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Abstract: Here, we report the tripeptide-catalyzed asymmetric aldol reaction between α-ketoesters
and acetone under acidic cocatalysts-free conditions. H-Pro-Tle-Gly-OH 3g-catalyzed reactions
between α-ketoesters and acetone resulted in up to 95% yield and 88% ee. Analysis of the transition
state using density functional theory (DFT) calculations revealed that the tert-butyl group in 3g played
an important role in enantioselectivity.
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1. Introduction

Optically active tertiary alcohols are partial structures present in various natural products
and biologically active compounds [1–5]. Various synthetic methods for these compounds have
been developed. Asymmetric nucleophile addition to functionalized ketones is one of the most
useful synthetic methods, because highly functionalized optically active tertiary alcohols, which
can undergo various transformations, can be obtained. For example, the direct asymmetric aldol
reaction between α-ketoesters and acyclic ketones is a helpful asymmetric reaction, because it
gives γ-keto-α-hydroxyesters, which can undergo various transformations [6–8]. Therefore, various
asymmetric catalysts, such as bisprolinamide, primary amine, and diamine catalysts, have been
developed for this reaction [9–17]. However, most catalysts require acidic cocatalysts for high
enantioselectivity and high chemical yield. Thus, simpler catalytic systems that do not require
acidic cocatalysts are needed. Nevertheless, the number of asymmetric catalysts that catalyze this
reaction, under acidic cocatalyst-free conditions, is limited. Although Zhang et al. [18] reported a
proline-catalyzed asymmetric aldol reaction between ethyl phenylglyoxylate and acetone under acidic
cocatalyst-free conditions, this method was enantioselective to some degree [18]. To the best of our
knowledge, for this reaction, an asymmetric catalyst displaying high enantioselectivity and chemical
yield under acidic cocatalyst-free conditions has still not been reported.

Following the introduction of a proline-catalyzed asymmetric aldol reaction of aldehydes reported
by List et al. [19], prolinamide catalysts for this reaction have been actively developed [20,21]. Synthetic
peptides in prolinamide catalysts, are recognized as effective catalysts for the direct asymmetric aldol
reaction using aldehydes as electrophiles [22–33]. However, peptide catalysts for the direct asymmetric
aldol reaction using ketones as electrophiles are limited [29,33–36]. Previously, we developed tripeptide
catalysts (Supplementary Materials) that catalyzed the direct asymmetric aldol reaction of isatins or
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trifluoromethyl ketones with acetone (Figure 1a) [37,38]. These catalysts, under acidic cocatalyst-free
conditions, displayed good enantioselectivity and kinetics in these reactions. Herein, we will report
the direct asymmetric aldol reaction between α-ketoesters and acetone catalyzed by tripeptide under
acidic cocatalyst-free conditions (Figure 1b).
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2. Results and Discussion

In this study, we investigated the effect of the catalyst structure on the rate and enantioselectivity
of the reaction between methyl phenylglyoxylate (1a) and acetone (2) (Table 1, entries 1–9).
H-Pro-Gly-Gly-OH 3a-catalyzed reaction progressed to give the corresponding aldol adduct 4a
with 61% yield and 31% ee (Table 1, entry 1). To investigate the effect of introducing a methyl group to
the C-terminal amino acid residue in 3a, H-Pro-Gly-Ala-OH 3b- and H-Pro-Gly-D-Ala-OH 3c-catalyzed
reactions were carried out (Table 1, entries 2 and 3). Both reactions displayed higher reaction rates
than the 3a-catalyzed reaction; however, enantioselectivities of both reactions were not improved,
compared with that of the 3a-catalyzed reaction. H-Pro-Ala-Gly-OH 3d- and H-Pro-D-Ala-Gly-OH
3e-catalyzed reactions introduced a methyl group to the amino acid residue adjacent to the proline
residue in 3a. The reaction between 1a and 2 gave 4a higher enantioselectivity than the 3a-catalyzed
reaction (Table 1, entries 4 and 5). The 3d-catalyzed reaction displayed higher enantioselectivity than
the 3e-catalyzed one. However, the reaction catalyzed by H-Pro-Val-Gly-OH 3f and H-Pro-Tle-Gly-OH
3g, containing bulkier isopropyl and tertiary butyl groups instead of methyl groups, displayed higher
enantioselectivities than the 3d-catalyzed reaction (Table 1, entries 6–7). Above all, 3g-catalyzed
reactions showed the highest enantioselectivity and reaction rates than any of the other catalyzed
reactions. From these investigations, it was discovered that bulky substitution in L-amino acid adjacent
to proline residue played an important role in determining enantioselectivity. From the results,
we decided that the most efficient catalyst for this reaction was 3g, in terms of enantioselectivity and
the reaction rate obtained.

