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Abstract: Cylindrospermopsin (CYN) is a cyanobacterial toxin released from eutrophic water.
It persistently remains in the environment because its degradation under solar light is extremely
low. In this study, pyrite, an abundant mineral, was investigated as a catalyst for decomposing
and detoxifying CYN in water. A detailed examination of intermediates provided insights into the
degradation pathway. Electron spin resonance spectra revealed that H2O2 and hydroxyl radicals
(•OH) were generated at the pyrite surface while promoting the recycling of Fe(III) into Fe(II) during
the degradation process. This degradation system could be uniquely efficient in the presence of
relatively high levels of natural organic matter because the structure of the uracil ring is decomposed
to detoxify CYN. This work confirms a new approach to selectively and effectively detoxifying CYN
in water using an inexpensive, environmentally friendly, and bio-compatible mineral.
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1. Introduction

In recent years, cylindrospermopsin (CYN), detected in eutrophic water bodies of many countries
across the world, has attracted increasing attention [1]. CYN is a guanidine alkaloid which contains
three-ring guanidine and hydroxymethyl uracil (Figure 1). It is highly stable when exposed to different
pH and temperature conditions, and thus it accumulates easily in organisms and is highly toxic [2].
The toxic mechanism of CYN is to participate in various enzyme reactions by competing with the
binding sites of uridine diphosphate (UDP) because the uracil group in the CYN structure is similar to
the guanosine structure in uridine diphosphate [3]. At the extremely low concentration of 10−7 µg/L,
CYN has a potential carcinogenic risk [4]. In eutrophic water, the degradation efficiency of CYN under
natural conditions is low and mainly depends on the irradiation of UV-A. CYN belongs to refractory
and refractory biological toxins [5]. Therefore, once CYN is produced in a water body, it will exist
stably and pose a great threat to the water ecological environment and human health.
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Hydroxyl radical (•OH) is an active species with high oxidation potential (E0 = 2.76 V); thus,
its oxidation activity is strong, and its effect on the transformation of harmful substances in the natural
environment is important [6]. Song et al. reported the detoxification of CYN in water by •OH produced
by gamma ray irradiation for the first time. The degradation and detoxification mechanism of CYN is
due to the reaction of •OH with the toxic group of uracil in CYN, which can be converted into carboxyl
via addition and oxidation reactions [7]. Although this method exhibits a certain detoxification effect,
it is costly. Hence, an economical and effective treatment method to generate •OH is urgently needed.
McNeill reported that the reductive organic matter in surface water could react with O2 to produce
•OH [8]. Furthermore, Yuan et al. found that the production amount of •OH in the oxidation process
of underground sediments is positively correlated with that of solid-phase Fe(II), which they proved to
be the leading factor in the formation of •OH [9]. This discovery reveals that solid sediments in the
underground environment make up a large •OH reservoir that has been generally neglected.

Pyrite is abundant in underground sediments and is widely distributed in the underground
strata of rivers. Although pyrite is formed in an anoxic environment, it remains stable in an aerobic
environment [10]. Pyrite has an important effect on the migration, transformation, and degradation of
toxic and harmful substances. Fe(II) in pyrite exists in the form of a bound state, which can enhance
the reductive activity and accelerate the oxidation rate of Fe(II) to produce •OH. These studies show
that pyrite can produce reactive oxygen species (ROS) to degrade CYN in a short time, similar to other
advanced oxidation processes (AOPs). However, one of the biggest drawbacks of most AOPs is the
lack of selectivity. At present, almost all AOPs regarding CYN degradation dissolve CYN in pure
water without considering the coexistence of natural organic matter (NOM). Thus, a great amount of
•OH is preferable to react with a high concentration of NOM than a trace quantity of CYN. Therefore,
AOPs are still difficult to use in real scenarios. This poses a challenge, because CYN generally occurs at
low concentrations (<10 ppm), while the concentration of NOM is commonly in the range from 10 to
100 ppm [11]. Because of the inefficiency of CYN degradation by these processes, environmentally
friendly methods for CYN removal in the presence of NOM are important.

In the work reported here, pyrite was used as a visible light catalyst to degrade CYN in water at
neutral pH using dissolved oxygen as the initial oxidant. The cleavage of the stable uracil ring structure
facilitated oxidative decomposition. The •OH formation was monitored using electron spin resonance
(ESR), and the unique degradation products of CYN were identified by liquid chromatography–mass
spectroscopy (LC/MS). The pyrite catalytic system reported in this paper introduces a promising new
approach to effectively and selectively detoxifying CYN in water treatments with high levels of NOM.

