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Abstract: Palladium(II) acetate reacts with proline and proline homologs in acetone/water to yield
square planar bis-chelated palladium amino acid complexes. These compounds are all catalytically
active with respect to oxidative coupling of olefins and phenylboronic acids. Some enantioselectivity
is observed and formation of products not reported in other Pd(II) oxidative couplings is seen. The
crystal structures of nine catalyst complexes were obtained. Extended lattice structures arise from
N-H••O or O••(HOH)••O hydrogen bonding. NMR, HRMS, and single-crystal XRD data obtained
on all are evaluated.
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1. Introduction

Oxidative coupling reactions are some of the most utilized reactions in modern synthetic chemistry,
and transition metal catalyzed oxidations are well known [1]. Palladium(II) oxidative coupling catalysis
is a huge field [1–6], and this introduction cannot give even a cursory overview of it [7–13]. Some
recent reviews may be the best way of relaying important background information. Focusing on the
general, reactions such as the Heck, Suzuki, and Sonogashira couplings are known to proceed via a
Pd0 species, with oxidative addition/reductive elimination yielding the desired products. Oxidative
palladium(II) catalysis differs from these in that it utilizes molecular oxygen to regenerate the active
catalyst in palladium(II) catalyzed coupling reactions. There are two proposed mechanisms for the
catalytic cycle [14–20].

There are many different types of coupling reactions noted to proceed via palladium(II) oxidative
catalysis. There are hundreds of examples in the current literature of carbon-carbon [2,5,21–39],
carbon-oxygen [40–47], carbon-nitrogen [47–55], carbon-sulfur [42,56,57], and carbon-phosphorous [58]
couplings that are catalyzed by palladium(II) oxidative catalysis. These coupling reactions are used in
the manufacture of many pharmaceuticals, natural products, fine chemicals, and polymers. In addition,
palladium catalysts are known for their functional group tolerance, mild reaction conditions, and low
sensitivity to air and water. Pairing these advantages with an abundant and easily accessible oxidant
source shows the great utility and economic benefit that these systems can provide.

Also important for this discussion is a significant history of using amino acids as chelating ligands,
especially for Pd(II) and Pt(II). Wolfgang Beck has had a five-decade career publishing the series
“Metal Complexes of Biologically Important Ligands,” consisting of over 175 articles [59]. Many of
those papers deal with amino acid complexes of metals including palladium. Recently, proline has
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come to the fore as a “co-catalyst” used along with palladium in a number of organic reactions [60].
More specifically related to this paper are recent publications that describe a bis-proline complex of
palladium as catalyst for various organic transformations. Blum et al. [61] show that proline complexes
of Pd(II) catalyze various coupling reactions, while Chatterjee et al. [62] showed that bis-proline pd(II)
complexes were useful in the Suzuki-Miyaura cross-coupling reaction in water. The formation of biaryl
products from palladium-catalyzed cross-couplings is well known, and there are examples from the
literature [21,50,63–67] that demonstrate that these biaryls can be formed as desired reaction products
or as undesired side products. For reactions where the cross-coupled product is desired, the formation
of biaryls is an unwanted side reaction and catalyst systems of this type where the biaryl formation is
minimized or eliminated are preferred.

This paper describes the synthesis and catalytic activity of palladium(II)-amino acid chelates where
proline, N-methylproline, 4-fluoroproline, 4-hydroxyproline, 2-benzylproline, azetidine-2-carboxylic
acid, and pipecolinic acid were used as the chelating ligands. In earlier work, we showed that the amino
acid complexes of rhodium and iridium piano stools were useful for asymmetric hydrogenation [68].
We have previously reported on the simpler glycine complexes [69], and these proline and proline
homologs represent another unique subset of amino acid ligands where the R-group of the amino acid
is a cyclic ring moiety. Subsequent papers will discuss our work with beta-amino acid complexes and
amino acids where the R-group is a linear substituent.

2. Results and Discussion

2.1. Characterization and Hydrogen Bonding Interactions

In the following discussions, compounds 1–9 (Figure 1, above) were synthesized as shown in the
reaction scheme in Figure 2:
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Figure 2. General reaction scheme for the synthesis of cis and trans palladium(II)
proline/cyclic complexes.

The most common of the cyclic amino acids is L-proline, one of 20 naturally occurring α-amino
acids. Compound 1 was prepared as the cis isomer and confirmed by X-ray crystal structure analysis
(Figure 3).
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Figure 3. Thermal ellipsoid plot of the molecular structure of crystalline cis-bis(L-prolinato)palladium(II),
1. Atoms labelled “i” are generated by a C2 rotation. Thermal ellipsoids are shown at the 50% probability
level. CCDC:1913626.

The complex crystallizes in the C2221 space group. Pd-N and Pd-O bond lengths are 2.0105 Å
and 2.0193 Å, respectively. N-Pd-O bond angles are 82.65◦ for each chelate ring and 96.27◦ between
the chelate rings (O-Pd-O). There were no unusual bond lengths and angles in complex 1 (see the
Supplementary Materials for the full listing). Intermolecular hydrogen bonding is common for
palladium amino acid complexes; the exact nature is dependent on the amino acid and any substitution
on the amino acid backbone. For complex 1, intermolecular hydrogen bonding is observed in the
crystal lattice between the amine protons and the non-coordinated carboxyl oxygen atoms (Figure 4).
In this case, the palladium complex molecules arrange themselves and can approach closely enough
for this purely complex to complex H-bonding. This compound was reported previously by Ito et
al., but at room temperature in a non-standard space group [70]. The bond lengths and angles of the
compounds reported here may be compared with those reported previously in the literature [71–74].