To improve enantioselectivity, we optimized the reaction conditions for a 3g-catalyzed reaction
between 1a and 2 (Table 1, entries 8–21). This reaction was carried out in various solvents (Table 1,
entries 8–13). In THF and diethyl ether, the reaction displayed higher enantioselectivity than in any
other solvent (Table 1, entries 12 and 13). The reaction in THF and diethyl ether at 0 ◦C produced 4a
with higher enantioselectivity than that at 20 ◦C. However, the reaction rate at 0 ◦C in diethyl ether
was lower than that in THF at 0 ◦C. Therefore, we determined that the best solvent for this reaction
was THF, in terms of enantioselectivity and reaction rate (Table 1, entries 14 and 15). The reaction in
THF at −15 ◦C did not progress (Table 1, entry 16). The reaction in THF at 0 ◦C was also slow when
the catalytic amount was reduced from 20 mol% to 10 mol% (Table 1, entry 17). The increase and
decrease in the amounts of 2 and THF, respectively, caused a reduction in reaction rate (Table 1, entries
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18–21). From all the reaction conditions tested, it was revealed that the optimum reaction was 3g
(20 mol%)-catalyzed reaction using 2 (100 eq.) in THF (1 mL) at 0 ◦C, because this reaction gave 4a
with 76% chemical yield and 88% ee under less acidic conditions (Table 1, entry 16).

Table 1. Optimization of catalysts and reaction conditions.

Entry Catalyst Solvent Yield (%) a ee (%) b

1 H-Pro-Gly-Gly-OH 3a neat 61 31
2 H-Pro-Gly-Ala-OH 3b neat 81 30
3 H-Pro-Gly-D-Ala-OH 3c neat 70 26
4 H-Pro-Ala-Gly-OH 3d neat 50 38
5 H-Pro-D-Ala-Gly-OH 3e neat 49 34
6 H-Pro-Val-Gly-OH 3f neat 49 50
7 H-Pro-Tle-Gly-OH 3g neat 90 65
8 3g MeOH 40 30
9 3g MeCN 62 54

10 3g CHCl3 81 68
11 3g PhMe 44 70
12 3g THF 82 79
13 3g Et2O 74 82

14 c 3g THF 76 88
15 c 3g Et2O 45 88
16 d 3g THF — —
17 c,e 3g THF 39 89
18 c,f 3g THF 56 87
19 c,g 3g THF 57 89
20 c,h 3g THF 34 89
21 c,i 3g THF 56 83

a Isolated yield after preparative thin layer chromatography. b Determined by HPLC. Absolute configuration of 4a
was determined by comparing optical rotation between 4a and previous report [14]. c Reaction was carried out at
0 ◦C. d Reaction was carried out at −15 ◦C. e 3g (10 mol%) was used. f 2 (150 eq.) was used. g 2 (50 eq.) was used.
h Reaction was carried out in THF (2 mL). i Reaction was carried out in THF (0.5 mL).

