

Short Communication

Crystal Structure of Na₃MoCl₆

Martin Beran and Gerd Meyer *

Department für Chemie, Universität zu Köln, Greinstraße 6, D-50939 Köln, Germany; E-Mail: beran@uni-koeln.de

* Author to whom correspondence should be addressed; E-Mail: gerd.meyer@uni-koeln.de; Tel.: +49-221-470-3262; Fax: +49-221-470-5083.

Received: 10 May 2011; in revised form: 25 May 2011 / Accepted: 23 June 2011 / Published: 4 July 2011

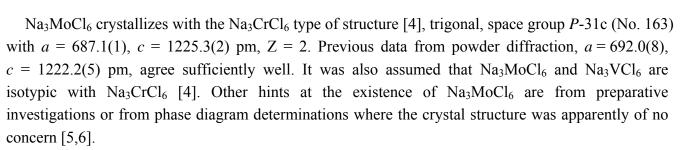
Abstract: The ternary chloride Na₃MoCl₆ is obtained as red crystals from a disproportionation reaction of molybdenum dichloride, {Mo₆}Cl₁₂, in an acidic NaCl/AlCl₃ melt at 350 °C. The crystal structure (trigonal, *P*-31c, a = 687.1(1), c = 1225.3(2) pm, Z = 2, $V = 501,0(1) 10^6$ pm³) is that of Na₃CrCl₆: within a hexagonal closest-packing of chloride ions two thirds of the octahedral voids are filled between the AB double layers with Na⁺/Mo³⁺, and between the BA layers with Na⁺.

Keywords: molybdenum; chloride; sodium; synthesis; crystal structure

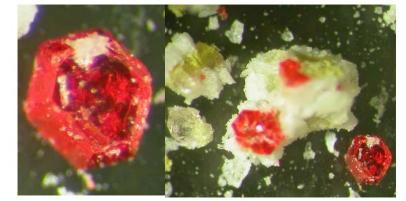
1. Introduction

In their lower oxidation states, the early transition metals of the fourth and fifth periods tend to form metal clusters { M_x } for two reasons. One, 4*d* and 5*d* orbitals are larger than 3*d* orbitals and are, thus, capable of forming metal-metal bonds. Two, the sublimation enthalpies of the metals are high; part of it is saved when metal clusters are retained. The virtually simple binary halide MoCl₂, obtained by a synproportionation reaction, features a crystal structure [1,2] which contains octahedral molybdenum clusters { Mo_6 } which are surrounded by eight inner (i) and six outer (a) chloride ligands; four of the latter bridge to neighboring clusters producing a layer structure, according to the *Niggli* formulation, { Mo_6 }Clⁱ₈Cl^a₂Cl^{a-a}_{4/2}.

 $2MoCl_5 + 3Mo \rightarrow 5MoCl_2$

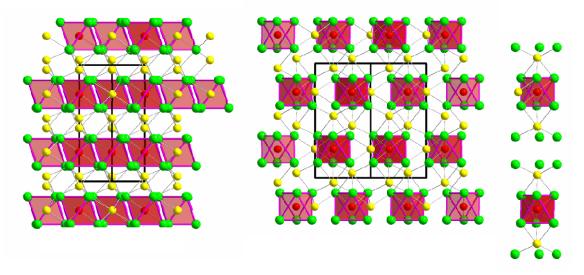

In attempts to synthesize ternary chlorides containing the $[{Mo_6}Cl_{14}]^{2-}$ cluster-complex anion in a molten-salt system, MoCl₂ faced a disproportionation reaction and red crystals of Na₃[MoCl₆] were obtained.

2. Results and Discussion


Red single crystals of Na₃MoCl₆ were obtained from the attempted dissolution of $MoCl_2 = \{Mo_6\}Cl_8^iCl_2^aCl_{4/2}^a$ in a NaCl/AlCl₃ flux (45:55 mol%, close to the eutectic [3]) at 350 °C in a sealed Pyrex ampoule. In this melt the $\{Mo_6\}$ cluster must have been disrupted during a disproportionation reaction, under the influence of the acidic flux. Hexagonal red crystals were embedded in essentially white crystalline material (Figure 1); some black powder (molybdenum) could also be recognized.

 ${Mo_6}Cl_{12} + 12 NaCl (from xs. NaCl/AlCl_3) \rightarrow 4 Na_3[MoCl_6] + 2 Mo$

Figure 1. Red single crystals of Na₃MoCl₆.