2. Results and Discussion

2.1. Degradation of CYN

The degradation kinetics of CYN in aqueous solution with pyrite and the comparative experiment
without pyrite are displayed in Figure 2a. Plotting ln (ct/c0) against reaction time (t) presented a straight
line (Figure 2b). Thus, the degradation kinetics of CYN by pyrite were treated as a pseudo-first order.

ln
ct

c0
= kt (1)

t 1
2
=

ln 2
k

(2)

where c0 and ct are the concentrations of CYN at time zero and time t, respectively.
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CYN detoxification, assuming pseudo-first order kinetics. CYN concentration = 2 mg/L; pyrite dose = 
0.5 g/L; no pH adjustment. 
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Figure 3. Results of recycling degradation. CYN concentration = 2 mg/L; humic acid (HA) 
concentration = 20 mg/L; pyrite dose = 0.5 g/L; no pH adjustment. 

Figure 2. (a) Reactions of pyrite catalyzed detoxification of CYN and control. (b) Reaction kinetics of CYN
detoxification, assuming pseudo-first order kinetics. CYN concentration = 2 mg/L; pyrite dose = 0.5 g/L;
no pH adjustment.

In the reaction, the concentration of CYN at a given reaction time can be calculated using
Equation (1). When the log of CYN concentration is plotted as a function of time, the rate constant (k)
is given by the slope, and the CYN half-life can be calculated using Equation (2). For the degradation
system in the presence and absence of pyrite, the rate constants were 0.8842 and 0.0071 h−1, and the
half-lives were 0.78 and 98 h, respectively. Consequently, the presence of pyrite reduced the half-life of
CYN in water by 99%, similar to the degradation systems of microcystin-LR (MC-LR) by kaolinite and
siderite [12].

The recycling of pyrite was examined for the degradation of CYN over five consecutive cycles.
After each cycle experiment, the solution residue was filtered. Pyrite powder was rinsed and dried, and
used again for the degradation of CYN with identical experimental conditions. Pyrite displayed a high
degradation activity after five cycles of recovery and reuse (Figure 3). Humic acid (HA), a common
and often dominant component of NOM in natural waters, was added to the CYN solution to compare
the effectivity of pyrite toward CYN degradation in the presence of NOM. The results indicated that
pyrite successfully degrades CYN in water even if the concentration of HA exceeds that of CYN by a
factor of 10. In addition, the concentration of Fe in degradation solution was determined at the end of
each degradation cycle. The results showed that the loss of Fe was only 0.35% at the first cycle and
reached 3.27% after five continuous cycles (Figure 3). From other research, the maximum content of Fe
in solution during the degradation of trichloroethylene by pyrite was found to be 0.082 mM (pH = 3),
which only accounted for 0.46% of Fe in pyrite [13]; Fe detected in the solution after 6 h reaction was
only 0.05 mM (pH = 7) when pyrite was used to degrade chloroaniline [14]. It is obvious that the Fe
leaching is inevitable, but the amount is low.
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2.2. Formation of Active Species

To clarify the important role of pyrite in the degradation of CYN, ESR with spin-trapping 5,
5-dimethyl-1-pyrroline N-oxide (DMPO) was used to observe the production of •OH free radicals
during the degradation process. The formation of radicals during degradation was qualitatively
proved by ESR using the non-saturated anti-magnetic material DMPO as the spin trapping agent to
detect and identify short-lived free radicals (Figure 4). The DMPO-•OH adduct is a signal with an
intensity ratio of 1:2:2:1, and its presence is a clear indication of •OH formation.
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Figure 5. (a) Degradation of CYN under different conditions; (b) pH and H2O2 evolution in the 
degradation solution. CYN concentration = 2 mg/L; tert-butyl alcohol (TBA) concentration = 2 μL/mL; 
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At the pyrite surface, iron defect sites, which easily adsorb O2 and water to form a surface 
complex, are found. The complex transfers an electron to generate O2•- (Equation (3)) and continues 
to transfer another electron to generate H2O2 ads (Equation (4)). Then, a Haber–Weiss reaction occurs 
to generate •OH. 
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adducts in aqueous solution under visible light irradiation in the system of pyrite and CYN. DMPO
concentration = 0.04 mol/L; pyrite dose = 0.5 g/L.

