed another catalytic mixture to perform the same reaction,
that are: CuI (5 mol%) 1,10-phenantroline (5 mol%) t-BuOK (10 mol%), CO2 (0.5 MPa), 80 ◦C, 12 h [178].
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Yields ranged 18–95% for hydroxyketones and 24–97% for the same oxazolidinones reported in
Scheme 22, as well as the diols. Only 1,2-propanediol was added extra. The third catalyst was
1,5,7-triazabicylo[4.4.0]dec-5-ene trifluoroethanol (15 mol%), CO2 (0.1 MPa), 80 ◦C, 12 h [179]. For the
same set of products, yields ranged 23–99% for hydroxyketones and 24–99% for the oxazolidinones and
cyclic carbonates. The easy recovering of this last catalyst allowed its recycle and the target product
was still obtained in 75% yield, after five reuses.

Repo and co-workers used tosyl chloride as the auxiliary [180]. The most important feature of
this reaction is the formation and the stabilization of the carbamate species before the competing
N-tosylation reaction, which is then irreversible (Scheme 23). Lower reaction temperatures and higher
CO2 pressure favored the oxazolidinone formation. The presence of a good leaving group such as in
3-chloropropan-2-ol-1-amine favors the 6-membered ring notwithstanding the higher stability of the
5-membered ring. In fact, propan-1,2-diol-1-amine gave mainly the five-membered ring. Starting from
chiral compounds the Sn2 nature of the reaction allowed the preparation of enantioenriched compounds
in good purity. The mechanism was then studied by DFT calculation confirming author’s hypothesis.

Catalysts 2019, 9, x FOR PEER REVIEW 36 of 59 

 

in Scheme 22, as well as the diols. Only 1,2-propanediol was added extra. The third catalyst was 1,5,7-
triazabicylo[4.4.0]dec-5-ene trifluoroethanol (15 mol%), CO2 (0.1 MPa), 80 °C, 12 h [179]. For the same 
set of products, yields ranged 23–99% for hydroxyketones and 24–99% for the oxazolidinones and 
cyclic carbonates. The easy recovering of this last catalyst allowed its recycle and the target product 
was still obtained in 75% yield, after five reuses. 

Repo and co-workers used tosyl chloride as the auxiliary [180]. The most important feature of 
this reaction is the formation and the stabilization of the carbamate species before the competing N-
tosylation reaction, which is then irreversible (Scheme 23). Lower reaction temperatures and higher 
CO2 pressure favored the oxazolidinone formation. The presence of a good leaving group such as in 
3-chloropropan-2-ol-1-amine favors the 6-membered ring notwithstanding the higher stability of the 
5-membered ring. In fact, propan-1,2-diol-1-amine gave mainly the five-membered ring. Starting 
from chiral compounds the SN2 nature of the reaction allowed the preparation of enantioenriched 
compounds in good purity. The mechanism was then studied by DFT calculation confirming author’s 
hypothesis. 

 
Scheme 23. Synthesis of cyclic carbamates from amino alcohols. 

Finally, oxazolidinones could be obtained in high yields from a three-component reaction among 
CO2, 1,2-dichloroethane and aromatic amines catalyzed by N-heterocyclic carbene obtained in situ 
from an ionic liquid (Scheme 24) [181]. However, the reaction with 2,3-dichlorobutane afforded the 
corresponding 4,5-dimethyl-3-aryloxazolidin-2-ones in very low yields (28–40%). On the other hand, 
1,2-dichloropropane gave good yields (about 70%) at higher temperatures, but without 
regioselectivity and a mixture of 5-methyl-3-aryloxazolidin-2-one and 4-methyl-3-aryloxazolidin-2-
one was always recovered. The reaction occurred also with CO2 diluted in water, air and nitrogen. 
The catalyst was used five times without significant deactivation. Interestingly the reaction was 
extended to other dichloroalkanes. Many six-membered 3-aryl-1,3-oxazinan-2-ones (19 examples) 
were obtained in 70–93% yields at 90 °C for 6 h. The seven-membered 3-aryl-1,3-oxazepan-2-one was 
also formed but in lower yield (22–35%, 3 examples). Larger cycles such as those from 1,5-
dichloropentane, 1,6-dichlorohexane and 1,10-dichlorodecane were not obtained, but ω-
chloroalkylcarbamates were recovered in 63, 55, 37%, respectively. Some experiments were carried 
out to elucidate the mechanism depicted in Scheme 24. Authors also demonstrated by means of 
control experiments that carbonate ions were not the C1 source of the reaction. 

