
catalysts

Article

Biomimetic Mineralization of Cytochrome c Improves
the Catalytic Efficiency and Confers a Functional
Multi-Enzyme Composite

Xiao-Qing Gong 1, Chuan-Wan Wei 1, Jia-Kun Xu 2, Xiao-Juan Wang 1,*, Shu-Qin Gao 3 and
Ying-Wu Lin 1,3,4,*

1 School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
2 Key Lab of Sustainable Development of Polar Fisheries, Yellow Sea Fisheries Research Institute,

Chinese Academy of Fishery Sciences; Laboratory for Marine Drugs and Byproducts of Pilot National Lab
for Marine Science and Technology, Qingdao 266071, China

3 Laboratory of Protein Structure and Function, University of South China, Hengyang 421001, China
4 Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China,

Hengyang 421001, China
* Correspondence: wxj0207@126.com (X.-J.W.); linlinying@hotmail.com or ywlin@usc.edu.cn (Y.-W.L.);

Tel.: +86-743-8578079 (X.-J.W.); +86-734-8282375 (Y.-W.L.)

Received: 4 July 2019; Accepted: 25 July 2019; Published: 29 July 2019
����������
�������

Abstract: The encapsulated enzyme system by metal-organic frameworks (MOFs) exhibits great
potential in biofuel cells, pharmaceuticals, and biocatalysis. However, the catalytic efficiency and the
enzymatic activity are severely hampered due to enzyme leaching and deficiency of storage stability.
In this study, we immobilized cytochrome c (Cyt c) into dimethylimidazole-copper (Cu(Im)2) by
biomimetic mineralization, and constructed a bioinorganic hybrid material, termed Cyt c@Cu(Im)2.
Encapsulated Cyt c in Cu(Im)2 with a nanosheet structure exhibited significantly improved catalytic
efficiency, enzymatic activity and kinetic performance. The catalytic efficiency (kcat/Km) for Cyt
c@Cu(Im)2 was ~20-fold higher compared to that of free Cyt c. Moreover, the increased activity was
not affected by long-term storage. Based on this system, we further constructed a multi-enzyme
composite with glucose-oxidase (GOx), termed GOx-Cyt c@Cu(Im)2, which exhibited greatly improved
enzymatic activity, stability, and excellent selectivity for the detection of low concentrations of glucose.
This strategy may provide new insights into the design of enzymes with high activity and stability, as
well as the construction of multi-enzyme systems.

Keywords: enzymatic immobilization; biomimetic mineralization; multi-enzyme; bioinorganic
hybrid material; biosensors

1. Introduction

Enzymes have been widely applied as catalysts inbiological systems and chemical systems, in an
efficient and green manner [1–4]. Compared to synthetic catalysts, enzymes are often of high selectivity
(i.e., chemo-, region-, stereo-) and minimal by-product generation [5–8]. However, the instability
and poor reusability of natural enzymes restrict their potential applications. Enzyme encapsulation
within a protective shell is a simple and efficient method to improve the stability and reusability
of naturalenzymes [9–11]. Metal-organic frameworks (MOFs) are usually constructed by linking
organic small molecules and metal ions, which can offer superior thermal and chemical protection for
biomacromolecules such as proteins, as compared to other materials such as mesoporous silica and
calcium carbonate [12]. However, MOFs usually possess a pore with dimensionssignificantly smaller
than those of biomacromolecules, which may block the mass transfer of the enzyme and decrease the
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enzymatic activity [13,14]. Therefore, a general method to allow biomacromolecules to fully display
their biological functions is still a challenge in the field of enzyme immobilization. Natural organisms
have developed bio-mineralization strategies to deposit minerals in their structural frameworks. The
bio-minerals can both provide effective stabilization for embedded enzymes and allow them to fully
display biological functions [15–19]. Inspired by the sophisticated bio-inorganic hybrid structures in
nature, it is desirable to prepare enzyme-inorganic mineral hybrid composites with both high enzyme
activity and stability by biomimetic mineralization.