Degradation obviously occurs under open conditions, and thus dissolved O2 in water may play a
crucial role [10,15,16]. In this study, CYN degradation under N2 (to remove completely dissolved O2)
was implemented to further verify the role of O2. The result showed (Figure 5a) that only 17.6% of
CYN was degraded; hence, O2 reduction was the main mechanism for the formation of •OH at the
pyrite surface. Moreover, quenching experiments using tert-butyl alcohol (TBA) as an •OH scavenger
indicated that no degradation occurred (Figure 5a). Thus, the reactivity coupled with iron delivery
provides bright prospects in the degradation of CYN and other toxic substances in wastewater.
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At the pyrite surface, iron defect sites, which easily adsorb O2 and water to form a surface
complex, are found. The complex transfers an electron to generate O2

•− (Equation (3)) and continues
to transfer another electron to generate H2O2 ads (Equation (4)). Then, a Haber–Weiss reaction occurs
to generate •OH.
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Fe(II)+O2 ads → Fe(III) + O•−2 (3)

Fe(II)+2O•−2 + 2H+
→ Fe(III

)
+ H2O2ads (4)

During this whole process, H2O2 ads, which plays an important role in CYN degradation, is detected
(Figure 5b). A portion of H2O2 ads is reduced by the pyrite to H2O, and the other portion is desorbed
into the solution. For the dissolved H2O2, only a fraction is consumed by the oxidizing pyrite while the
remaining fraction reacts with Fe(II) through the Fenton mechanism to generate •OH (Equation (5)).

Fe(II) + H2O2ads → Fe(II) + HO− + •OH (5)

At this moment, Fe(II) begins to catalyze the decomposition of H2O2 into •OH. Simultaneously,
the amount of Fe(II) required for the Fenton reaction to occur is supplied to the solution by the oxidative
dissolution of pyrite in the presence of O2 aq (Equation (6)).

2FeS2 + 7O2aq + 2H2O→ 2Fe(II) + 4SO2−
4 + 4H+ (6)

The regeneration of Fe(II) may occur according to an additional mechanism (Equation (7)).

FeS2 + 8H2O + 14Fe(III)→ 15Fe(II) + 2SO2−
4 + 16H+ (7)

Equations (6) and (7) release protons to promote acidification and deliver Fe (II) into the degradation
solution. In the performed experiments, the release and use of protons causes fluctuation in pH, and
the pH usually attained a final value of 5–6.5 (Figure 5b) with a highly efficient Fenton chain reaction.

2.3. Proposed Degradation Pathway

The structures for the degradation products of CYN were proposed on the basis of the analysis
of the total ion chromatograms (TICs), which are summarized in Table 1. The LC/MS analysis of
the decomposition fragments revealed at least four intermediates, each producing strong peaks in
the TIC. Most intermediates were initially abundant and gradually decreased with the extending
reaction time. In the structure of CYN, the double bond of the electron-rich unsaturated uracil ring
was easily added by •OH to yield products such as m/z 413 and m/z 447. Product m/z 447 was observed
as a secondary dihydroxylation product. The hydrogen abstraction reaction of the hydroxyl group
occurred to generate m/z 413. Moreover, product m/z 319 resulted from the breakage of the uracil
ring. The detoxification pathway was proposed by combining the results of ESR and LC/MS (Figure 6).
The detoxification of CYN occurred through the breakage of uracil moiety by the •OH generated in the
system [17].

Table 1. Intensity of LC/MS peak area (count× 105) for intermediates produced during CYN degradation
by pyrite a.

Reaction
Time (h)

CYN
(m/z 415.6)

Product 1
(m/z 431.4)

Product 2
(m/z 447.3)

Product 3
(m/z 413.4)

Product 4
(m/z 319.3)

0 5.28 0 0 0 0
1.5 3.73 0.17 0.64 0.19 0.18
2 2.26 0.24 1.76 0.26 0.31

2.5 1.06 0.16 1.59 0.41 0.45
3 0.25 0.12 0.29 0.13 0.28

a Solution volume = 5 mL; CYN concentration = 2 mg/L; pyrite dose = 0.5 g/L; no pH adjustment. The retention time of
CYN and product 1, 2, 3 and 4 are 9.1, 7.6, 7.1, 10.9 and 5.6 min, respectively.
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2.4. Effects of Degradation Products on Toxicity