R
H
N

OH

CO2 (0.5 MPa)
Cs2CO3 (3 eq)
rt, 20 h

R
N

OH

OO Cs2CO3
TsCl
(1.1 eq)

R
N

OTs

OO

NO

O

R

CsHCO3

Cs

CsHCO3,
CsCl

TsOCs

Cs

45-85%
R1

R1

R=Ph, 4-MeC6H4, 4-MeOC6H4, 4-BrC6H4
R1=H, Me

PhN O

O

R1 R1

R1=H (46%)
R1=Me (57%)

and also: NPhO

O

(10%)

O

R
N O

R=H (65%)
R=Me (80%)

Ph
H
N

OH

X
as above NO

O

Ph

X

+
O NPh

O

OH
X=Cl 41% 50%
X=OH 85% 10%

R
H
N

OH

R1

as above NO

O

R

R1
44-85%
90->99% ee

R=Ph, 4-MeC6H4,
4-MeOC6H4, 4-BrC6H4

R1=H, OH, OMe

Scheme 23. Synthesis of cyclic carbamates from amino alcohols.

Finally, oxazolidinones could be obtained in high yields from a three-component reaction among
CO2, 1,2-dichloroethane and aromatic amines catalyzed by N-heterocyclic carbene obtained in situ
from an ionic liquid (Scheme 24) [181]. However, the reaction with 2,3-dichlorobutane afforded the
corresponding 4,5-dimethyl-3-aryloxazolidin-2-ones in very low yields (28–40%). On the other hand,
1,2-dichloropropane gave good yields (about 70%) at higher temperatures, but without regioselectivity
and a mixture of 5-methyl-3-aryloxazolidin-2-one and 4-methyl-3-aryloxazolidin-2-one was always
recovered. The reaction occurred also with CO2 diluted in water, air and nitrogen. The catalyst was
used five times without significant deactivation. Interestingly the reaction was extended to other
dichloroalkanes. Many six-membered 3-aryl-1,3-oxazinan-2-ones (19 examples) were obtained in
70–93% yields at 90 ◦C for 6 h. The seven-membered 3-aryl-1,3-oxazepan-2-one was also formed
but in lower yield (22–35%, 3 examples). Larger cycles such as those from 1,5-dichloropentane,
1,6-dichlorohexane and 1,10-dichlorodecane were not obtained, but ω-chloroalkylcarbamates were
recovered in 63, 55, 37%, respectively. Some experiments were carried out to elucidate the mechanism
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depicted in Scheme 24. Authors also demonstrated by means of control experiments that carbonate
ions were not the C1 source of the reaction.Catalysts 2019, 9, x FOR PEER REVIEW 37 of 59 
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Scheme 24. Synthesis of oxazolidinones from 1,2-dichloroethanes.

These last two reactions have been employed also for larger cyclic carbamates than oxazolidinones.
Very recently, an enantioselective cyclization was developed to prepare six-membered cyclic carbamates
from homoallylic amines (Scheme 25) [182]. The catalyst was studied in order to have Brønsted basicity
enough to avoid amine to form an achiral carbamate salt intermediate. Some amounts of water
favored the catalyst-carbamic acid complex, but an excess allowed the formation of an unreactive
crystalline ligand. The optimum amount was 90 ppm. Allylic amines gave low enantiomeric excess
under these conditions. Unsubstituted homoallylamines (R1 = H) gave low yield (43%) and ee
(13%). The enantiomeric catalyst gave the enantiomeric product in comparable yield and selectivity.
The absolute configuration was determined by X-ray analysis.

Catalysts 2019, 9, x FOR PEER REVIEW 37 of 59 

 

 
Scheme 24. Synthesis of oxazolidinones from 1,2-dichloroethanes. 

These last two reactions have been employed also for larger cyclic carbamates than 
oxazolidinones. Very recently, an enantioselective cyclization was developed to prepare six-
membered cyclic carbamates from homoallylic amines (Scheme 25) [182]. The catalyst was studied in 
order to have Brønsted basicity enough to avoid amine to form an achiral carbamate salt intermediate. 
Some amounts of water favored the catalyst-carbamic acid complex, but an excess allowed the 
formation of an unreactive crystalline ligand. The optimum amount was 90 ppm. Allylic amines gave 
low enantiomeric excess under these conditions. Unsubstituted homoallylamines (R1 = H) gave low 
yield (43%) and ee (13%). The enantiomeric catalyst gave the enantiomeric product in comparable 
yield and selectivity. The absolute configuration was determined by X-ray analysis. 

