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Abstract: The effects of reaction parameters, including reaction temperature and space velocity,
on hydrogen production via steam reforming of methane (SRM) were investigated using lab- and
bench-scale reactors to identify critical factors for the design of large-scale processes. Based on
thermodynamic and kinetic data obtained using the lab-scale reactor, a series of SRM reactions
were performed using a pelletized catalyst in the bench-scale reactor with a hydrogen production
capacity of 10 L/min. Various temperature profiles were tested for the bench-scale reactor, which
was surrounded by three successive cylindrical furnaces to simulate the actual SRM conditions.
The temperature at the reactor bottom was crucial for determining the methane conversion and
hydrogen production rates when a sufficiently high reaction temperature was maintained (>800 ◦C)
to reach thermodynamic equilibrium at the gas-hourly space velocity of 2.0 L CH4/(h·gcat). However,
if the temperature of one or more of the furnaces decreased below 700 ◦C, the reaction was not
equilibrated at the given space velocity. The effectiveness factor (0.143) of the pelletized catalyst was
calculated based on the deviation of methane conversion between the lab- and bench-scale reactions
at various space velocities. Finally, an idling procedure was proposed so that catalytic activity was
not affected by discontinuous operation.

Keywords: methane steam reforming; hydrogen production; bench scale; effectiveness factor

1. Introduction

The demand for hydrogen has traditionally been high because hydrogen has been widely used
as a chemical raw material in various refineries, as it is essential for the Fischer–Tropsch process
and methanol synthesis [1,2]. Hydrogen is also expected to play an important role as a carbon-free
energy carrier in the future [3,4]. Various methods for producing hydrogen with renewable energies
have been proposed over the past few decades [5–13]. However, large-scale commercialization of
hydrogen production using renewable energy to meet the massive demand for hydrogen remains
challenging [14–16]. Until hydrogen production technology using renewable energy is sufficiently
mature to facilitate the implementation of a sustainable hydrogen economy, a large amount of hydrogen
is required to construct and operate the infrastructure for its storage, transportation, and utilization.
Currently, steam reforming of fossil fuels or biomass is the most realistic option for producing large
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amounts of hydrogen [17]. Among various resources, natural gas is abundant and inexpensive
compared to other sources, and its reforming technologies are widely used on commercial scales [18].

Methane constitutes the majority of natural gas, but it is very stable and requires a significant
energy input for utilization. The steam reforming of methane (SRM 1 and 2) is a strongly endothermic
reaction, as shown in the reaction Equations (1) and (2), and it is usually operated at ≥800 ◦C. Here,
the ratio of steam/methane is stoichiometrically 1, but steam is practically supplied at a ratio of ≥2.5 to
prevent carbon deposition and improve the long-term stability of the catalyst. In addition, if excess
water is supplied, a water–gas shift (WGS, Equation (4)) occurs despite its moderately exothermic
nature, resulting in additional hydrogen production. As can be seen from Equations (1) and (2),
the SRM is a volumetric expansion reaction, so the process is often operated at low pressure as it is
thermodynamically preferred. However, to reduce the size of the reactor and facilitate the overall
operation, the reactor is operated at a pressure of >0.5 MPa. Therefore, it is necessary to derive the
optimal operating conditions according to the composition, amount of the desired product, and the
process scale. Due to the small amount of CO2 produced during the reaction, dry reforming of methane
(DRM, Equation (3)) can also occur.

SRM1 (Steam reforming of methane): CH4 + H2O -> CO + 3H2 (∆H298K = 205.9 kJ/mol), (1)

SRM2 (Steam reforming of methane): CH4 + 2H2O -> 2CO2 + 4H2 (∆H298K = 164.7 kJ/mol), (2)

DRM (Dry reforming of methane): CH4 + CO2 -> 2CO + 2H2 (∆H298K = 247.0 kJ/mol), (3)

WGS (Water-gas shift) CO + H2O -> CO2 + H2 (∆H298K = -41.1 kJ/mol). (4)

To date, most studies on SRM catalysts have focused on their activity and stability, which include
studying the effect of the type and amount of active metal on catalyst performance and identifying
the causes of deactivation, which include sintering of metallic species and coke deposition [19,20].
These studies have been performed in lab-scale reactors using powdered catalysts from a microscopic
point of view. However, to increase the scale of the process, the catalyst must be pelletized to a certain
size and shape considering the heat and mass transfer as well as the pressure drop in the reactor.
Accordingly, the reactor and operating conditions must be properly engineered [21]. For catalysts used
in commercial-scale reactors, their physicochemical properties must be first evaluated in a bench-scale
process (or larger), and appropriate operating conditions must be derived. However, few studies have
been performed on bench-scale reactions [22]. Herein, a commercial Ni-based catalyst was tested
in lab- and bench-scale reactors, wherein powder- and pellet-type catalysts were used, respectively.
We focused on determining the crucial factors of reactor design, especially for commercializing methane
reforming reactions, by conducting a series of experiments under various conditions, including idling
for intermittent operations.