The 1H NMR spectrum in D2O shows three multiplets at δ 4.08–3.63, 3.37–2.73, and 2.28–1.52,
with integrated ratios of 1:2:4, respectively. Palladium’s isotope distribution pattern was observed in
the HRMS spectrum (see Supplementary Materials).

D-proline was used to prepare cis-bis(D-prolinato)palladium(II), compound 8. Characterization
data for 8 was the same as that seen for 1, with the stereochemistry of the chiral carbon reversed (see
Supplementary Materials), as is expected for enantiomeric species.
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In N-methylproline the amine proton in proline is replaced with a methyl group. The resultant
complex formed with this ligand is trans bis-(N-methylprolinato) palladium(II) (Figure 5), confirmed
by X-ray crystallographic analysis.
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As with the glycine complexes, replacement of the amine hydrogen atom with a methyl group
results in a degree of steric crowding that disfavors formation of the cis isomer [69]. All attempts
to synthesize the cis isomer from PdCl2 were unsuccessful. Complex 2 crystallizes in the P212121

space group with Pd-N and Pd-O bond lengths of 2.051 Å and 1.9900 Å, respectively. N-Pd-O bond
angles are 83.90◦ in the chelate ring. N-Pd-O bond angles between the chelate rings are 95.42◦. There
were no unusual bond lengths and angles in complex 1 (see Supplementary Materials for full listing).
Because there are no H-bonding donors in the molecule due to the N-methyl substitution, there is
no intermolecular hydrogen bonding between complex molecules in the lattice. However, water
is now incorporated in the lattice and there is hydrogen bonding between water molecules and
complex molecules (Figure 6). Intermolecular hydrogen-bonded water molecules are observed to
bridge between the coordinated carboxylate oxygen atom of one complex molecule and the carbonyl
oxygen of an adjacent complex molecule. It is also interesting to note that both of the pyrrolidine rings
are turned down such that they are orientated towards the same face of the chelate plane.
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Figure 6. Crystal packing diagram of (2) as viewed along [010] showing the intermolecular hydrogen
bonding motif.

The 1H NMR spectrum in D2O shows the expected singlet for the methyl protons at δ 2.71 ppm.
The remaining proton resonances are present in the expected ratios; however, the splitting patterns are
complex. Palladium’s isotope distribution pattern is observed in the HRMS spectrum with peaks at
361.0526, 362.0542, 363.0532, 365.0531, and 367.0541 amu.

Hydroxyproline and fluoroproline have more electron-withdrawing substituents on their
backbones than their strictly alkyl homologs, and this influence was probed by synthesizing their
respective complexes 3 and 4. Cis-bis-(trans-4-hydroxyprolinato)palladium(II) was synthesized
(Compound 3, Figure 7) using trans-4-hydroxyproline as the ligand.
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Figure 7. Thermal ellipsoid plot of the molecular structure of crystalline cis-bis-(trans-4-
hydroxyprolinato)palladium(II) trihydrate, (3). Thermal ellipsoids are shown at the 50% probability
level. CCDC:1913624.

Complex 3 crystallizes in the P21 space group with 3 hydrogen bonded water molecules per
complex molecule in the lattice. The addition of another H-bond donor and acceptor complicates
the H-bonding picture in the crystal lattice. There is intermolecular hydrogen bonding between one
of the 4-hydroxyl group hydrogen atoms and the carbonyl oxygen of an adjacent molecule. The
hydroxyl oxygen atom is hydrogen bonded to a lattice water molecule that in turn hydrogen bonds to
a coordinated carboxylate oxygen of the adjacent molecule. The other 4-hydroxyl group is hydrogen
bonded to two lattice water molecules that also hydrogen bind to carbonyl oxygen atoms on adjacent
complex molecules in the lattice. The amine hydrogens are hydrogen bonded to lattice waters.

Pd-N and Pd-O bond lengths are 2.0153 Å and 2.0006 Å, respectively. N-Pd-O bond angles are
83.92◦ in the chelate ring with N-Pd-N bond angles between the chelate rings are 97.84◦. All bond
lengths and angles are within the ranges reported for similar d8 metal chelates (see Supplementary
Materials). The 1H NMR spectrum in D2O shows a singlet at 4.41 ppm, indicating that the hydroxyl
proton does not exchange, or exchanges very slowly. All other resonances are as expected. Palladium’s
isotope distribution pattern is observed in the HRMS.

Cis-bis-(trans-4-fluoroprolinato)palladium(II) (Figure 8) crystallizes in the C2 space group. As is
the case with the parent complex 1, pure complex-to-complex H-bonding occurs and there are no water
molecules in the lattice; the hydrogen bonding arrangement is quite different from that seen with the
hydroxyproline complex. For the fluoroproline complex, there is hydrogen bonding from each amine
hydrogen atom to a carbonyl oxygen atom on separate, adjacent complex molecules in the lattice (See
Supplementary Material). The fluorine atoms do not participate in a hydrogen bonding interaction.

The Pd-N and Pd-O bond lengths in compound 4 are 2.006 Å and 2.017 Å, respectively. The
N-Pd-O bond angle in the chelate ring is 82.092◦, with the N-Pd-N bond angle between the chelate
rings at 98.544◦ (see Supplementary Materials). As with the previous complexes, these values are in
good agreement with other square planar palladium N,O chelates.

The proton NMR spectrum of complex 4 shows a complicated set of multiplets due to 1H-1H
and 1H-19F coupling; however, integration does show the expected ratios of protons. The 13C NMR
spectrum is somewhat easier to interpret, showing the expected five carbon resonances with 19F
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coupling constants observed on the order of 130–170 Hz. The 19F NMR shows a singlet at −179.33 ppm
with 13C-19F coupling of 141 Hz. HRMS shows the expected palladium isotopic pattern.