Cytochrome c (Cyt c), as a model enzyme, is widely used in the field of biochemical
analysis [20–23], as well as for the preparation of enzyme-MOF composites, due to its inherent
peroxidase activity [16,24–26]. Therefore, we aimed to construct a Cyt c-MOF analog by biomimetic
mineralization to obtain an efficient catalytic activity and stability. Moreover, multi-enzyme systems
are a series of cascade enzymatic reactions completed by the synergistic effect of multiple enzymes,
which have attracted great attention in recent years because of their important applications, such as in
biosensors [27,28], biocatalysis [29,30], and pharmaceuticals, etc. [31,32].

As shown in this study, we constructed Cyt c@Cu(Im)2 by biomineralization of Cyt c into
dimethylimidazole-copper (Cu(Im)2). The assembly of Cyt c and glucose-oxidase (GOx) formed a
multi-enzyme of GOx and Cyt c encapsulated into Cu(Im)2. The prepared Cyt c@Cu(Im)2 composite
exhibited an excellent stability and catalytic efficiency. Moreover, the encapsulated multi-enzyme
GOx-Cyt c@Cu(Im)2 can be used to detect low concentrations of glucose with excellent selectivity.

2. Results and Discussion

2.1. Preparation and Characterization of Enzyme@Cu(Im)2

The preparation process of the composite material containing enzymes was shown in Figure S1.
The synthesis of enzyme@Cu(Im)2 was by mixing enzyme, dimethylimidazole (Im) and CuSO4, and the
incubation time was no less than 8 h to ensure adequate enzyme biomimetic mineralization. Using this
procedure, we constructed both Cyt c@Cu(Im)2 and GOx-Cyt c@Cu(Im)2. To remove non-encapsulated
enzymes, all composite materials were centrifuged and washed with double distilled water for several
times before vacuum freeze-drying. From Figure S2, it was observed that the encapsulated efficiency
of enzymes was more than 99%.

The as-prepared materials were characterized by various experimental methods. The scanning
electron microscopy (SEM) was applied to obtain the morphology of the prepared materials. The
microstructure of Cu(Im)2 presented interlaced sheets (Figure 1a), which were somewhat similar to
previously reported cupric phosphate nano-flowers [33]. Moreover, these sheets slightly bended to
form petals like in Cyt c@Cu(Im)2 (Figure 1b), similar to that of the pure Cu(Im)2. These observations
suggest that Cytc has little effect on the structure and morphology of Cu(Im)2. In contrast, GOx-Cyt
c@Cu(Im)2 showed an uneven and porous morphology, similar to GOx@Cu(Im)2 (Figure S3), which is
due to the coherent interactions of co-assembly between GOx and Cyt c. The X-ray diffraction (XRD)
was performed for Cu(Im)2, and Cyt c@Cu(Im)2. As shown in Figure S4, the results showed that the
characteristic diffraction peaks of prepared Cyt c@Cu(Im)2 were almost the same as that of Cu(Im)2,
indicating that the structure of Cu(Im)2 was almost not affected by the encapsulation of Cyt c, which is
in agreement with the results of SEM (Figure 1).

It is well known that protein molecules have typical Fourier transform infrared spectroscopy (FTIR)
stretch characteristics at 1640–1660 cm−1 and 1510–1560 cm−1, which correspond to the C=O stretching
mode, NH bending and CN stretching modes on the peptide chain [16,26]. These characteristic peaks
can be clearly identified in the Cyt c and other composites of mineralizing enzymes (Figure 2a), but were
absent in the material of Cu(Im)2 prepared in the absence of enzymes, indicating the incorporation of
enzymes in the matrix of Cu(Im)2.