 
Scheme 25. Synthesis of enantioenriched 1,3-oxazinan-2-ones. 

R1

ClCl

R
+ ArNH2

NO

R(1) R(1)

Ar

O

R=R1=H (70 °C, 4 h)
R=R1=H (90 °C, 12 h)

28-97%

Ar=

X

X=H, 4-Et, 4-Bu, 4-I, 4-CF3, 4-CN, 4-MeCO, 4-MeCONH, 4-Me, 4-MeO,3-Me,
3-MeO, 3-NO2, 3-F, 3-Cl, 3-Br, 2-Me, 2-MeO, 2-NO2, 2-F, 2-Cl, 2-Br, 2,6-Me2,
2,6-Et2, 2,6-i-Pr2, 2,6-Me2-4-Br, 3-F-4-(morpholin-4-yl)

Ar= 1-naphthyl, 2-naphthyl, benzothiazol-2-yl, isoxazol-3-yl

Ar=
N

N

Y1

Y

Y=H, Me, Ph, 4-MeC6H4, 4-MeOC6H4
Y1=Ph, 4-MeC6H4

R=H, R1=Me; R=R1=Me

(10 mol%)
Bu4NBr (10 mol%)

NNBu AcO
NNBu

CO2
0.1 MPa

NNBu

CO2

7 eq 1 eq

R(1)

NHArCl

R(1)

HCl

R(1)

NHArO

R(1)

O

NN
Bu

Cl

H
NO

R(1) R(1)

Ar

O

H

Cs2CO3 + 2 HCl 2 CsCl + CO2+ H2O
(2 eq)

Ph

Ph
N

N

N

N

MeO

MeO

N
H
H
N

R1 NHR

CO2 (0.1 MPa)
Cat-NHTf2 (10 mol%)
NIS (120 mol%)
PhMe (0.13 M, 90 ppm H2O)
-20 °C 72-120 h

Cat

N OO

I
NIS

R1 N
R

CO2

Cat

amine

R1 N
R

CO2

amine

racemate O N

O
R

I
R1

R1=Ph, 4-MeC6H4, 4-PhC6H4, 4-MeOC6H4, 4-t-BuC6H4, 4-FC6H4, 4-CF3C6H4, 4-PhC6H4, 3-MeC6H4,
3-MeOC6H4, 3-ClC6H4, 3-FC6H4, 2-MeC6H4, 2-naphthyl, Me, c-C6H11

R=Bn, 4-MeC6H4CH2, 4-MeOC6H4CH2, 4-ClC6H4CH2, 4-FC6H4CH2, 3-MeC6H4CH2, 3-MeOC6H4CH2,
2-MeC6H4CH2, Bu, Pr

59-77%
40-95% ee

Scheme 25. Synthesis of enantioenriched 1,3-oxazinan-2-ones.



Catalysts 2019, 9, 511 39 of 59

Other six-membered rings, recently obtained by CO2 fixation, are some azo-linked 4H-benzo[d][1,3]
oxazine-2,4-diones from azo-linked aminobenzoic acids [183]. The catalyst was called by authors
CuO@RHA/MCM-41 nanocomposite and was prepared from CuO nanoparticles and a MCM-41
matrix obtained from rice husk ash (RHA). The best yields were obtained with electron-withdrawing
substituted substrates. This heterogeneous catalyst was recycled up to six times without significant
loss of activity. In the proposed mechanism (Scheme 26), Cu ions act as a Lewis acid to activate CO2.
Then a carbamate ion is formed, which in turn undergoes intramolecular reaction and dehydration to
give the product.
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Another cyclic carbamate, which shows biological and pharmaceutical activities, is 1,3,4-
oxadiazole-2(3H)-one. Its synthesis could be performed by 1,3-dipolar cycloaddition of nitrile imine
with CO2. However, the low reactivity of carbon dioxide toward 1,3-dipoles and the fast dimerization
of nitrile imines make this reaction rare. In the last two years three papers appeared in the literature
anyway. In 2017, Zhang found that CsF/18-crown-6 are able to enhance both the reactivity of CO2 as
a 1,3-dipolarophile and the in situ formation of nitrile imines from hydrazone chloride (Scheme 27,
Equation (1)) [184]. Among the prepared products, a potential drug for Parkinson’s disease therapy
and the commercial herbicide oxadiazon were obtained in 89% and 88% isolated yield, respectively.
The same procedure can be successfully applied to the synthesis of 3,4-thiadiazol-2(3H)-one from COS.