2-Benzylproline adds additional steric demands to the proline ligand. Compound
5, trans-bis-(2-benzylprolinato)palladium(II) (Figure 9), was prepared using 2-benzylproline
hydrochloride as the ligand.
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Crystallizing in the P212121 space group, trans-bis-(2-benzylprolinato)palladium(II) has Pd-N
bond lengths of 2.024 Å and 2.037 Å. Pd-O bond lengths are 2.006 Å and 2.004 Å (see Supplementary
Materials). The chelate rings are slightly twisted out of the square plane. The N-Pd-O angles between
the chelate rings are 98.3 and 97.2◦. The N-Pd-O angles in the chelate rings are 82.6◦. The benzyl groups
on the ligands are oriented up and away from the proline ring, with one of the benzyl groups laying over
the square plane. This is the same arrangement reported by Sabat [75] for the palladium(II)-tyrosine
complex; however, in the case of 5 the second benzyl group does not lie over an adjacent metal center,
but rather in the lattice space between complex molecules. This arrangement does suggest that there is
a π-d interaction occurring between the metal and the aromatic ring of the ligand. Two of the carbon
atoms in the benzyl ring lie closer to the metal center than their calculated Van Der Waals radii. The
Pd-C(19) contact distance is 3.452 Å and the Pd-C(24) contact distance is 3.472 Å. The calculated Van
Der Waals radius [76] for a Pd-C bond is 3.91 Å, or approximately 0.45 Å more than what is observed in
the crystal structure. This reduction in the Pd-C contact distances suggests an energetically favorable
interaction between the π electron cloud of the benzyl ring and the empty dz

2 orbital on the metal
center. The other Pd-C contact distances within the benzyl ring are in the range of 4.009–4.565 Å.
Hydrogen bonding occurs between the amine hydrogen atoms and the coordinated carboxylate oxygen
atom of the adjacent molecule (see Supplementary Materials). There are no water molecules in the
lattice, which is not surprising given the hydrophobicity of the benzyl groups.

The 1H NMR spectrum of complex 5 is somewhat complicated. The aromatic benzyl protons
show a multiplet at 7.25 ppm with the benzyl methylene protons resonating as a pair of doublets at
3.42 and 3.00 ppm. The integrated ratio of the benzyl protons is the expected 5:2. The pyrrolidine ring
protons show multiplets at 3.29, 2.43, 2.02, and 1.87 ppm in a ratio of 2:1:2:1. The expected mass and
isotopic splitting pattern is once again observed in the HRMS for complex 5 with the [M+H]+ peak at
515.1175 amu.

The proline ring is a five-membered moiety, and both four- and six-membered ring homologs
are known. The four-membered ring homolog, L-azetidine-2-carboxylic acid, was used to prepare
trans-bis-(L-azetidine-2-carboxylato)palladium(II) (Compound 6, Figure 10). The crystal structure of
this compound shows some unique phase-change characteristics and will be the subject of a separate
crystallographic paper. The 1H NMR data show the expected ratios of integrated resonances, and the
13C NMR spectrum shows possible evidence of aquo complex formation. As seen with the glycine
complexes [69] discussed in a prior paper, the carbon NMR data for 6 shows two peaks for each carbon.
The HRMS is as expected for a palladium complex.
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The six-membered ring homolog, L-pipecolinic acid, was used to prepare cis-bis-(L-
pipecolinato)palladium(II) (Compound 7, Figure 11). This complex crystallizes in the C2 space
group. Pd-N and Pd-O bond lengths are approximately equivalent at 2.01–2.03Å, comparable to the
other complexes discussed within. The piperidine ring adopts the classic “chair” formation seen in
cyclohexyl ring systems.
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There are four hydrogen bonded water molecules per complex unit in the lattice that form a
pentagonal ring structure with a carbonyl oxygen of the complex. One amine hydrogen atom is
hydrogen bonded to the opposite carboxyl oxygen of the adjacent molecule in the lattice. The other
amine hydrogen is hydrogen bonded to one of the water molecules within the pentagonal water
structure. While the specific features of these hydrogen-bonding motifs in the solid state say little
about solution-state structures, they do indicate that H-bonding is most likely taking place in any
solvent that contains either an H-bond donor or an H-bond acceptor or both.

D-pipecolinic acid was used to prepare cis-bis(D-pipicolinato)palladium(II), Compound 9.
Characterization data for 9, as expected, is the same as that seen for 7, but with the stereochemistry of
the chiral carbon reversed (Figure 12).
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2.2. Catalytic Activity

Asymmetric carbon-carbon bond formation is one of the most useful transformations in synthetic
chemistry [77]. A palladium(II) catalyzed coupling reaction between phenylboronic acid and methyl
tiglate was chosen as a model to evaluate the catalytic reactivity of these new palladium(II) -amino
acid complexes and whether or not any asymmetric induction was possible (Figure 13).
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2.3. Oxidative Coupling of Phenylboronic Acids and Alkenes

The standard coupling reaction that was used to evaluate the catalytic potential for each of the
catalyst complexes was the aforementioned methyl tiglate and phenylboronic acid coupling [29,30].
This substrate was chosen because of the literature references already available to allow for comparison.
All of the complexes described in this paper, except the N-methylproline complex, catalyzed this
reaction and those data are summarized in Table 1 below. We have previously postulated that only the
cis complexes are catalytically active, based on our observations with the glycine complexes described
in a previous paper [67]. We see here, however, that the azetidine complex catalyzes the reaction even
though it exists as the trans isomer. This suggests that N-alkylation, and not cis/trans geometry, may
be the limiting factor in the catalytic ability of these complexes.