Thermal gravimetric analysis (TGA) under nitrogen atmosphere also confirmed the embedment
of protein into the Cu(Im)2 (Figure 2b). In the range of less than 200 ◦C, the mass loss is mainly due to
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the loss of water and unreacted reagent [14]. The second decomposition stage was observed for all
enzyme@Cu(Im)2 samples, 25.39% (Cyt c@Cu(Im)2), 25.76% (GOx-Cyt c@Cu(Im)2) between 200 ◦C
and 370 ◦C (Table 1). This is attributed to thermal decomposition of the encapsulated enzymes [34],
which further indicates the successful enzyme encapsulation.Catalysts 2019, 9, x FOR PEER REVIEW 3 of 10 
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same procedure. As shown in Figure 3, green, red and yellow-green fluorescence was observed for 
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Table 1. Mass loss (%) of Cu(Im)2 and enzyme@Cu(Im)2 composite.

Sample Mass Loss (%)
T < 200 ◦C

Mass Loss (%)
200 ◦C < T < 370 ◦C Total Mass Loss (%)

Cu(Im)2 6.99 10.48 32.46
Cyt c@Cu(Im)2 12.53 25.39 52.33

GOx-Cyt c@Cu(Im)2 12.61 25.76 49.58

To further prove the embedment of enzymes into Cu(Im)2, fluorescence labeling assay was
carried out by Delta Vision Elite high-resolution microscope. The Cyt c and GOx were labeled using
FITC and RhB, respectively, and the labeled enzymes were encapsulated into Cu(Im)2 by using the
same procedure. As shown in Figure 3, green, red and yellow-green fluorescence was observed for
(FITC-GOx), (RhB-Cyt c) and (GOx-RhB-Cyt c-FITC@Cu(Im)2), respectively, which further indicates
the successful encapsulation of single enzyme and multi-enzyme.

2.2. Peroxidase Activity Assay of Free Cyt c and Cyt c@Cu(Im)2

The peroxidase catalytic activity of Cyt c@Cu(Im)2 was effected by various factors. For example,
the pH value plays an important role in the enzymatic activity. The enzymes were severely inactivated
under highly acidic or alkaline conditions. As shown in Figure S5a, Cyt c@Cu(Im)2 showed the highest
catalytic activity at pH 7.4, which is different from that of free Cyt c (at ~pH6.5). Moreover, Cyt
c@Cu(Im)2 showed a higher catalytic activity compared to that of free Cyt c under the same conditions
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as a result of biomineralization. For example, the catalytic reaction rate of Cyt c@Cu(Im)2 was faster
than that of free enzyme (Figure 4a), which is consistent with the chromogenic reaction (Figure 4a,
insert.)Catalysts 2019, 9, x FOR PEER REVIEW 4 of 10 
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Figure 4. (a) The kinetic analysis of free Cyt c and Cyt c@Cu(Im)2, the chromogenic reaction of free Cyt
c (insert A) and Cyt c@Cu(Im)2 (insert B); (b) The activity of (1) free Cyt c, (2) Cyt c/copper ion. (3) Cyt
c/Cu(Im)2, (4) Cyt c/Im and (5) Cyt c@Cu(Im)2, respectively.

Moreover, we prepared several non-mineralization composites, including Cyt c, Cyt c/CuSO4, Cyt
c/Cu(Im)2 and Cyt c/Im. The experimental results showed these materials had poor catalytic efficiency
compared to biomimetic mineralization under the same experimental conditions, which elucidated that
the mineralization process was important to improve the catalytic activity of Cyt c. This observation
was consistent with that reported by Jianget al. [26]. The reason for the catalytic efficiency (kcat/Km)
increased from 35.7 to 705 M−1s−1 (Table 2) might be the formation of a bimetallic center provided
by Cu(Im)2 and the ferric porphyrin of Cyt c [5,35], or a new catalytic site formed by Cu(Im)2 and
coordinating amino acids on the protein surface [5].

Table 2. Kinetic parameters for free enzyme Cyt c, and Cyt c@Cu(Im)2.