The deep mineralization of pollutants to carbon dioxide, water, and other inorganic salts is the
best detoxification method. However, completely realizing mineralization for organic pollutants with
complex structures, such as CYN, is difficult. In this system with pyrite, the total organic carbon (TOC)
removal rate was only 47% after 2 h of visible light irradiation (Figure S1). Thus, the removal of toxic
groups is effective for the detoxification of CYN. An acute toxicity study was performed on mice to
measure the detoxification extent of CYN by pyrite. Group 1 was the control, and group 2 received
original CYN (2 mg/L) with a dose of 10 mL/kg. Groups 3, 4, and 5 were given 10, 20, and 30 mL/kg of
degradation solution after 5 h, respectively. All mice in group 2 died within 12 h, and necropsies were
performed to observe their livers and weight. All mice in the four other groups survived for 14 days
but were killed for examination. The results (Figure 7) revealed that the livers of mice in group 2 were
severely swollen and discolored, and the liver index increased (p < 0.05). However, the livers of the
mice in the three other experimental groups were normal, and the liver indexes of groups 3 (p < 0.01),
4 (p < 0.05), and 5 (p < 0.05) were similar to that of the control group. These results clearly show that
degradation by pyrite remarkably reduces the acute toxicity of CYN.
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3. Materials and Methods

3.1. Reagents

CYN standard (25 µg solid, purity ≥95% by HPLC) was purchased from Express Technology Co.,
Ltd. and stored at −25 ◦C. CYN stock solution was prepared by adding water to dissolve the CYN
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standard and then stored at 4 ◦C. DMPO (≥98.0% GC) for ESR-spectroscopy and technical-grade HA
(ign. residue 20%) were obtained from Sigma–Aldrich Co. (St. Louis, MO, USA) Chromatographic
grade methanol and acetonitrile were obtained from Merck Co. (Kenilworth, NJ, USA) All reagents
were used without further purification. Deionized and doubly distilled water were used throughout
this study. Other chemicals were of analytical reagent grade.

Pyrite (FeS2) samples were provided by the Central–South Research Institute of Metallurgical
Geology (Hubei, China). Pyrite was washed to remove natural contaminants, and ground and sieved
(100 mesh) to obtain crystal particles (≤150 µm). The molecular formula of FeS2 was Fe1.024S1.975Ca0.001

from an electron probe micro-analyzer (EPMA)(JXA-8230, JEOL, Akishima, Japan). The crystalline
phases of pyrite were characterized by Ultima IV X-ray diffractometry (Rigaku, Japan) with Cu Kα

radiation (λ = 1.54178 Å) and a scan rate of 2.4◦/min from 20◦ to 80◦. The results (Figure S2) revealed
the typical pyrite structure of the isometric system with unit cell parameters a = b = c = 5.418 Å (z = 4).
The Fe atom occupied the corner top and center of the cube cell. At the same time, the S atom consisted
of the dumbbell-shaped sulfur [S2]2−, and the center was located at the center of the crystal cell and
body center. The valence state of the metal elements provided them with good catalytic activity. The
characteristic peaks of the primary components were designated with asterisks (*), and they compared
well with the reference material (JCPDS 42-1340). The specific surface area was 1.12 m2/g, which was
determined by using a BELSORP-mini II BET instrument (MicrotracBEL, Osaka, Japan). pHPZC was
6.4, which was detected by using a Zetasizer Nano Zeta potentiometer (Malvern, UK).

3.2. Photocatalytic Process

Degradation reactions were carried out in 10 mL brown reaction vessels. Exactly 5 mL of 2.0 mg/L
CYN and 2.5 mg of pyrite powder (optimum dosage under experimental conditions shown in Figure
S3) were placed in the reaction vessel. The solution pH was not adjusted, and the pH of the suspensions
was measured to 6.5 ± 0.2. The light source was a 500 W halogen lamp (Institute of Electric Light
Source, Beijing, China) positioned in an XPA series photochemical reaction instrument. A cut-off filter
(diameter of 3 cm) was placed outside the Pyrex jacket to eliminate any radiation at a wavelength
below 420 nm and to ensure illumination by visible light only. The distance between the reaction
vessel and the light source was 10 cm. Prior to degradation, the suspensions were magnetically stirred
in the dark for 2 h to ensure that adsorption/desorption equilibrium was established. At specific
time intervals, 300 µL aliquots of the reaction mixture were collected, centrifuged, and then filtered
through a Millipore filter (pore size of 0.22 µm) to remove the solid particles prior to the analysis using
the methods described below. The selective degradation of pyrite toward CYN in the presence of
NOM was tested using HA, which is a complex mixture of different acids that contain carboxyl and
phenolic groups and is the major NOM in many natural waters [11,18,19]; thus, it is usually used as a
model NOM.