Table 1. Coupling reaction product distributions for catalysts 1, 2, 3, 4, 5, 6, 7.

Complex R/S Yield, % % ee E/Z Yield, % Biaryl, %
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Some general observations regarding product distributions and catalyst structure can be made
based on our results. The presence of an electronegative group, –F or –OH, on the proline ring leads
to a decrease in the formation of the E/Z products. The presence of purely alkyl functionality on the
proline ring leads to an increase of the E/Z yield with corresponding loss of R/S product. The exception
here is with the pipecolinic acid complex. This complex generates almost all R/S product, albeit
with no enantioselectivity, and very little E/Z or homocoupled product. These general observations
notwithstanding, there is still a great deal of variability in the product distributions that does not seem
to follow any general trend. This suggests that the particular steric environment about the metal center
during the catalytic cycle likely plays an important role in determining which products will form. As is
often the case in examining various ligands for catalysis, it is difficult to separate the interplay between
steric and electronic effects.

2.4. Proposed Mechanism of Pd-AA2 Oxidative Coupling

The following mechanism is proposed for the palladium(II)-amino acid complex catalyzed
oxidative coupling of phenylboronic acids to olefins (Figure 14, below). Step 1 involves the
transmetallation of phenylboronic acid onto the palladium center. This is accomplished by an
associative mechanism whereby the carboxylate group of one of the ligands de-coordinates to maintain
a four-coordinate intermediate. The now-free carboxylate acts as a base towards the free boronic acid
group, thus no addition of a base is required as is seen in a typical Suzuki coupling. The lack of catalytic
activity of complex 2, the N-methylated version of L-proline, shows the importance of the N-H bond
for activity and the proposed mechanism suggests that H-bonding to a substrate is needed in this cycle.

DFT calculations show that the transmetallated intermediate has a geometry such that the metal
center is completely occluded with the exception of a lobe of the empty dz

2 orbital that lies above the
palladium atom (Figure 15).

The dissociated carboxylate end of the aminoacidato ligand wraps under the metal and covers the
other dz

2 lobe. The remaining empty dz
2 lobe is then free to coordinate a neutral olefin, maintaining

charge neutrality. Insertion of the phenyl group into the olefin double bond, followed by β-hydride
elimination, yields the observed products. There are two possible pathways for beta-hydride elimination.
Hydride elimination from the methyl carbon yields the R/S product, while hydride elimination from the
methine carbon yields the E/Z product. To regenerate the catalyst and begin the cycle again, molecular
oxygen abstracts the hydride, generating a peroxide. Qualitative peroxide test strips do indicate the
presence of minute quantities of peroxide in the 0–25 ppm range.
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2.5. Biaryl Formation

Biaryl formation results from the coupling of two phenyl boronic acid substrates. Biaryl formation
was noted to occur for every catalyst; however, the degree of biaryl formation varied greatly. Steric
considerations about the metal center must therefore allow for both of these groups to orient themselves
cis to each other. The mechanism proposed above can be slightly modified to allow for this possibility.
If we consider a second transmetallation step to occur rather than olefin coordination, the two phenyl
groups are oriented cis to each other. Elimination of the biaryl yields a Pd0 center, which is then
oxidized by molecular oxygen back to a PdII center. It is not clear which factors may dampen biaryl
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formation, but all of the substituted L-proline complexes as well as the pipicolinate and azetidine
showed little to no biaryl formation, a useful feature for an atom-economic process.

2.6. Multiple Insertions

A unique aspect of this coupling/catalyst system is the ability for the products to undergo
additional coupling cycles. The initial alkene products of the coupling reaction can in turn enter the
catalytic cycle again and undergo an additional phenylboronic acid addition. This second product can
also re-enter the cycle for a third phenylboronic acid addition. We have observed one, two, and three
phenylboronic acid addition products for these catalyst systems; however, a fourth addition product
has not been observed for any catalyst. This is likely due to steric concerns whereby the third coupling
product is simply too bulky to coordinate to the metal center. Given that the initial reaction conditions
begin with a 3:1 excess of alkene to phenylboronic acid, noting products from multiple additions is
particularly fascinating and suggests that the product of the first addition is activated toward further
additions, a finding that will be the focus of a future study. In order to maximize additional couplings,
the ratio was reversed to be 3:1 excess of phenylboronic acid to methyl tiglate. In the GC-MS of these
coupling reactions, we observe three peaks of mass 190.2, six peaks of mass 266.3, and two peaks of
mass 342.4; the fourth coupling product would have a mass of 418.5 if formed (Figure 16). For the
actual chromatograms, see the Supplementary Materials.Catalysts 2019, 9, x FOR PEER REVIEW 15 of 25 
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2.7. Temperature Effects

Temperature has a significant effect on the enantioselectivity of the coupling reaction. The coupling
reaction was carried out with the standard set of reaction conditions using the bis-proline complex as
the catalyst at temperatures of 0, 25, and 65 ◦C. Enantioselectivities were noted to increase significantly
with decreasing temperature as shown in Table 2, below. The equipment available for this study did
not allow the reaction to be carried out below 0 ◦C and this could be an interesting study for the future
with the proper equipment.

Table 2. Enantioselectivity versus temperature for the bis(amino acid)palladium(II) catalyzed oxidative
coupling of phenylboronic acid to methyl tiglate.