The structure of Na₃MoCl₆ consists of hexagonally closest-packed layers of chloride anions, 4H–...B | ABAB | A.... Octahedral voids between these layers are filled in a way that half of them are filled between double layers BA by Na⁺ cations, and half of the voids are filled by Na⁺ and Mo³⁺ in an ordered fashion between double layers AB, see Figure 2. Thus, chains of face-sharing octahedra run parallel [001] and are filled with Na⁺, Cr³⁺, Na⁺, \Box , where \Box denominates a void. Neighboring chains are displaced by $\frac{1}{2}c$ in the [001] direction. Therefore, the Mo³⁺–Mo³⁺ distance is 729.9(1) pm. In the triple octahedron (Cl⁻)₃Na⁺(Cl⁻)₃Mo³⁺(Cl⁻)₃Na⁺(Cl⁻)₃, Mo³⁺ resides in a perfect octahedron when distances are concerned, 245.2(1) pm, 6x, but the octahedron is somewhat compressed along the –3 axis giving rise to Cl-Mo-Cl angles of 88.71(3)° and 93.75(3)°, respectively. The Na⁺ ions are, however displaced from the octahedral center with Na⁺–Cl⁻ distances of 274.8(1) to 291.4(2) pm, 3x

each. The Cr^{3+} – Cl^- distances in Na₃CrCl₆ are with 235.3(2) pm 10 pm smaller, roughly in accord with Shannon's ionic radii for Cr^{3+} (CN 6, 62 pm) and Mo³⁺ (CN 6, 69 pm) [7].

Figure 2. Views of the crystal structure of Na₃MoCl₆. Left: A [1-10] projection showing the hexagonal closest packing of chloride ions (green) and the occupation of octahedral voids by sodium (yellow) and molybdenum (red) ions. Middle: A [110] projection. Right: A sequence of triple octahedra {Cl₃NaCl₃MoCl₃NaCl₃} as they appear in the [001] direction.

It is interesting to note that the Na₃CrCl₆ type of structure is only adopted with M = V, Cr, Mo, wheras the lighter and larger M = Sc, Ti, Y [8-11] as well as the lanthanides R = Dy-Lu [8,12,13] adopt the cryolite type of structure, Figure 3. The cryolite type of structure (Na₃AlF₆ type) is a monoclinic structure in which Na⁺ and F⁻ in a 1:3 ratio form layers between which octahedral voids are occupied by Na⁺ and Al³⁺. The Na₃GdCl₆ structure, on the other hand, is a stuffed LiSbF₆ type structure [14] in which Cl⁻ ions form, again, a hexagonal closest packing and Na⁺ and Gd³⁺ occupy octahedral voids. One Na⁺ and Gd³⁺ center rather regular octahedra, the remaining two Na⁺ are statistically distributed over the remaining four octahedral voids. There is a close relationship between the cryolite and the Na₃GdCl₆ type [11]; Na₃GdCl₆, for example, undergoes a reversible first-order phase transition from Na₃GdCl₆-I (stuffed LiSbF₆) to Na₃GdCl₆-II (cryolite type) at 205 °C [8].

Figure 3. Na₃MCl₆ type compunds and their structures. **M** on a colored field denominates existence and defines the crystal structure at ambient temperature. Yellow: Na₃AlF₆ (cryolite) type; red: Na₃CrCl₆ type; green: Na₃GdCl₆ (stuffed LiSbF₆) type.

Sc	Ti	V	Cr			
Y	Zr	Nb	Mo			
La						
	Ce	Pr	Nd	Pm	Sm	Eu
Gd	Tb	Dy	Ho	Er	Tm	Yb
Lu						

3. Experimental Section

All reactions and handling were carried out under a dry nitrogen atmosphere using dry box equipment (MBraun, Garching, Germany). MoCl₂ was prepared by synproportionation of Mo (Chempur, Karlsruhe, Germany, 99.95%) and MoCl₅ (Sigma-Aldrich, München, Germany, 99.99%) in a 3:2 molar ratio with a slight excess of MoCl₅. MoCl₂ was filled into a Pyrex ampoule together with an excess AlCl₃ (Sigma-Aldrich, München, Germany, 99.99%) / NaCl (Chempur, Karlsruhe, Germany, 99.99%) flux, 55:45 mol%. The Pyrex ampoule was sealed under reduced pressure. The following temperature program was applied in a tubular furnace: heated to 623 K with 20 K/h, kept at that

Na₃MoCl₆ forms well-faceted, polygonal red crystals. Some of these were selected under a microscope and sealed in thin-walled glass capillaries. After their quality had been checked by Laue diffraction patterns, the single crystals were transferred to a single-crystal X-ray diffractometer (Stoe Image Plate Diffraction System, IPDS I) to collect a complete intensity data set at ambient temperature. Structure solution and refinement was performed with the programs SHELXS-97 (direct methods) [15] and SHELXL-97 [16], scattering factors were from International Tables for X-ray Crystallography [17]. Data corrections were carried out for Lorentz and polarization factors and absorption (numerical with the aid of the programs X-RED [18] and X-SHAPE [19]). Further details of the crystal structure determination may be obtained from the Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen, Germany (fax: (+49)7247-808-666; e-mail: crysdata@fizkarlsruhe.de), on quoting the depository number ICSD-422981, the authors and the journal citation.

temperature for 3 days, then cooled slowly to 298 K (2 K/h). The Pyrex tube was transferred to a dry-

box and the contents inspected with the aid of a microscope.