2. Results and Discussion

2.1. Methane Steam Reforming Reaction in a Lab-Scale Reactor

Preliminary lab-scale reactions were performed using a powder-type catalyst obtained by grinding
a commercial pellet-type catalyst and sieving it through a 16–20 size mesh. In the lab-scale reactor,
the effects of reaction temperature, steam/methane ratio, and reaction pressure on SRM performance
were studied. It should be noted that the temperature at the catalyst bed reported here was somewhat
underestimated compared to the overall reactor system, so the experimental values could exceed the
equilibrium values calculated based on the temperature of the catalyst bed. Figure 1a shows the effect
of reaction temperature on methane conversion. For this reaction, the gas-hourly space velocity (GHSV)
was fixed at 4.8 L CH4/(h·gcat), the pressure was fixed at 1 MPa, and the steam/methane ratio was fixed
at 3. As expected from the highly endothermic nature of the SRM (Equation (1)), methane conversion
increased with reaction temperature. The experimental values of methane conversion were close to
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equilibrium, indicating that the SRM reaction rate was not limited by the kinetics of the catalyst, but by
the overall system thermodynamics.
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Figure 1. Effect of (a) reaction temperature, (b) steam/methane ratio, and (c) reaction pressure on
methane conversion in the lab-scale reactor.

The effect of the steam/methane ratio on the methane conversion is shown in Figure 1b. For this
reaction, the reaction temperature, pressure, and GHSV were fixed at 830 ◦C, 1 MPa, and 4.8 L
CH4/(h·gcat), respectively. If the SRM is the only reaction taking place in the reactor, excessive steam
does not necessarily affect methane conversion according to Equation (1). However, the increase in
methane conversion as a function of steam/methane ratio suggests that an additional WGS (Equation (2))
also occurs, resulting in a shift in the SRM equilibrium so that methane consumption is accelerated at a
higher steam/methane ratio [23].

Figure 1c shows the effect of the reaction pressure on methane conversion. For this reaction,
the reaction temperature was fixed at 830 ◦C, the steam/methane ratio was fixed at 3, and GHSV was
fixed at 4.8 L CH4/(h·gcat). The decreased methane conversion with increasing reaction pressure was in
good agreement with the thermodynamic equilibrium conversion, indicating that the reaction rate was
thermodynamically limited under the reaction conditions tested herein.

2.2. Methane Steam Reforming Reaction in a Bench-Scale Reactor

2.2.1. Effect of Reaction Temperature

The bench-scale SRM reaction was performed using a fixed-bed reactor, as shown in Figure 2.
The reactor temperature was controlled by three heaters placed continuously. The inner diameter and
length of the reactor were 32.52 mm and 110 cm, respectively. The temperature gradient along the
vertical distance of the reactor was monitored using five thermocouples (TCs). The position of the TCs
are shown in Figure 3.
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Figure 3. Temperature gradient along the catalyst bed depending on the third heater temperature
(catalytic layer: 93 cm length, 96 g catalyst weight, 1386 g dilution agent weight, physical mixing).
Schematic diagram of the reactor with the thermocouple (TC) positions (yellow bars) shown on the
right-hand side.

The bench-scale reaction conditions were designed based on the lab-scale reaction results.
The reaction was performed at a heater temperature of 800 ◦C, steam/methane ratio of 3, reaction
pressure of 0.6 MPa, and GHSV of 2.0 L CH4/(h·gcat). To confirm whether the reaction set was close to
the equilibrium state of the reforming reaction, the temperature of the bottom heater was changed to
800, 780, and 750 ◦C. The temperature profiles along the reactor distance and corresponding methane
conversions are shown in Figure 3 and Table 1, respectively.

Table 1. Catalyst bed temperature gradient and CH4 conversion at various third heater temperatures.