We also investigated the reaction between various α-ketoesters 1a–1h and 2 under optimized
conditions (Table 2). To reveal the effect of ester substituents, reactions of 1a–1c having various ester
groups were carried out (Table 2, entries 1–3). In reactions using 1a–1c as substrates with alkyl esters,
the bulkier the alkyls esters were, the slower the reactions progressed. The substrates 1a–1c generated
the corresponding aldol adducts 4a–4c with good enantioselectivities. To estimate the contribution
of the methoxycarbonyl group of 1a, the reaction between acetophenone and acetone was carried
out. This reaction was not progressed. To investigate the effect of substituents on phenyl groups,
reactions of 4-substituted α-ketoesters 1d–1g were carried out (Table 2, entries 4–7). Reactions of 4-Cl
1d and 4-CF3 1e were faster than that of 1a, and especially that of 1e, which was completed after
three days. However, enantioselectivities of reactions 1d and 1e were lower than that of the reaction
of 1a (Table 2, entries 4 and 5, respectively). In the reactions of 4-Me 1f and 4-MeO 1g, the reaction
rates and enantioselectivities were also lower than that of the reaction of 1a (Table 2, entries 6 and
7, respectively). The reactions of methyl pyruvate (1h) and methyl trimethylpyruvate as aliphatic
α-ketoesters were investigated. The reaction between 1h and 2 gave corresponding aldol adduct 4h,
with good chemical yield and medium enantioselectivity (Table 2, entry 8). Additionally, the reaction of
more bulky genusmethyl trimethylpyruvate (R1 = tBu) with 2 did not give corresponding aldol adduct.
Cyclohexanone, 2-butanone, and acetophenone were applied as nucleophiles. These nucleophiles were
not reacted.
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Table 2. Substrate scope.
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a Isolated yield after preparative thin layer chromatography. b Determined by HPLC. c Absolute configuration of 4a
was determined by comparing optical rotation between 4a and previous report [14]. d Reaction was demonstrated
for 3d.

It was assumed that the catalytic cycle of this reaction was similar to that of the proline-catalyzed
asymmetric aldol reaction (Figure 2a) [9]. Therefore, 2 was activated by enamine formation by reacting
with the amino group of 3g. The C–C bond was then formed by nucleophilic addition to the 1 of
enamine as a nucleophile to generate the iminium cation. Finally, the aldol adduct was produced by
the hydrolysis of the iminium cation. In this reaction, the absolute configuration of the aldol adduct 4
was determined at the C–C bond formation step.

To understand the effect of tert-leucine residue in H-Pro-Tle-Gly-OH 3g on enantioselectivity,
origins of enantioselectivity of 3g and H-Pro-Gly-Gly-OH 3a were investigated. Specifically, transition
states of the stereo-determining C–C bond forming step of 3g- and 3a-catalyzed reactions between 1a
and 2 were investigated via density functional theory (DFT) calculations (Figures 2b and 3) [39,40].
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B3LYP/6-31G(d’,p’) level of theory.

Investigation of transition states of the stereo-determining C–C bond forming step of 3a-catalyzed
reactions between 1a and 2 via DFT calculations revealed that the major (R)-aldol adduct was produced
through 3a-TS-(R), and the minor (S)-aldol adduct was produced through 3a-TS-(S) in the 3a-catalyzed
reaction (Figure 2b). Like the experimental result where (R)-aldol adduct was preferentially obtained
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(Table 1, entry 1), 3a-TS-(R) was the more stable transition state. To understand the origin of
enantioselectivity of 3a, we focused on hydrogen bonds in transition states of the stereo-determining
C–C bond forming step. Hydrogen bonds a, b, and c were formed in both transition states. However,
hydrogen bonds d and e were present in only 3a-TS-(R), and hydrogen bond f was present in only
3a-TS-(S). Namely, 3a-TS-(R) had more hydrogen bonds than 3a-TS-(S). This was the reason why
3a-TS-(R) was the more stable transition state. The investigation of transition states of the C–C bond
forming step of the 3g-catalyzed reaction via DFT calculation found four transition states, such as
3g-TS-(R)-1, 3g-TS-(R)-2, 3g-TS-(S)-1, and 3g-TS-(S)-2 (Figure 3). When this 3g-catalyzed reaction
passed through 3g-TS-(R)-1 and 3g-TS-(R)-2, the major (R)-aldol adduct was obtained. Similarly, when
this 3g-catalyzed reaction passed through 3g-TS-(S)-1 and 3g-TS-(S)-2, the minor (S)-aldol adduct was
obtained. Focusing on conformations of these transition states, 3g in 3g-TS-(R)-1 and 3g-TS-(S)-1 had a
similar conformation to 3a in the transition state of the C–C bond forming step of the 3a-catalyzed
reaction. However, the presence of 3g in these transition states introduced steric repulsion between the
tBu of tert-leucine residue and the carbonyl group of proline residue, causing destabilization of these
transition states. In contrast, this steric repulsion was mitigated in 3g-TS-(R)-2 and 3g-TS-(S)-2, due to
the change in conformation influenced by the tBu group. Due to this change of steric environment in
these transition states, 3g-TS-(R)-2 and 3g-TS-(S)-2 were more stable than 3g-TS-(R)-1 and 3g-TS-(S)-1.
For that reason, it was concluded that (S)- and (R)-aldol adducts were formed through 3g-TS-(S)-2 and
3g-TS-(R)-2 in the 3g-catalyzed reaction, respectively.