Reaction Temperature, ◦C %ee

65 ~1

25 20

0 41

2.8. Solvent Effects

The standard coupling reaction was carried out in N,N-dimethylformamide, toluene,
dichloromethane, and water solvents using the bis-proline complex as the catalyst. By far, DMF proved
to be the superior solvent for this system. As a polar aprotic solvent, DMF has a hydrogen bond
acceptor that greatly facilitates dissolution of the catalyst, which has unusually poor solubility in most
common solvents. Subsequent trials were made with DMSO and acetonitrile as the solvents, but
neither of these solvents gave appreciable product formation. As coordinating solvents, it is highly
likely that solvent coordination to the complex blocks the active sites on the metal center required
for reactivity. DMF, as a poorly-coordinating solvent, does not suffer this effect. No reaction was
noted for either the dichloromethane (DCM) or toluene systems. DCM is a slightly polar aprotic
solvent but lacks a hydrogen bond acceptor/donor, and toluene is a non-polar solvent. Neither of these
solvents were observed to dissolve the catalyst, therefore the lack of any observed reactivity is not
surprising. Water proved to be an interesting solvent choice. The catalyst is soluble in water, as is the
phenylboronic acid substrate, but biphenyl formation was noted as the only reaction product. Methyl
tiglate is extremely water-insoluble and the lack of PBA-MT cross-coupling products can be attributed
to the lack of alkene solubility in water. This suggests that water may indeed be a “green” solvent
choice for these systems so long as appropriate water-soluble substrates can be identified. Water as a
solvent was used successfully for biaryl formation with a Pd(II) proline complex [78].

2.9. Pd(II)-Amino Acid Complexes as Polymerization Catalysts

Given the observation that these catalysts facilitate multiple substrate additions, it was hoped that
they might also serve as novel polymerization catalysts. A suitable monomer containing both alkene
and phenylboronic acid moieties, 4-(trans-3-methoxy-3-oxo-1-propen-1-yl)benzene boronic acid, was
identified (Figure 17) and obtained for study.
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The polymerization reaction was performed under conditions identical to the normal
phenylboronic acid-methyl tiglate coupling using the cis-bis-(L-pipecolinato)palladium(II) complex as



Catalysts 2019, 9, 515 15 of 24

the catalyst. This complex was chosen due to the fact that it exhibited the least amount of homocoupling.
While high molecular weight polymer was not isolated from the reaction, high-resolution time-of-flight
mass spectrometric analysis of the reaction provides evidence of oligomer formation. Mass spectral
peaks corresponding to oligomer masses where n = 2, 3, 4, 5, and 6 were observed (n = number of
monomeric repeat units) (Figure 18). The cis-bis-(L-pipecolinato)palladium(II) catalyst once again
showed no formation of homocoupled monomer.
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2.10. Other Coupling Substrates

There are hundreds, if not thousands, of possible boronic acid/olefin combinations that could be
studied with our palladium(II)-amino acid catalytic systems. In an effort to probe some of the other
possibilities of these systems, several substituted phenyl boronic acids and olefins were also examined
as substrates for the coupling reaction.

An electron-withdrawing group on the phenyl boronic acid was introduced in the form of the
trifluoromethyl group in 4-(trifluoromethyl)phenylboronic acid. The coupling reaction between this
boronic acid and methyl tiglate was carried out as before with the bis-(L-prolinato)palladium(II)
catalyst. The reaction proceeded smoothly with complete consumption of the phenylboronic acid
substrate within the 48-hour reaction time. Product distributions were as follows: 71% R/S product
with an enantiomeric excess of 11%, 24% homocoupled biaryl, 1% of the Z-alkene, and 4% of the
secondary addition product (Figure 19).
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The same coupling reaction was also carried out with a phenylboronic acid with an electron
donating group in the para position. In this case 4-methoxyphenylboronic acid was used (Figure 20).
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4-methoxyphenylboronic acid and methyl tiglate.

In this case, as before, complete consumption of the phenylboronic acid was observed. Interestingly,
there was no evidence of homocoupling, alkene formation, or multiple phenylboronic acid additions
noted for this reaction. The only product detected was the R/S product with an enantiomeric excess
of 6%.

Methyl tiglate is considered to be an activated alkene, and it was hoped that our catalysts would
also be useful for coupling non-activated alkenes. To this end cis-cyclooctene, 1,5-cyclooctadiene, and
1,5-hexadiene were evaluated with phenyl boronic acid in the standard coupling reaction. To our
delight, all three alkenes coupled with phenylboronic acid when the reaction was catalyzed by the
cis-bis-(L-prolinato)palladium(II) catalyst. The cis-cyclooctene coupling can generate four possible
products (Figure 21), and four product peaks of the correct mass are observed in the GC-MS analysis of
the reaction. The 1,5-cyclooctadiene coupling has two possible products (Figure 22), and here again we
see two peaks of appropriate mass in the GC-MS trace. Finally, the 1,5-hexadiene coupling also has
two possible products (Figure 23) and two peaks of correct mass are observed by GC-MS.Catalysts 2019, 9, x FOR PEER REVIEW 18 of 25 
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3. Materials and Methods

All reagents were purchased from commercial suppliers and used as received. Palladium(II) acetate
was obtained from Pressure Chemical, Pittsburgh, PA, USA. Proline, N-methylproline, azetidine,
and pipecolinic acid were purchased from Sigma-Aldrich, St. Louis, MO, USA. 4-fluoroproline,
4-hydroxyproline, and 2-α-benzylproline were purchased from Chem-Impex International, Inc., Wood
Dale, IL, USA. Reagent grade solvents (ether, acetone, ethyl acetate, DMF) were purchased from
Sigma-Aldrich. Deuterated solvents for NMR spectroscopy were obtained from Cambridge Isotope
Laboratories, Tewksbury, MA, USA.