(a) Experimental Value

Temperature (◦C)
CH4

Conversion (%)
Hydrogen Production

Rate (L/min)3rd
Heater

4th
TC

5th
TC

Mean Value (between the
4th and 5th TC)

800 822 783 802.5 94.07 10.76
780 807 764 785.5 92.43 10.68
750 785 738 761.5 89.63 10.53

(b) Thermodynamic Equilibrium Value

Temperature (◦C) CH4
Conversion (%)

750 87.10
760 89.00
770 90.67
780 92.16
790 93.46
800 94.57

Reaction conditions: steam/methane ratio = 3, feed composition of CH4/H2O/N2 = 1/3/1, reaction pressure = 0.6 MPa,
and gas-hourly space velocity (GHSV) = 2.0 L CH4/(h·gcat).
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The results show that methane conversion decreased with decreasing bottom heater temperature.
When the temperature of the bottom heater was maintained at 800, 780, and 750 ◦C, the methane
conversions were 94.07%, 92.43%, and 89.63%, respectively. Accordingly, the hydrogen production rates
were 10.76, 10.68, and 10.53 L/min, respectively. The methane conversion obtained for each condition is
similar to the equilibrium conversion calculated based on the mean value of the temperature measured
between the 4th and 5th TCs. For instance, when the mean temperature of 4th and 5th TCs was
802.5 ◦C, the bench reaction exhibited a methane conversion of 94.07% (Table 1a), which is close to the
equilibrium conversion calculated at 800 ◦C (94.57%, in Table 1b). These results indicated that the SRM
reaction rate was limited by the thermodynamic state that can be determined under the bench-reaction
conditions. In addition, these results highlight the importance of the temperature at the bottom part of
the reactor when the reaction is close to equilibrium.

The above reaction results were obtained under conditions that were sufficient to reach system
equilibrium. However, in a commercial process, a more rapid temperature gradient would be expected
depending on reactor design and climate conditions. Herein, two cases for the rapid temperature
gradients that could be caused by heater malfunction were tested. In the first case, heat was assumed
to be intensively supplied at the middle of the reactor. This is a typical scenario that can occur when
the commercial side-fired reactor is operated in cold regions. The heater temperatures of those located
at of the top, middle, and bottom were set to 600, 800, and 600 ◦C, respectively. In the second case, only
the bottom heater was heated intensively, but the temperatures of the top and middle heaters were
lowered to simulate another abnormal situation, where the extensive endothermic reaction takes place
beyond the capacity of heaters. The temperatures of the top, middle, and bottom heaters were set to
500, 650, and 800 ◦C, respectively, for this scenario. These temperature profiles along with the catalyst
bed distances are shown in Figure 4.
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The reaction results obtained under the two abnormal conditions are listed in Table 2. Methane
conversion in the second scenario was 57.27%, which was ~7% lower than that obtained in the first
scenario (64.13%). Given that the temperature of the bottom heater in the second scenario was higher
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than that of the first, both SRM reactions were not under equilibrium conditions. This is in contrast to
the cases listed in Table 2, where the SRMs were under equilibrium conditions as the top and middle
heater temperatures were maintained at 800 ◦C.

Table 2. Catalyst bed temperature gradient and CH4 conversion under abnormal conditions.

(a) Experimental Value

Temperature (◦C)
CH4 Conversion (%)

1st Heater 2nd Heater 3rd Heater

500 650 800 57.27
600 800 600 64.13

(b) Thermodynamic Equilibrium Value

Temperature (◦C) CH4 Conversion (%)

620 53.40
630 56.30
640 59.20
650 62.20
660 65.20
670 68.20

Reaction conditions: steam/methane ratio = 3, feed composition of CH4/H2O/N2 = 1/3/1, reaction pressure = 0.6 MPa,
and GHSV = 2.0 L CH4/(h·gcat).

The higher methane conversion in the first scenario was due to the wider region of the effective
catalyst bed, which sufficiently maintained the reaction rate (>600 ◦C). However, in the second scenario
where only the bottom heater temperature increased, the allowance for maintaining rapid catalysis
was reduced. As a result, the space velocity was increased in the effective catalyst layer, consequently
preventing the system from reaching equilibrium. To summarize, operation of the SRM reaction under
equilibrium conditions can be achieved when supplying sufficient heat to the catalyst bed in as wide a
manner as possible.