Sample kcat (s−1) Km (mM) kcat/Km (M−1s−1)

Cyt c 0.75 ± 0.17 21 ± 5 35.7
Cyt c@Cu(Im)2 7.05 ± 0.67 10 ± 1 705

2.3. Peroxidase Activity Assay of Free GOx and Cyt c, and GOx-Cyt c@Cu(Im)2

Based on the composite of Cyt c@Cu(Im)2, we also constructed a multi-enzyme system of GOx-Cyt
c@Cu(Im)2 using asimilar procedureas for a single enzyme. In addition, we investigated its enzymatic
activity and cascade reaction efficiency, usingABTS as a typical chromogenic substrate. The glucose
was catalyzed by GOx to generate H2O2 and gluconic acid, and then ABTS was oxidized by Cytc to
form ABTS+· in presence of H2O2. Therefore, the enzymatic activity could be detected by measuring
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the absorbance of ABTS+ by UV-vis spectroscopy at 420 nm. The influence of pH (4.0–10.0) on the
enzymatic activities of free GOx and Cyt c, and GOx-Cyt c@Cu(Im)2 was investigated to optimize the
reaction conditions. As shown in Figure S5b, the maximal enzymatic activity for pH of GOx and Cyt c,
and GOx-Cyt c@Cu(Im)2 was observed at 6.0 and 7.4, respectively. Since the enzymatic activity and
cascade reaction efficiency were influenced by the molar ratio of enzymes, we herein chose the mass
ratio of GOx and Cyt c of 1:1 by optimization. Enzymatic activity increased with an increasing amount
of Cyt c, which might be due to the rapid consumption of the produced H2O2. Nevertheless, the excess
amount of Cyt c could reduce the enzymatic activity, and the reason might be the high concentration of
Cyt c could suppress the activity of the system.

Under optimal conditions, the kinetic parameters of free GOx and Cyt c, and GOx-Cyt c@Cu(Im)2

were determined to evaluate the enzymatic performance of the multi-enzyme. As shown in Figure 5a,
GOx-Cyt c@Cu(Im)2 has an obvious activation stage in the first minute of the reaction, whereas the free
GOx-Cyt c showed a premature inactivation. The Kmvalue was determined to be 6.39 mM for GOx-Cyt
c@Cu(Im)2, indicating that the mineralized multi-enzyme of GOx-Cyt c@Cu(Im)2 has a high affinity
for the substrate. This is due toexcellent adsorption of mesoporous structure [36], which is consistent
with the morphology shown in the SEM image (Figure 1). Moreover, the catalytic efficiency (kcat/Km)
was determined to be 413.2 M−1s−1 for GOx-Cyt c@Cu(Im)2, which was ~6-fold higher than that of
free enzymes (Table 3). This corresponded to the chromogenic reaction of GOx and Cyt c (Figure 5a,
insert A) and GOx-Cyt c@Cu(Im)2 (Figure 5a, insert B), which elucidates that GOx-Cyt c@Cu(Im)2

shows a deeper color than that of free enzyme. The higher enzymatic activity of GOx-Cyt c@Cu(Im)2 is
attributed to a rapid activation of H2O2 generated in the multi-enzyme system by the cooperation of
the two enzymes (Figure 5b).
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Table 3. Kinetic parameters of GOx in free GOx and Cyt c, and GOx-Cyt c@Cu(Im)2 (mG:mC = 1).

Sample kcat (s−1) Km (mM) kcat/Km (M−1s−1)

GOx-Cyt c 0.09 ± 0.01 1.30 ± 0.14 69.2
GOx-Cyt c@Cu(Im)2 2.64 ± 0.24 6.39 ± 0.57 413.2