1H and 13C NMR spectra were collected on either a Varian MR-400 or a Bruker Avance III 600
MHz NMR spectrometer. High-Resolution Mass Spectra (HRMS) were collected on an Agilent 6220
(Santa Clara, CA, USA). Accurate Mass TOF LC-MS. X-ray crystallographic data were collected at
100 K on an Oxford Diffraction Gemini diffractometer with an EOS CCD detector and Mo Kα radiation.
Data collection and data reduction were performed using Agilent’s CrysAlisPro software (Yarnton,
Oxfordshire, UK) [79]. Structure solution and refinement were performed with ShelX [80,81], and
Olex2 was used for graphical representation of the data [82].

All molecular modeling calculations were performed using Gaussian 09[83] using the WebMO
interface. Full geometry optimizations and single-point energy calculations of all structures in
water were performed via density functional theory (DFT) with the Becke three-parameter exchange
functional [84] and the Lee–Yang–Parr correlation functional [85,86]. Because palladium is not covered
in the cc-pVDZ basis set used, computations involving Pd employed Stuttgart/Dresden quasi-relativistic
pseudopotentials [87].

3.1. General Procedure for the Synthesis of Palladium(II) Amino Acid Complexes

All reactions proceeded in very much identical ways and the following is the general procedure
for all synthesis: An appropriately sized vial was fitted with a magnetic stir bar and charged with
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palladium(II) acetate and an appropriate volume of 50/50 (v/v) acetone/water. The mixture was stirred
until all solids had dissolved. To this we added the amino acid and stirred the mixture overnight. The
reaction solutions turned from a clear red-orange to a clear pale-yellow supernatant with a pale-yellow
precipitate. The supernatant was transferred via pipette to a clean vial and allowed to evaporate
to give clear yellow needles. The pale-yellow precipitate was washed with water and dried under
a vacuum. The combined yield of single crystals and precipitate was measured and the resulting
solid was characterized by 1H, 13C, HRMS, C,H analysis, and single-crystal X-ray diffractometry
where possible.

3.2. Synthesis of cis-bis-(L-prolinato)palladium(II) (1)

Following the general procedure, the following amounts were used: 55.7 mg palladium(II) acetate
(0.2481 mmol), 3.0 mL of 50/50 (v/v) acetone/water and 57.1 mg L-proline (0.4960 mmol). Yield: 79.3 mg
of product (0.2369 mmol, 96% yield). Cis-Pd(C5H8NO2)2 (1) was identified on the basis of the following
data: 1H NMR (400 MHz, D2O) δ 4.08–3.63 (m, 1H), 3.37–2.73 (m, 2H), 2.28–1.52 (m, 4H). 13C NMR (101
MHz, D2O) δ 186.49, 64.89, 52.58, 29.31, 24.68. HRMS/ESI+ (m/z): [M+H]+ calcd for Pd(C5H8NO2)2,
335.0218; found, 335.0224. Anal. Calcd. for Pd(C5H8NO2)2: C, 35.89%; H, 4.82%; N, 8.37%. Found: C,
35.98%; H, 4.83%; N, 8.35%. X-ray crystallographic data -CCDC: 1913626.

3.3. Synthesis of trans-bis-(N-methyl-L-prolinato)palladium(II) (2)

Following the general procedure, the following amounts were used: 35.2 mg palladium(II) acetate
(0.1568 mmol), 3.0 mL of 50/50 (v/v) acetone/water and N-methyl-L-proline (42.7 mg, 0.3306 mmol).
Yield: 53.6 mg of product (0.1477 mmol, 94% yield). Trans-Pd(C6H10NO2)2 (2) was identified on the
basis of the following data: 1H NMR (400 MHz, D2O) δ 3.28 (dd, J = 10.4, 7.0 Hz, 1H), 3.12 (ddd,
J = 10.9, 7.0, 2.8 Hz, 1H), 2.71 (s, 3H), 2.61–2.47 (m, 1H), 2.42–2.13 (m, 3H), 1.99 (dtt, J = 12.9, 6.7, 3.4 Hz,
1H). HRMS/ESI+ (m/z): [M+H]+ calcd for Pd(C6H10NO2)2, 363.0531; found, 363.0532. Anal. Calcd.
for Pd(C6H10NO2)2·2H2O: C, 36.15%; H, 6.07%; N, 7.03%. Found: C, 37.61%; H, 5.85%; N, 7.29%. X-ray
crystallographic data -CCDC: 1913622.

3.4. Synthesis of cis-bis-(trans-4-hydrox-L-yprolinato)palladium(II) (3)

Following the general procedure, the following amounts were used: 59.4 mg palladium(II) acetate
(0.2646 mmol), 2.0 mL of 50/50 (v/v) acetone/water and 77.1 mg 4-hydroxy-L-proline (0.5880 mmol).
Yield: 94.3 mg of product (0.2572 mmol, 97% yield). Cis-Pd(C5H8NO3)2 (3) was identified on the basis
of the following data: 1H NMR (400 MHz, D2O) δ 4.41 (s, 1H), 4.10 (t, J = 9.1 Hz, 1H), 3.35–3.28 (m,
1H), 3.27–3.15 (m, 2H), 3.10 (d, J = 12.7 Hz, 1H), 2.22–2.06 (m, 2H). HRMS/ESI+ (m/z): [M+H]+ calcd
for Pd(C5H8NO3)2, 367.0116; found, 367.0130. Anal. Calcd. for Pd(C5H8NO3)2: C, 32.76%; H, 4.40%.
Found: C, 32.88%; H, 4.42%. X-ray crystallographic data -CCDC: 1913624.