2.2.2. Effect of Space Velocity

As shown above, the reaction could not reach equilibrium if the reactor exhibited a sufficiently
large temperature gradient because the space velocity was too fast for the catalyst to participate in
the reaction. The effects of space velocity for different types of catalysts for the SRM reaction were
investigated using lab- and bench-scale reactors, as shown in Figure 5. First, 0.15 g of a powdered
catalyst 850 to 1250 µm in size was used in the lab-scale reactor, while 12 catalyst pellets (7.34 g) were
used in the bench-scale reactor. For the latter reactor, the catalyst pellets were evenly distributed with
1440 g of alumina balls, and the length of the catalyst bed was 93.5 cm. The reaction was performed
under various GHSV conditions at 800 ◦C for the three heaters, steam/methane ratio of 3, and reaction
pressure of 0.6 MPa.

For both lab- and bench-scale reactions, methane conversion decreased with increasing space
velocity, but the latter showed a larger decrease. That is, at a GHSV of 2.0 L CH4/(h·gcat), both
experiments showed similar methane conversions (94.73% for the lab-scale and 91.52% for the
bench-scale), but at a GHSV of 7.5 L CH4/(h·gcat), while the lab-scale reaction still showed a comparable
methane conversion of 89.33%, that of the bench-scale reaction significantly decreased to 53.58%.
This indicates that when the GHSV is ≥2.0 L CH4/(h·gcat), penetration of the reaction gas through the
wall of the catalyst pellet does not occur to a sufficient extent, and the active component of the catalyst
is not fully utilized, compared to the powdered catalyst. Accordingly, we suggest that the appropriate
space velocity for hydrogen production in the bench-scale reaction should be ≤2.0 L CH4/(h·gcat).
Based on the above results, the effectiveness factors of the pelletized catalysts were derived and the
results reported in Section 2.2.3.
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2.2.3. Determination of the Effectiveness Factor

Determining an optimal catalyst loading in the reactor to maximize participation in the reaction
is important when designing a large-scale reactor using pelletized catalysts. The effectiveness factor
is defined as the ratio of the apparent reaction rate of the catalyst pellet to the intrinsic reaction rate,
which provides information on the fraction of the catalyst pellet that participates in the reaction [24].
Based on experimental results for the lab- and bench-scale reactions, the effectiveness factor for the
pelletized catalyst was determined. Instead of deriving all effectiveness factors for each individual
reaction, the overall effectiveness factor (ηoverall), as well as CO (SRM1) and CO2 (SRM2) production
from methane by steam reforming, dry reforming of methane (DRM), and the water–gas-shift reaction
(WGS) were calculated as follows:(

rapparent
)
i
= ηoverall(rintrinsic)i i = SRM1, SRM2, DRM, WGS. (5)

To calculate the reaction rates for the commercial catalysts,
(
rapparent

)
i
, the reaction rates and kinetic

parameters from our previous work were used without modification [25]:

rSRM 1 =
kSRM1

(
fCH4 fH2O − f 3

H2
fCO/KpSRM1

)
/ f 2.5

H2[
1 + KCO fCO + KH2 fH2 +KCH4 fCH4 + KH2O

(
fH2O/ fH2

)]2 ; (6)

rSRM 1 =
kSRM1

(
fCH4 fH2O − f 3

H2
fCO/KpSRM1

)
/ f 2.5

H2[
1 + KCO fCO + KH2 fH2 +KCH4 fCH4 + KH2O

(
fH2O/ fH2

)]2 ; (7)

rDRM =
kDRM

(
fCH4 fCO2 − f 2

H2
f 2
CO/KpDRM

)
(
1 + KCH4 fCH4 + KCO fCO

)(
1 + KCO2 fCO2

) ; (8)
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rWGS =
kWGS

(
fCO fH2O − fH2 fC02 /KpWGS

)
/ fH2[

1 + KCO fCO + KH2 fH2 +KCH4 fCH4 + KH2O

(
fH2O/ fH2

)]2 ; (9)

where ki and Ki denote the reaction rate constant and adsorption equilibrium constants, respectively,
for species i. Fugacity ( f ) was calculated using the generalized correlations for the fugacity coefficient,
as described in the literature [26]. The symbol Kp represents the reaction equilibrium constant, which
was obtained from the process simulator UniSim Design Suite R400 (Honeywell Inc., Charlotte,
NC, USA)

