High Efficiency Visible Light Responsive Sulfide KSb₅S₈

Photo-catalyst with Layered Crystal Structure

Supporting Information

Yuanyuan Li^{*a,b}, Meijun Wu^a, Qiang Wang^{a,b}, Kun Wang^c, He Zhang^c, Xuejun Quan, Bin Zhang^{*d},

Dingfeng Yang^{*c}

^aDepartment of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, People's Republic of China. E-mail: liyy@cque.edu.cn

^bCooperative Innovation Center of Lipid Resources and Children's Daily Chemicals, Chongqing University of Education, Chongqing 400067, People's Republic of China.

^cCollege of Chemistry and Chemical Engineering, Chongqing University of Technology, 69 Hongguang Rd., Lijiatuo, Banan District, Chongqing 400054, People's Republic of China. E-mail: yangxunscience@cqut.edu.cn

^dAnalytical and Testing Center of Chongqing University, Chongqing 401331, People's Republic of China.

E-mail: welon5337@126.com

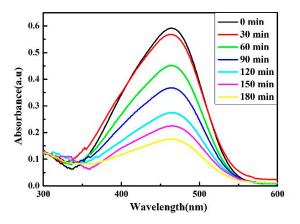


Figure S1. Uv-vis absorption of MO solution as function of irradiation time for KSb₅S₈.

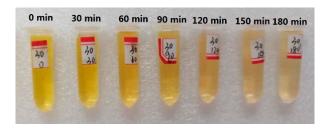


Figure S2. The photograph of MO solution for different irradiation time

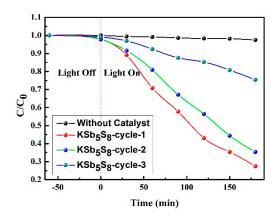


Figure S3. Cycling performance of KSb_5S_8 for the degradation of MO solution under visible light.

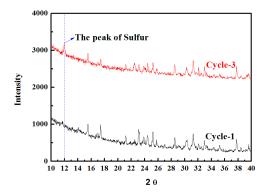


Figure S4. XRD patterns of KSb_5S_8 after the cycling performance of photocatalytic degradation of MO solution.

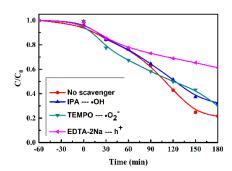


Figure S5. Photodegradation of MO solution with the additional scavenger under visible light.

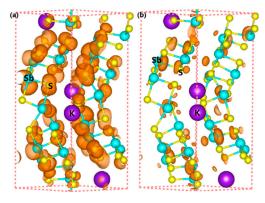


Figure S6. The iso-surface of charge density with given energy window of $0.2~\mathrm{eV}$ from the top and bottom of the

band edge (a) VBM (b) CBM (iso-surface value 0.002)

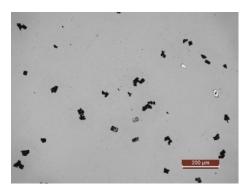


Figure S7. Optical microscopy image of KSb_5S_8 from hydrothermal preparation.