3.3. Analytical Methods

CYN was determined using HPLC (Agilent 1200, Santa Clara, CA, USA) with a UV detector
and a C18 reverse-phase column (5 µm; 4.6 mm i.d. × 250 mm, Kromasil). Gradient elution for the
determination of CYN began from 2% methanol and 98% water, followed by a linear increase of
methanol to reach 20% at 10 min. The injection volume was 20 µL. The flow rate was 0.40 mL/min,
and the detection wavelength was 262 nm. Under these conditions, the elution time for CYN was
approximately 6.6 min (Figure S4).

Hydroxyl radical levels were tested by EPR 300E spectrometer (Bruker, Germany) equipped
with a Quanta-Ray Nd:YAG laser (355 and 532 nm) for the measurement of the ESR signals of
•OH spin-trapped 5, 5-dimethyl-1-pyrroline N-oxide (DMPO). Measurement conditions were as
follows: center field, 3486.7 G; sweep width, 100 G; microwave frequency, 9.82 GHz; and power,
5.05 mW. The same quartz capillary tube was used for all ESR measurements to minimize experimental
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errors. The concentration variations of H2O2 during the photodegradation were determined by the N,
N-diethyl-p-phenylenediamine method [20].

Reaction intermediates were monitored using a liquid chromatography tandem mass spectrometry
(LC/MS) instrument (Agilent 1200 LC/6420 ion trap MS, Santa Clara, CA, USA) with an electrospray
ionization interface by full scanning from m/z 50 to 600 in the positive ion mode.

The acute toxicity testing of CYN degradation products was evaluated by the maximum tolerance
method. Kunming mice (KM) (16–20 g, 50 males and 50 females) were used in the study. All mice
were randomly and equally assigned to five groups (one control group and four experimental groups)
and housed in an animal holding room, which was kept at 20–25 ◦C and 40–60% relative humidity
with a regime of a 12 h light/dark cycle. These mice were fasted for 12 h before the experiment but
had no restriction of drinking water. Within 24 h, treated (5 h) CYN solutions were administered by
i.g. injection at doses of 10, 20, and 30 mL/kg body weight. Distilled water with equal volume was
injected into the mice in the control group. All mice were released from fasting after being injected.
After 48 h, the animals were observed closely. The body weight, appearance, and diet of these mice
were recorded daily throughout the 14-day test period. After 15 days of administration, the mice were
anesthetized with 1% pentobarbital sodium to weigh their bodies and livers to calculate liver index
(liver weight/body weight, %).

4. Conclusions

Pyrite was employed to decompose CYN, whose half-life was reduced by 99%. During the
degradation of CYN, pyrite was reusable and Fe leaching was scare after five continuous cycles. It was
remarkable that the degradation of CYN by pyrite was not affected by NOM, even if the concentration
of HA exceeded that of CYN by a factor of 10. The degradation is attributed to the oxidation of •OH
generated from oxygen reduction to remove the uracil moiety, which is the toxic unit of CYN. Even
though the TOC removal rate of CYN was only 47% after 2 h of visible light irradiation, the degradation
products were non-toxic. In summary, pyrite has promising application prospects in predominantly
detoxifying CYN in the presence of NOM because pyrite targets the uracil ring. This study indicates
that pyrite is an efficient means for the remediation of natural water polluted by CYN and gives new
insights into the reactivity of pyrite toward environmental contaminants.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/9/9/699/s1,
Figure S1: Determination of TOC during CYN degradation. CYN concentration = 2 mg/L; pyrite dose = 0.5 g/L,
Figure S2: XRD pattern of pyrite. The positions and intensities of the diffraction lines of pyrite (JCPDS 42-1340)
are indicated by marks just above the horizontal axis, Figure S3: Effect of pyrite dosage on the degradation
effect of CYN. CYN concentration = 2 mg/L, Figure S4: Concentration change of CYN before (0 h) and after
(2 h) degradation.
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