Because the inert fraction of the catalyst bed was extremely high (7.34 g of catalyst pellet and
1440 g of inert materials) in the bench-scale reactor, a catalyst pellet was considered to be a single reactor
module in the process simulator, as shown in Figure 6a, 12 of which were connected consecutively over
the entire packing of the reactor. Figure 6b shows a comparison of the methane conversion between the
experimental data and simulated results, where the simulated values coincide with the observed data
satisfactorily (mean of absolute relative residuals (MARRs) and relative standard deviation were 26.7%
and 2.23%, respectively, for GHSV values of 7.5 and 15.0 L CH4/(h·gcat), when the value at 40.0 mL
CH4/(h·gcat) was excluded as an outlier).
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Figure 6. (a) Schematic of the bench-scale reactor (hydraulic diameter of the catalyst pellet was
used in the Cat-bed module), (b) comparison of the CH4 conversion for various space velocities [mL
CH4/(h·gcat)], and (c) temperature profile in the reactor at 7.5 L CH4/(h·gcat). Wall temperature =

800 ◦C, pressure = 0.6 MPa, overall heat transfer coefficient =100 W/(m2
·K), and feed composition of

CH4/H2O/N2 = 1/3/1.

For the lab-scale reactor, a single plug flow reactor (PFR) was used in the simulator, and a reaction
rate of (rintrinsic)i =

(
rapparent

)
i
/ηoverall was used. Figure 7a shows the MARR values for CH4 conversion

as a function of ηoverall, where the optimal value of ηoverall was 0.143 for the minimum MARR (18.8%).
Figure 7b shows that the simulated values of CH4 conversion agreed well with the experimental
data for various space velocities. The temperature profile was also estimated, as shown in Figure 7c.
The reaction temperature decreased to ~600 ◦C at the initial part of the catalyst bed and increased
gradually due to heat transfer from the wall, resulting in the exit temperature being close to that of
the wall.
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Figure 7. (a) Mean of absolute relative residuals (MARRs) values with respect to the overall effectiveness
factor, (b) comparison of CH4 conversion for various space velocities [mL CH4/(h·gcat)], (c) temperature
profile in the reactor at 7500 mL CH4/(h·gcat). Wall temperature = 800 ◦C, pressure = 0.6 MPa, overall
heat transfer coefficient = 100 W/m2

·K, and feed composition of CH4/H2O/N2 = 1/3/1.

2.3. Idling Conditions

In addition to the extreme temperature gradient of the heaters, a stable idling condition was also
simulated under the assumption of discontinuous power supply. The activity of the catalyst can be
maintained by maintaining stable idling conditions. By applying an effective idling operation to the
process, the reaction may not be completely terminated, which would shorten the preparation time for
restarting the operation.

Figure 8 shows temperatures recorded along the SRM reaction followed by idling operation and
the restart process. In a typical starting procedure, the reactor containing a reduced catalyst was
heated to the reaction temperature (800 ◦C, region (1) in Figure 8b) prior to feeding the reactants.
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After stabilizing the reactor temperature, the SRM reaction was initiated by feeding the reactants
(region (2)). After completion of the reaction, the three heaters were maintained at 500 ◦C, and nitrogen
flowed inside the reactor at a rate of 1 L/min (region (3)). When the reforming reaction proceeded
again, the reactor temperature was heated (region ((4)) followed by feeding of the reactants (region (5)).
As shown in Table 3, no significant changes in catalytic performance were observed before or after the
idling operation.
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Figure 8. (a) Schematic of a catalytic layer for idling operation, (b) temperature recorded before (1, 2),
during (3), and after idling (4, 5).

Table 3. Comparison of temperature, methane conversion, and hydrogen production before and
after idling.

Temperature (◦C) CH4
Conversion (%)

Rate of Hydrogen
Production (L/min)1st TC 2nd TC 3rd TC 4th TC 5th TC

Before
idling 478 682 766 826 781 92.95 6.67

After
idling 469 677 767 825 782 92.81 6.65

Reaction conditions: steam/methane ratio = 3, feed composition of CH4/H2O/N2 = 1/3/1, reaction pressure = 0.6 MPa,
GHSV = 2.0 L CH4/(h·gcat), catalytic layer = 82 cm length, catalyst weight = 80 g, dilution agent weight = 1220 g,
and physical mixing.

3. Materials and Methods

3.1. Catalyst Characterization

As a preliminary study for applying a pelletized catalyst to a commercial process, reactions
were performed using a commercial Ni-based catalyst suitable for mass production of hydrogen.
The textural properties and composition of the catalyst are listed in Table 4.
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Table 4. Textural properties of the catalyst used herein.