The reaction mechanism was studied by Fernández-Herrera, Merino and co-workers at the
SMD/M06-2X/def2-TZVP level. They found that the reaction proceeds by a three-step mechanism and
not by 1,3-dipolar cycloaddition (Scheme 27, Equation (2)), thus explaining how the low reactivity of
carbon dioxide toward 1,3-dipoles is overcome. The rate-determining step is the final five-membered
ring closure. However, authors affirmed that increasing the concentration and the temperature the
concerted pathway becomes more likely [185].

Very recently, a new synthesis of substituted 1,3,4-oxadiazol-2(3H)-ones from aryl hydrazines and
α-oxocarboxylic acids, with KI as the catalyst, has been developed (Scheme 27, Equation (3)) [186].
Authors made some control experiments and they found that the extra pressurized CO2 is necessary
for obtaining good yield (with the CO2 only released by the α-oxocarboxylic acid, the product was
obtained in 38% yield); the hypoiodite ions is a key active species to give the hydrazone iodide; and that
methyl acrylate instead of CO2 led to a cycloadduct in 74% yield, thus suggesting a cycloaddition
reaction also with CO2. However, it is surprising that after this evidence, authors did not start from
more available aldehydes instead of α-oxocarboxylic acids.
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Finally, the synthesis of 2-benzoxazolone (60% yield) from 2-aminophenol in the presence of
tributylamine should be mentioned [187]. Reaction details will be discussed in the next section
(Scheme 31).

4. Cyclic Ureas

Ureas framework is present in natural products, agricultural pesticides, herbicides,
and pharmaceuticals. The synthesis of urea itself was the founder of modern organic chemistry.
However, the selective and efficient synthesis of substituted ureas and in particular of cyclic ureas
from CO2 and amines is still challenging [188,189].

Quinazoline-2,4(1H,3H)-diones, important intermediates in the synthesis of pharmaceuticals,
can be obtained from reaction of 2-aminobenzonitriles and CO2. This synthesis is particularly important
because of the direct utilization of carbon dioxide as well as the high atom economy. In the last two years
many different methods have been reported in the literature. For instance, the bi-functional graphitic
carbon nitride prepared by Samanta and Srivastava [127] was efficient only in dimethylformamide
(90.2% yield) or dimethylsulfoxide (93.2% yield), with 50 mg/mmol of catalyst, at 130 ◦C and 2.5 MPa
CO2 pressure, after 12 h in the reaction of 2-aminobenzonitrile. The aprotic dipolar solvent should
enhance the activation of the CO2 molecules as well as favor the abstraction of an acidic proton from
the NH2 group of 2-aminobenzonitrile. Examples of reaction with larger applicability are collected in
Table 5.

The accepted mechanism for this reaction is depicted in Scheme 28. Many reactions showed
a relationship between the pKa of the basic catalyst and the reaction rate. For example, in ionic
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liquid the pKa = 14.7 (the acidity of the quinazoline-2,4-dione product) is the borderline between the
base-catalyzed reaction and the quinazoline-2,4-dione ion catalysis [190]. A further computational
study was conducted at M06-2X level and 6-31G (d) basis set utilizing organic bases as the catalyst,
which confirmed the mechanism [191]. Other studies on the mechanism were carried out with the
M06 functional owing to its recognized ability in the description of organometallic chemistry with
noncovalent interactions [192].
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Scheme 28. Mechanism of the reaction of aminobenzonitriles and CO2 catalyzed by bases.

Cesium carbonate was chosen as the catalyst and the LanL2DZ basis set was used for Cs atoms
and the 6–311 + G(d,p) basis set was used to describe other atoms. The energy involved in different
reaction pathways was calculated and the most favorable pathway is very similar to the depicted
in Scheme 28. A “naked nitrogen ion” is necessary for the attack to CO2 and the rearrangement
6-imino-1,3-oxazinen-2-one to pyrimidine-2,4(1H,3H)-dione occurs intramolecularly. In this study,
the isocyanate intermediate is not found along the reaction pathway, but the complex A was invoked
as the key intermediate for the rearrangement.