2.4. Stability and Reusability

Usually, free enzyme in aqueous solution can produce an unpleasant smell due to protein
putrefaction upon long-term storage. In this study, we found that the activity of both Cyt c@Cu(Im)2,

and GOx-Cyt c@Cu(Im)2remained 100% after storage at 4 ◦C and at room temperature (RT) for a
week (Figure 6a), which indicates that bioinorganic material Cu(Im)2 provides excellent protection for
enzymes. The reusability of Cyt c@Cu(Im)2 was determined to further assess the immobilized enzyme
performance. As shown in Figure 6b, Cyt c@Cu(Im)2 still preserved more than 35% of the original
activity after five cycles. The results showed that although the biocatalyst was less stable to recycle,
they were more stable upon storage.
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In addition, we investigated the stability of free and immobilized enzyme against high temperature
and organic solvents. The results showed that Cyt c@Cu(Im)2 preserved the same original enzymatic
activity aftertreatment of heating at 70 ◦C or incubation with ethanol (Figure S6). Theseobservations
indicated that inorganic material Cu(Im)2 can protect the encapsulated enzyme from degradation or
inactivation by organic solvents.
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2.5. Glucose Detection

The catalytic performance of the GOx-Cyt c@Cu(Im)2 was evaluated by the detection of glucose
in KPi buffer (40 mM, pH 7.4). As shown in Figure 7a, an excellent linearity (y = 0.0082x + 0.0371,
R2 = 0.9921) between the absorbance and the concentration of glucose in the range of 2.5 to 150 µM
was obtained. The limit-of-detection (LOD) of glucose was calculated to be 0.7 µM, which was lower
than most of the reported colorimetric glucose sensors [37,38]. The reason for high activity and
sensitivity toward detection of glucose was the more efficient activation of the intermediate product
(H2O2). Moreover, we studied the selectivity of GOx-Cyt c@Cu(Im)2 toward glucose against various
analogs, including fructose, mannose, xylose, lactose, galactose, sucrose and galactose. Although
the concentration of the interfering compounds (mentioned above) was 10-times higher than that of
glucose, a negligible enzymatic activity toward these competing compounds was found (Figure 7b),
suggesting the high selectivity toward glucose.
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3. Materials and Methods

3.1. Materials and Instruments

Cytochrome c from equine heart (oxidation state, petal-like crystal) and glucoseoxidase (50 ku,
Roche subpackage) were purchased from Regal (Shanghai, China). Rhodamine B isothiocyanate
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(RhB) was from Hefei Ruibio (Hefei, China), 2-methylimidazole (Im) was obtained from Adamas-beta
(Shanghai, China). D-glucose was from Kermerl Corporation (Tianjin, China). Fluoresceinisothiocyanate
(FITC), ABTS [2,2′-Azinobis (3-ethylbenzothiazoline-6-sulfonic Acid Ammonium Salt], xylose, fructose,
galactose, lactose, mannose and sucrose were purchased from Aladdin (Shanghai, China). All other
reagents were of analytical grade, which include CuSO4·5H2O, KH2PO4, KOH and H2O2.

SEM images were obtained on FEI HELIOS NanoLab 600i SEM (Hillsboro, OR, USA). UV-Vis
spectral measurements were recorded on a Hewlett-Packard 8453 diode array spectrometer. XRD
patternsof various samples were obtained from Bruker D8 Advance (Billerica, MA, USA), AXS and
TGA experiments were performed by using STA2500, NETZSCH-Gerätebau GmbH. High-resolution
microscope imageswere obtained by using a high-resolution microscope (Delta Vision Elite, GE, Boston,
MA, USA).

3.2. Preparation of Enzyme@ Cu(Im)2

Cyt c@Cu(Im)2 was prepared by mixing Cyt c (0.4 mg/mL, 2 mL),Im (160 mM, 1 mL) with CuSO4

solution (40 mM, 1 mL) and incubating for 8 h. GOx-Cyt c@Cu(Im)2 was obtained by a similar process
except for replacing Cyt c (0.4 mg/mL, 2 mL) with 1 mL 0.4 mg/mL Cyt c and 1 mL 0.4 mg/mL GOx.
The encapsulated enzymes were centrifuged (4000 rpm, 1 min) and washed with double distilled water
three times.