Parameters Data

Shape 1–hole cylinder
Size O.D. 8.17 mm, I.D. 2.85 mm, Height 7.21 mm

Composition Ni 20 wt.%, CaO-Al2O3 80 wt.%
Density 1.80 g/cm3

Packing Density (in bench reactor) 0.718 g/cm3

Surface Area 21.26 m2/g
Micropore Area 13.07 m2/g

Pore Volume 0.033 cm3/g
Pore Size 111 Å

For structural characterization, the commercial catalyst was ground and meshed to a size of
≤250 µm. The Brunauer–Emmett–Teller (BET) specific surface area, micropore area, pore volume, and
pore size distribution of the powdered catalyst were estimated from the N2 adsorption and desorption
isotherm obtained at −195.7 ◦C using a constant-volume adsorption apparatus (Micromeritics,
ASAP-2020, Norcross, GA, USA). The pore volumes were determined at a relative pressure (P/Po) of
0.99. The catalyst was degassed at 300 ◦C for 4 h before the measurements. The pore size distributions
of the samples were calculated using the Barrett–Joyner–Halenda (BJH) model.

3.2. Steam Reforming Reaction

3.2.1. Methane Steam Reforming Reaction in the Lab-Scale Reactor

The catalytic activity of the powdered catalyst for the methane steam reforming reaction was
tested in a fixed-bed tubular Inconel reactor (ID = 10 mm). Prior to feeding the reactants, the catalyst
was activated by flowing H2 at a rate of 50 mL/min at 800 ◦C for 120 min. A TC was placed at the center
of the catalyst bed to monitor the reaction temperature, and the feed flow was controlled using a mass
flow controller (Brooks, 5850E, Hatfield, PA, USA). The gas products were analyzed using an online gas
chromatograph (GC) (Young Lin Acme 6000, Gyeonggi-do, Korea) with a 40/60 carboxen-1000 column
(2.0 ft × 1/8 in. × 2.1 mm) and a thermal conductivity detector (TCD). Nitrogen was used as an internal
standard gas to verify the composition of the analytical gas (methane) as a volume or half volume.

The activity data shown in Figure 1 were collected by varying the reaction temperature (500
to 850 ◦C), steam/methane ratio (2 to 3.3), and reaction pressure (0.2 to 1 MPa). The methane
conversions shown in Figure 5 (lab-scale) were evaluated under the following reaction conditions:
heater temperature = 800 ◦C; pressure = 0.6 MPa; steam/methane ratio = 3; feed composition of
CH4/H2O/N2 = 1/3/1; and gas hourly space velocity (GHSV) = 2.0–40.0 L CH4/(h·gcat).

The equilibrium conversion was calculated using “HSC chemistry” software (Outotec,
Espoo, Finland).

3.2.2. Methane Steam Reforming Reaction in the Bench-Scale Reactor

The bench-scale reactor consisted of three heaters, a stainless-steel reactor with an inner diameter
of 32.52 mm and length of 110 cm, and five TCs. Figure 9 shows the bench reactor in detail. The TCs of
the three heaters were located 22, 55, and 88 cm from the reactor inlet. Five TCs were located inside
the reactor to monitor the temperature of the catalyst bed, at positions of 10, 21, 54, 87, and 103 cm.
To prevent localization of heat and mass, the reactor was filled with a mixture of a pellet-type catalyst
and spherical diluent (alpha-alumina). Prior to the SRM reaction, the catalyst mixture was activated
by flowing H2 at a rate of 1 L/min at 800 ◦C for 120 min. The experiment was conducted under the
conditions mentioned above, and the analysis method was the same as that of the lab-scale reaction.
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4. Conclusions

A series of lab- and bench-scale SRM experiments were performed to identify and solve the
problems that could occur during scale-up. In the lab-scale reaction, the effects of temperature,
pressure, and steam/methane ratio on methane conversion were investigated in comparison to the
corresponding equilibrium conversion. Based on the lab-scale experiments, a bench-scale reaction
was designed. The methane conversion in the bench-scale reactor was >90%, and the hydrogen
production was >10 L/min if the three consecutive heaters sufficiently supplied the heat required to
reach the equilibrium (>800 ◦C). Under these conditions, the heater temperature positioned at the
bottom of the reactor (outlet side) largely governed the methane conversion. Under abnormal reactor
temperature conditions, where the catalyst bed was not heated sufficiently (<650 ◦C), the reaction
was not equilibrated simply by maintaining the temperature of the bottom heater at 800 ◦C. This is
similar to the case where the space velocity is relatively high (>10.0 L CH4/(h·gcat)). Using kinetic
data obtained from the lab- and bench-scale reactions, the effective factor (0.143) for the pelletized
catalysts was calculated. Finally, we proposed effective idling operating conditions that prevented
catalyst deactivation during process downtime and reduced the time and costs involved in restarting
the process.
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