Fujita reported just an example of pyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione (footnote to entry 1,
Table 5) [160], but almost at the same time Zhang and co-workers published a detailed study on the
synthesis of many dihydropyrimidine-2,4(1H,3H)-diones fused with heterocycles (Scheme 29) [193].

An ionic liquid was used both as the catalyst and the solvent (6 mmol/mmol substrate).
The reaction temperatures (60–90 ◦C) and times (3–96 h) clearly depended from the substrate.
Among the various amino-carbonitrile heterocycles, only 2-amino-1H-indole-3-carbonitrile and
3-amino-1Hindole-2-carbonitrile did not react. However, N-acetyl-3-amino-1H-indole-2-carbonitrile
gave the expected product, suggesting that an N-H group on the heterocycle prevented the reaction.
In fact, no other free N-H heterocycle was tested.
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Entry 3: pyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione was also obtained in 59% yield. Entry 4: product was obtained
after bubbling CO2 at 15 KPa and 50 ◦C for 36 h in 93% yield, even at a gram scale and in 87% under simulated flue
gas system containing 15% of CO2 and 3% of H2O. Entry 5: other salt lake waters were tested with worse results.

In fact, the large amounts of basic B4O7
2− and CO3

2− ions in Zhabuye salt-lake brine are responsible of the best
efficiency. Electron-withdrawing groups required longer reaction times. A carbonate solution was unable to give the
reaction, thus CO3

2− was not the C1 source. The Zhabuye basic salt-lake brine can be separated by centrifugation
from the reaction mixture and reused directly for five times without significant loss of activity.

Both CO2 and RNC are classical C1 sources and their use in a multicomponent reaction is
an attractive way to prepare heterocycles introducing carbonyl and imine moiety at the same
time. However, the difference in kinetic and thermodynamic stability of both C1-reactants
makes their contemporary use rare, because are scarce the catalytic system which sufficiently
activates CO2 and tunes the RNC insertion. In particular, the reaction of 2-haloanilines, RNC,
and CO2 could give rise to two reaction products: 2-amino-4H-benzo[d][1,3]oxazin-4-one and
4-imino-1,4-dihydro2H-benzo[d][1,3]oxazin-2-one. Tuning both regio- and chemoselectivity to
give the second product is particularly interesting, because it spontaneously rearranges to
quinazoline-2,4-(1H,3H)-diones (see Scheme 28). Palladium catalysis was able to perform this cascade
reaction affording N3-subsituted quinazoline-2,4-(1H,3H)-diones (Scheme 30). Three papers appeared
in the literature starting from o-bromo- or o-iodoanilines [196–198]. All research groups carried out
some control experiments to elucidate the reaction mechanism and all were in agreement to propose
the mechanism depicted in Scheme 30. After the best reaction conditions and the scope of the reaction
(Scheme 30, Equation (1)), the first paper reported also some post-functionalization, giving rise to
N1-subsituted quinazolinediones, and 2,4-dichloro-6,7-dimethoxyquinazoline a key intermediate of
some drugs. Moreover, by using the cheap 13CO2, labelled quinazolinediones were also synthesized.
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The reaction was scaled up to 5 mmol [196]. Almost simultaneously, another synthesis was developed
starting from o-iodoanilines (Scheme 30, Equation (2)). It is worth to note that the reaction worked at
atmospheric pressure of CO2, while the other worked at overpressure. The reaction was also carried
out at a half gram scale and afforded product in 77% yield. Under these reaction conditions, o-bromo-
or o-chloro-aniline, strong electron-withdrawing substituted o-iodoanilines, 4-nitrophenylisonitrile,
and 2,6-dimethylphenylisonitrile did not react [197].