3.5. Synthesis of cis-bis-(trans-4-fluoro-L-prolinato)palladium(II) (4)

Following the general procedure, the following amounts were used: 49.6 mg palladium(II) acetate
(0.2209 mmol), 3.0 mL of acetone and 64.6 mg trans-4-fluoro-L-proline (0.4853 mmol). Yield: 78.1 mg of
product (0.2107 mmol, 95% yield). Cis-Pd(C5H7FNO2)2 (4) was identified on the basis of the following
data: 1H NMR (400 MHz, D2O) δ 5.26–5.09 (m, 1H), 4.16–4.00 (m, 1H), 3.45–3.14 (m, 2H), 2.54–1.89 (m,
3H). 13C NMR (101 MHz, D2O) δ 186.09 (d, J = 140.5 Hz), 92.48 (d, J = 174.5 Hz), 62.48 (d, J = 150.3 Hz),
56.87 (dd, J = 131.2, 21.7 Hz), 36.10 (dd, J = 28.7, 21.6 Hz). 19F NMR (471 MHz, D2O) δ −179.33 (d,
J = 140.9 Hz). HRMS/ESI+ (m/z): [M+H]+ calcd for Pd(C5H7FNO2)2, 371.0029; found, 371.0036. Anal.
Calcd. for Pd(C5H7FNO2)2: C, 32.41%; H, 3.81%; N, 7.56%. Found: C, 32.99%; H, 3.92%; N, 7.53%.
X-ray crystallographic data -CCDC: 1913621.
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3.6. Synthesis of trans-bis-(2-benzylprolinato)palladium(II) (5)

Following the general procedure, the following amounts were used: 21.2 mg palladium(II)
acetate (0.0944 mmol), 3.0 mL of 50/50 (v/v) acetone/water and 50.2 mg 2-benzylproline hydrochloride
(0.2077 mmol). Yield: 44.7 mg of product (0.0868 mmol, 92% yield). Trans-Pd(C12H14NO2)2 (5) was
identified on the basis of the following data: 1H NMR (400 MHz, D2O) δ 7.32–7.15 (m, 5H), 3.42 (d,
J = 14.6 Hz, 1H), 3.36–3.23 (m, 2H), 3.00 (d, J = 14.6 Hz, 1H), 2.48–2.37 (m, 1H), 2.09–1.96 (m, 2H), 1.87
(pd, J = 9.7, 8.8, 3.6 Hz, 1H). HRMS/ESI+ (m/z): [M+H]+ calcd for Pd(C12H14NO2)2, 515.1157; found,
515.1175. Anal. Calcd. for Pd(C12H14NO2)2: C, 55.98%; H, 5.48%; N, 5.44%. Found: C, 55.95%; H,
5.52%; N, 5.37%. X-ray crystallographic data -CCDC: 1913619.

3.7. Synthesis of trans-bis-(L-azetidine-2-carboxylato)palladium(II) (6)

Following the general procedure, the following amounts were used: 49.9 mg palladium(II)
acetate (0.2223 mmol), 2.0 mL of 50/50 (v/v) acetone/water and 51.2 mg L-azetidine-2-carboxylic acid
(0.5064 mmol). Yield: 66.7 mg of product (0.2175 mmol, 98% yield). Trans-Pd(C4H6NO2)2 (6) was
identified on the basis of the following data: 1H NMR (400 MHz, D2O) δ 4.44 (dt, J = 17.3, 8.8 Hz, 1H),
3.75–3.64 (m, 2H), 2.81–2.68 (m, 1H), 2.67–2.55 (m, 2H). 13C NMR (101 MHz, D2O) δ 187.86, 186.59,
63.36, 61.42, 50.32, 48.79, 24.61, 24.58. HRMS/ESI+ (m/z): [M+H]+ calcd for Pd(C4H6NO2)2, 515.1157;
found, 515.1175. Anal. Calcd. for Pd(C4H6NO2)2: C, 55.98%; H, 5.48%; N, 5.44%. Found: C, 55.95%; H,
5.52%; N, 5.37%.

3.8. Synthesis of cis-bis-(L-pipecolinato)palladium(II) (7)

Following the general procedure, the following amounts were used: 107.5 mg palladium(II) acetate
(0.4788 mmol), 3.0 mL of 50/50 (v/v) acetone/water, and 126.6 mg L-pipecolinic acid (0.9802 mmol).
Yield: 152.4 mg of product (0.4202 mmol, 88% yield). Cis-Pd(C6H10NO2)2 (7) was identified on the
basis of the following data: 1H NMR (400 MHz, D2O) δ 3.78–3.57 (m, 1H), 2.96–2.63 (m, 2H), 1.94–1.08
(m, 6H). HRMS/ESI+ (m/z): [M+H]+ calcd for Pd(C6H10NO2)2, 363.0531; found, 363.0543. Anal. Calcd.
for Pd(C6H10NO2)2·4H2O: C, 33.15%; H, 6.49%; N, 6.44%. Found: C, 33.30%; H, 6.50%; N, 6.45%. X-ray
crystallographic data -CCDC: 1913623.