3.3. Fluorescent Labeling of Enzymes

Fluorescent labeling of enzymes was carried out by dripping a small amount of FITC and
RhBisothiocyanate into Cyt c and GOx solutions, respectively, and then incubating them for 15h in
the refrigerator of 4 ◦C. In order to remove uncoupled fluorescent substances, the mixtures were
centrifuged (4000 rpm, 15 min) with Amicon® Ultra-4 10 K centrifugal filter devices (Sigma-Aldrich,
Saint Louis, MO, USA) several times. Finally, the mineralization process is similar to that of Cyt
c@Cu(Im)2.

3.4. Peroxidase Activity Assay

Peroxidase activity assays for Cyt c@Cu(Im)2 was added into KPi (pH 7.4, 40 mM) containing
1 mM ABTS, then adding H2O2, and the final volume was 1 mL. The dynamic reaction was determined
by UV-vis and the absorbance at 420 nm was recorded for 3 min. The enzyme activity assay of free Cyt
c was the same as that of Cyt c@Cu(Im)2 under the same conditions.

Peroxidase activity assays for GOx-Cyt c@Cu(Im)2 was added into 1 mL of KPi (pH 7.4, 40 mM)
containing glucose with different concentrations (0–10 mM), 1 mM ABTS. The dynamic reaction was
determined by UV-vis and the absorbance at 420 nm was recorded for 3 min. The limit-of-detection
(LOD) was calculated by using a formula of LOD = 3S/N, whereS and N represent the standard
deviation of the regression line for three independent measurements, and the Slope, respectively. The
enzyme activity assay of free GOx and Cyt c was the same as that of GOx-Cyt c@Cu(Im)2 under the
same conditions.

3.5. Enzyme Stability Test

The storage stability of Cyt c@Cu(Im)2 and GOx-Cyt c@Cu(Im)2 continued to hatch at 4 ◦C and
room temperature for a week. Cyt c@Cu(Im)2 was reused at 25 ◦C for 5 min in 100 mM KPi (pH 7.4) to
evaluate the reusability.

4. Conclusions

In summary, we have constructed a highly active enzyme-inorganic composite material by
biomimetic mineralization. The prepared Cyt c@Cu(Im)2 exhibits excellent catalytic efficiency, long-term
storage stability, and reusability, as compared to the free enzyme, which demonstrates that the
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mineralization could well maintain and fix the conformation of protein. Moreover, we have introduced
GOx into Cyt c@Cu(Im)2 to develop multi-enzyme system of GOx-Cyt c@Cu(Im)2. As designed, this
multi-enzyme exhibits an improved enzymatic activity. The cascade reaction of GOx-Cyt c@Cu(Im)2

was used to detect low concentrations (2.5 to 150 µM) of glucose with excellent selectivity (LOD of
0.7µM). Therefore, the multi-enzyme system constructed in this study may confer potential applications
in biocatalysis and biosensors, etc.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/9/8/648/s1.
Figure S1: The preparation process of Cyt c@Cu(Im)2, and GOx-Cyt c@Cu(Im)2, Figure S2: UV-Vis spectra of free
Cyt c before encapsulation (red) and the supernatant of Cyt c after encasing in Cu(Im)2 (black), Figure S3: SEM
images of the GOx@Cu(Im)2 and GOx-Cyt c@Cu(Im)2, Figure S4: X-ray diffraction (XRD) patterns of the Cu(Im)2,
Cyt c@Cu(Im)2, GOx@Cu(Im)2, and GOx-Cyt c@Cu(Im)2, Figure S5: The effect of pH on activity of (a) Cyt c and
Cyt c@Cu(Im)2, (b) GOx-Cyt c, and GOx-Cyt c@Cu(Im)2, Figure S6: Relative activities of Cyt c@Cu(Im)2 after
water bath at 70 ◦C and incubation in ethanol for 0.5 h.
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