Later, Zhang and coworkers used 2-dicyclohexylphosphino2′,6′-dimethoxybiphenyl, (SPhos) as
the palladium ligand. Under these conditions, o-bromoanilines with electron-donating substituents
gave satisfactory yield, but electron-withdrawing substituents afforded low yields (Scheme 30, Equation
(3)). It should be noted that electron-deficient o-bromo- or o-iodoanilines gave good yields with PPh3

as the ligand, but with CsF as the base, conversely from Equation 2 (Scheme 30, Equation (4)) [198].
The direct carboxylation of diamines with carbon dioxide is another attractive manufacture of

cyclic ureas. In the past years some catalysts have been introduced for this reaction and have been
discussed in the reviews cited at the top of this section [188,189]. However, in the time range covered
by us other interesting papers appeared in the literature. For instance, Lee, Kim and co-workers
found that, in the presence of carbonate or bicarbonate as the bases, the synthesis of cyclic ureas is
greatly enhanced by the presence of some amounts of imidazolidin-2-one. In particular, the reaction
of ethylenediamine showed a classical autocatalytic rate, while 1,2- and 1,3-propanediamine yields
increased from about 50% to 75%, if 10 mol% of imidazolidin-2-one was added at 200 ◦C, after 2 h and
5.0 MPa of CO2. The reactions went to completion in 4 h [199].

Since the carboxylation of amines by CO2 is known to proceed with almost no activation barrier,
the role of imidazolidin-2-one cannot favor an increase of the nucleophilicity of the diamine, but rather
to assist the catalyst in the protonation and deprotonation steps of the catalytic cycle, very likely via its
enolic form.
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Scheme 29. Synthesis of heterocycle-fused pyrimidine-2,4-(1H,3H)-diones.
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Scheme 30. Three-component synthesis of quinazoline-2,4-(1H,3H)-diones.

Also the solvent play an important role, because it should be polar enough to stabilize anionic
species, but it must not interact strongly with the base catalyst via hydrogen bonding. Authors
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performed a theoretical calculation to support these findings. On these bases, authors introduced
2-pyrrolidone as the best solvent for this reaction [200]. In fact, it can give rise to a keto-enol tautomerism
and it is polar enough to stabilize the anionic species. The cyclic ureas from ethylenediamine, 1,2- and
1,3-propanediamine were recovered in 83–95% yields at 200 ◦C, after 2 h and 5.0 MPa of CO2 even in
the absence of a base.

Benzimidazolones have been obtained from the reaction of o-phenylenediamines with CO2 in the
presence of tributylamine as the base catalyst (Scheme 31) [187]. The catalyst can be recovered from
the reaction mixture at 210–214 ◦C for 1 h and then reused without loss of activity, but slight reduction
in yield was observed owing to the incomplete recovery. Electron-withdrawing substituents decrease
nucleophilicity of the o-phenylenediamine, thus leading to less efficient reactions. Reaction with
N-phenyl and N-methylphenylenediamine gave the expected product in 80 and 84% yields, respectively.
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We already reported that [13C]-labeled quinazolinediones have been synthesized with the method
described in Scheme 30, Equation (1) [196], but in the time range covered by this review, o-azidoamines
and radiolabeled [11C and 14C] as well as labelled [13C] CO2 were used to prepare pharmaceutically
important radiolabeled cyclic ureas [201]. The reaction proceeded in the presence of a phosphine,
which reacted with the azide to give an iminophosphorane, which in turn underwent an aza-Wittig
reaction to give an isocyanate. Finally the isocyanate is intramolecularly attacked by the amino
group to cyclize (Scheme 32). During the experiments for the synthesis of N-alkylated heterocycles
in a continuous flow reactor on a bed of γ-Al2O3 in supercritical CO2, authors found that under
particular reaction conditions diethanolamine (1 M, at 250 ◦C, 15.0 MPa, and 0.2 mL/min) afforded
3-(2-hydroxyethyl)oxazolidin-2-one with a 56% of conversion and 73% selectivity [202]. At lower
pressure and flow rate the oxazolidinone is converted in the expected 2,2′-(piperazine-1,4-diyl)diethanol.
Owing to the higher nucleophilicity of amino groups the reaction was then carried out with
N-(2-aminoethyl)ethanolamine. Actually at 250 ◦C, 1-(2-hydroxyethyl)imidazolidin-2-one was
recovered with 85% selectivity and 70% yield. In a saturated CO2 atmosphere, but without supercritical
CO2 as the solvent, the imidazolidinone was formed in 62% selectivity, 15% yield from 24% conversion.
Conversely from oxazolidinone, imidazolidinone was stable in all the tested reaction conditions.
Further studies are necessary to better understand this reaction.