3.9. Synthesis of cis-bis-(D-prolinato)palladium(II) (8)

Following the general procedure, the following amounts were used: 50.2 mg palladium(II) acetate
(0.2236 mmol), 2.0 mL of 50/50 (v/v) acetone/water, and 58.7 mg D-proline (0.5099 mmol). Yield: 71.1 mg
of product (0.2124 mmol, 95% yield). Cis-Pd(C5H8NO2)2 (8) was identified on the basis of the following
data: 1H NMR (400 MHz, D2O) δ 3.79 (dd, J = 9.1, 7.6 Hz, 1H), 3.10–2.96 (m, 2H), 2.17–2.06 (m, 1H),
1.99–1.78 (m, 2H), 1.67–1.54 (m, 1H). HRMS/ESI+ (m/z): [M+H]+ calcd for Pd(C5H8NO2)2, 335.0218;
found, 335.0222. Anal. Calcd. for Pd(C5H8NO2)2: C, 35.89%; H, 4.82%; N, 8.37%. Found: C, 36.10%; H,
4.72%; N, 8.45%. X-ray crystallographic data -CCDC: 1913620.

3.10. Synthesis of cis-bis-(D-pipecolinato)palladium(II) (9)

Following the general procedure, the following amounts were used: 112.8 mg palladium(II) acetate
(0.5024 mmol), 2.0 mL of 50/50 (v/v) acetone/water and 132.2 mg D-pipecolinic acid (1.0235 mmol).
Yield: 151.9 mg of product (0.4188 mmol, 83% yield). Cis-Pd(C6H10NO2)2 (9) was identified on the
basis of the following data: 1H NMR (400 MHz, D2O) δ 3.75–3.56 (m, 1H), 2.97–2.66 (m, 2H), 2.08–1.08
(m, 6H). HRMS/ESI+ (m/z): [M+H]+ calcd for Pd(C6H10NO2)2, 363.0531; found, 363.0520. Anal. Calcd.
for Pd(C6H10NO2)2·4H2O: C, 33.15%; H, 6.49%; N, 6.44%. Found: C, 35.09%; H, 6.02%; N, 6.85%. X-ray
crystallographic data -CCDC: 1913625.
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3.11. General Procedure for Catalytic Reactions

The couplings were carried out in DMF solvent under an O2 atmosphere with a 3:1 alkene:boronic
acid ratio and 5 mol % catalyst loading, based on the boronic acid. Coupling reactions were stirred
under O2 for 48 h. The reaction work-up consisted of dilution with water followed by extraction with
ethyl acetate and drying over anhydrous magnesium sulfate. Analysis included chiral GC using an
Agilent CP-ChiralSil-Dex CB column (Agilent Technologies, Santa Clara, CA, USA).

In order to better analyze the multiple coupling products, the methyl tiglate to boronic acid ratio
was changed to make the alkene:boronic acid ratio 1:3.

4. Conclusions

Nine palladium(II) bis-amino acid chelates with aliphatic ring structures for their R-group
have been synthesized, characterized, and tested for catalytic activity for the oxidative coupling
of phenylboronic acid with olefins. The amino acids employed include L-proline, D-proline,
N-methylproline, azetidine, L-pipecolinic acid, D-pipecolinic acid, 2-α-benzylproline, 4-hydroxyproline,
and 4-fluoroproline. The N-methylproline, 2-α-benzylproline, and azetidine complexes exist as the
trans isomer, with all other complexes being cis. All of these complexes are square planar, C2

symmetric molecules that exhibit varying degrees of intermolecular hydrogen bonding. All complexes
are catalytically active with respect to the oxidative coupling of phenylboronic acids to olefins,
with the exception of the N-methylproline complex. Enantioselectivities are modest with the best
example, cis-bis(prolinato)palladium(II), yielding an enantiomeric excess of 24% with enantioselectivity
increasing with decreasing temperature. These complexes couple a wide variety of both electron-rich
and electron-deficient phenylboronic acids and activated and non-activated olefins. The finding
of multiple cross-couplings on a single substrate is a fascinating finding that will be the subject of
future studies.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/9/6/515/s1,
Figure S1: Example of mass spectrum showing Pd isotope pattern, Figure S2. Packing diagram for Complex 3
showing hydrogen-bonding motif; Figure S3. Packing diagram for Complex 4 showing hydrogen-bonding motif;
Figure S4. Packing diagram for Complex 5 showing hydrogen-bonding motif. Figure S5. Packing diagram for
Complex 7 showing hydrogen-bonding motif; Figure S6. Typical GC-MS trace of the first oxidative coupling of
phenylboronic acid with methyl tiglate; Figure S7. Typical GC-MS trace of the second oxidative coupling products
of phenylboronic acid with methyl tiglate; Figure S8. Typical GC-MS trace of the Third oxidative coupling products
of phenylboronic acid with methyl tiglate; Report I. Complete crystallographic experimental parameters and tables
of bond lengths and angles for complex 1. Report II. Complete crystallographic experimental parameters and tables
of bond lengths and angles for complex 2. Report III. Complete crystallographic experimental parameters and
tables of bond lengths and angles for complex 3. Report IV. Complete crystallographic experimental parameters and
tables of bond lengths and angles for complex 4. Report V. Complete crystallographic experimental parameters and
tables of bond lengths and angles for complex 5. Report VI. Complete crystallographic experimental parameters
and tables of bond lengths and angles for complex 6. Report VII. Complete crystallographic experimental
parameters and tables of bond lengths and angles for complex 8. Report VIII. Complete crystallographic
experimental parameters and tables of bond lengths and angles for complex 9. Example of HRMS showing Pd
isotope pattern, figures showing crystal lattice hydrogen-bonding motifs for select complexes, GC-MS traces
showing the multiple cross-coupling analysis and full experimental data and complete listing of bond lengths and
angles for compounds 1-9. In addition, CCDC numbers 1913619-1913626 contain the full supplementary .cif files
for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/structures.
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