Finally, 3g-TS-(R)-2 and 3g-TS-(S)-2 were analyzed and a comparison of their Gibbs free energy
revealed that 3g-TS-(R)-2 was 2.2 kcal/mol more stable than 3g-TS-(S)-2. This difference in Gibbs free
energy was larger than that between 3a-TS-(R) and 3a-TS-(S). Moreover, DFT calculations reproduced
the experimental results such that 3g displayed higher enantioselectivity than 3a, mainly because
of the difference in stabilization caused by hydrogen bonds. In both 3g-TS-(R)-2 and 3g-TS-(S)-2,
multiple hydrogen bonds a, b, and c formed. Hydrogen bonds g and h formed only in 3g-TS-(R)-2.
The conformational change of 3g by the introduction of tBu group to 3a created a larger difference
in the number of hydrogen bonds formed between 3g-TS-(R)-2 and 3g-TS-(S)-2 than that between
3a-TS-(R) and 3a-TS-(S). Hence, difference of stabilization by hydrogen bonds between 3g-TS-(R)-2 and
3g-TS-(S)-2 was larger than that between 3a-TS-(R) and 3a-TS-(S). From the above results, we concluded
that the control of 3g conformation by tBu groups played an important role in the production
of enantioselectivity.
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3. Materials and Methods

3.1. General Methods

Column chromatography was carried out on a column packed with spherical silica gel 60N
of neutral size, 40–50 µm. Thin layer chromatography was prepared using PLC Silica gel (60 F254,
1 mm, Merck). NMR spectra were recorded on a JEOL JNM-ECA600 spectrometer (1H, 600 MHz; 13C,
150 MHz). Chemical shifts of 1H NMR and 13C NMR signals, reported as δ ppm, were referenced to
an internal standard SiMe4 or sodium 3-(trimethylsilyl)-1-propanesulfonate. HRMS were obtained
at an ionization potential of 70 eV with a JEOL JMS-T100GCV spectrometer. Melting points were
measured on an AS ONE ATM-01 melting-point apparatus. Optical rotations were measured by a
JASCO P-1010 Polarimeter. HPLC analysis was performed with a Daicel Chiralpak AD-H column
(25 cm × 4.6 mm × 5 µm) and Chiralpak OD-H column (25 cm × 4.6 mm × 5 µm). All reagents and
solvents were purchased from commercial sources and used without purification. Compounds 1a–1g
were synthesized by the previously reported method [41,42]. Tripeptide catalysts were synthesized by
the literature methods [37,38].

3.2. General Procedure for the Asymmetric Aldol Reaction between α-Ketoesters and Acetone

A mixture of H-Pro-Tle-Gly-OH 3g (20 µmol, 5.7 mg), acetone (10 mmol, 0.74 mL), and THF
(1.0 mL) was stirred at 0 ◦C for 10 min. To the resulting mixture, α-ketoester (0.1 mmol) was added.
The mixture was stirred at 0 ◦C for six days and then filtered to remove the catalyst. The resulting
mixture was concentrated under reduced pressure. Preparative thin layer chromatography on silica
gel using hexane/ethyl acetate as the eluent gave the aldol adduct. The enantiomeric excess of aldol
adduct was determined by chiral HPLC.

4. Conclusions

We have developed a direct asymmetric aldol reaction betweenα-ketoesters and acetone, catalyzed
by a tripeptide under acidic cocatalyst-free conditions. The 3g-catalyzed reaction gave various aldol
adducts with up to 95% yield and 88% ee. Investigation of the transition state via the C–C bond forming
step by DFT calculations has revealed the role of the tBu group in 3g in determining enantioselectivity.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/9/6/514/s1,
1. General; 2. Materials; 3. Preparation of the tripeptide catalysts; 4. General procedure for tripeptide-catalyzed
asymmetric aldol reaction; 5. Computational Details; 6. Reference; 7. Copy of NMR spectra; 8. Copy of HPLC
spectra; 9. Geometries and Cartesian Coordinates. Figure S1: Synthesis of tripeptide catalysts.
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