Finally, our research group was able to setup an easy access to imidazolidin-2-ones from the
three-component reaction of propargylamines, primary amine and CO2 with 1,5,7-triazabicyclo[4.4.0]
dec-5-ene (TBD) as the catalyst under solvent-free conditions (Scheme 33) [203]. The most interesting
features of this reaction were: (i) secondary alkyl amines as well as allylamine gave worse yields even
increasing temperature to 120 ◦C. (ii) The higher stability of carbamate arising from benzylamine led to
very low yields (<5%). However, changing the base to 7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene
and increasing temperature to 120 ◦C yield increased to 80%. (iii) Anilines reacted despite their low
nucleophilicity, but yields greatly depended from electronic properties of the substituents, ranging from
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81% for p-methoxyaniline to 22% for p-bromoaniline. (iv) Propargylamine led to 1H-imidazol-2(3H)-one,
that is the most stable endocyclic double bond. (v) Also internal triple bond gave the product but in
a 1:1 mixture of E/Z diastereoisomers. (vi) Only N-methylprop-2-yn-1-amine afforded 57% yield of
cyclic urea, while other secondary propargylamines afforded only oxazolidinone. The reaction could
be carried out in a gram scale (87% yield).
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Scheme 33. Urea derivatives from carbon dioxide and amines.

5. Other Heterocycles

In this last section, we report the synthesis of other heterocycles, which can be obtained by
capture of carbon dioxide. For instance, a polythiazolium-based polymer was able to catalyze
the cyclization of 2-aminobenzenethiols to benzothiazole in the presence of DBU and CO2 and
phenylsilane as the reductant [204]. Authors found that primary amides used as the solvent reacted
with 2-aminobenzenethiol in the presence of silane, so they used a cyclic amide, N-methyl-2-pyrrolidone
(NMP). Moreover, temperatures >70 ◦C also reduced the yield. Four-substituted benzothiazoles were
recovered in low yields, very likely for steric effects, but authors claimed that this was the first example
of the use of three-substituted-2-aminobenzenethiols in the synthesis of four-substituted benzothiazoles.
The polymer precatalyst was recovered adding excess HI and precipitation from methanol and reused
for 7 times without losing its activity at 12 mol% of catalyst loading. Regarding the mechanism, authors
proposed that DBU generated in situ a free carbene from the polymer precatalyst, which bound CO2.
The following steps are reported in Scheme 34.
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In addition, developing the reaction already cited in Section 2 (Scheme 11) [127], 2-alkynylanilines,
aryl iodides, and CO2 provided a series of 3,3-diaryl 2,4-quinolinediones (Scheme 35) [205]. It should
be noted that this palladium catalyst allowed the incorporation of CO2, conversely from the palladium
catalyst described in Section 3 (Scheme 15) [134]. The reaction was scaled up to a 1 mmol scale
and product was recovered in 75% yield. In addition, bromobenzene afforded 3,3-diphenyl-
2,4-quinolinedione in 72% yield. Some control experiments allowed authors the formulation of
the mechanism depicted in Scheme 35.
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Scheme 35. Multicomponent synthesis of 3,3-diaryl 2,4-quinolinediones.

The reaction of o-allylanilines with CO2 in the presence of a strong base led to 2-quinolinones.
The detailed mechanism has been recently studied by density functional theory calculations.
The calculated minimum energy reaction pathway is depicted in Scheme 36 [206]. Moreover,
the base was found to play a significant role in reducing the energy barriers. The presence of
urea and Boc-protected aniline among the by-products was explained by the competitive addition of
ter-buatanol or aniline to the isocyanate intermediate. Calculation also predicted that weaker bases
such as Na2CO3 or NaHCO3 might promote the reaction as well.
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6. Conclusions

The importance of CO2 as C1 synthon in chemical reactions is greatly increasing in recent years.
In fact, human activity in its industrial processes produces as by products about 3.3 1010 metric
tons of CO2 increasing the deleterious greenhouse effect. Thus, since sequestration of some of the
circulating carbon dioxide is possible, its use as feedstock in chemical process creates added value to a
waste material and positive effect on the environment. Among the many transformations of carbon
dioxide into valuable chemicals, the synthesis of heterocycles undoubtedly plays an indisputable
role, for the widespread presence of these moieties in new drugs and as building blocks for multistep
synthesis [207,208]. The next future should address this research field towards sustainable methods
such as the use of recoverable organocatalysts instead of precious metal ones, and towards asymmetric
reaction [209], since most of the organic active pharmaceuticals are chiral molecules.
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