Crystal data for Na₃MoCl₆ (377.64 g mol⁻¹); diffractometer IPDS-I, Stoe, Darmstadt; Mo-K_a (graphite monochromator, $\lambda = 71.073 \text{ pm}$); T = 293(2) K; $2\theta_{\text{max}} = 56.3^{\circ}$; 100 images, $0^{\circ} \le \phi \le 200^{\circ}$; $\Delta \phi = 2^{\circ}$; indices: $-9 \le h \le 9$, $-9 \le k \le 9$, $-15 \le 1 \le 16$; transmission (min, max) = 0.0872, 0.1363; $\rho_{\text{calc}} = 2.503 \text{ g cm}^{-3}$; 4490 reflection intensities measured of which 416 were symmetrically independent, R_{int} = 0.0543, F(000) = 354, $\mu = 17.76 \text{ mm}^{-1}$. Trigonal, *P*-31c (no. 163), a = b = 687.1(1), c = 1225.3(2) pm, $V = 501.0(1) \times 10^{6} \text{ pm}^{3}$, Z = 2. R values: R₁/wR₂ for 318 reflections with [I₀ > 2 σ (I₀)]: 0.0238/0.0671 and for all data: 0.0350/0.0706; S_{all} = 1.062.

4. Conclusions

Red single crystals of Na₃MoCl₆ were obtained from the solution of the cluster chloride $\{Mo_6\}Cl_{12}$ in a slightly acidic NaCl/AlCl₃ melt at 350 °C upon cooling. The crystal structure was first observed for Na₃CrCl₆; in a hexagonal closest-packing of chloride spheres, half of the octahedral voids are occupied by Na⁺ and one sixth by Mo³⁺ ions such that these are 729.92(7) pm apart. Mo³⁺–Cl⁻ distances (245.2(1) pm) are 10 pm longer than for homologous Cr³⁺–Cl⁻.

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft, Bonn, within the framework of the Sonderforschungsbereich 608 (Complex transition metal compounds with spin and charge degrees of freedom and disorder).

References

- 1. Schäfer, H.; von Schnering, H.G.; Tillack, J.V.; Kuhnen, F.; Wöhrle, H.; Baumann, H. Neue Untersuchungen über die Chloride des Molybdäns. Z. Anorg. Allg. Chem. **1967**, *353*, 281-310.
- 2. von Schnering, H.G.; May, W.; Peters, K. Crystal structure of dodecachloro octahedrahexamolybdenum. *Z. Kristallogr.* **1993**, *208*, 368-369.
- 3. Levin, E.M.; McMurdie, H.F. *Phase Diagrams for Ceramists*; The American Ceramic Society: Columbus, OH, USA, 1975; diagram 4757.
- 4. Friedrich, G.; Fink, H.; Seifert, H.J. Über Alkali-hexachlorochromate(III): Na₃CrCl₆. Z. Anorg. Allg. Chem. **1987**, 548, 141-150.
- 5. Kushakbaev, A.; Terishkhanova, I.G.; Parpiev, N.A.; Adylova, Sh.N. Synthesis and thermolysis of sodium hexachloromolybdate. *Izv. Akad. Nauk SSSR, Neorg. Mat.* **1985**, *21*, 1571-1574.
- 6. Nguen N.K.; Sandler, R.A.; Ryabov, E.N.; Vasil'kova, I.V.; Kozhina, I.I.; Klyuchnikova, E.F. Phase diagram of a molybdenum trichloride–sodium chloride system. *Zh. Neorg. Khim.* **1972**, *17*, 2553-2557.
- 7. Shannon, R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. *Acta Cryst.* **1976**, *A32*, 751-767.
- 8. Meyer, G.; Ax, P.; Schleid, T.; Irmler, M. The Chlorides Na₃MCl₆ (M = Eu-Lu, Y, Sc): Synthesis, Crystal Structures, and Thermal Behaviour. *Z. Anorg. Allg. Chem.* **1987**, *554*, 25-33.
- 9. Hinz. D.; Gloger, T.; Meyer, G. Ternäre Chloride vom Typ A₃MX₆. IX. Kristallstrukturen von Na₃TiCl₆ und K₃TiCl₆. *Z. Anorg. Allg. Chem.* **2000**, *626*, 822-824.
- 10. Liao, W.; Dronskowski, R. Trisodium yttrium(III) hexachloride. Acta Cryst. 2004, E60, i72-i73.
- 11. Stenzel, F.; Meyer, G. Ternäre Chloride vom Typ A₃MX₆. II. Das System Ag_{3-x}Na_xYCl₆: Synthese, Strukturen, Ionenleitfähigkeit. *Z. Anorg. Allg. Chem.* **1993**, *619*, 652-660.
- 12. Böcker, M.; Gerlitzki, N.; Meyer, G. Crystal structure of trisodium holmium(III) hexachloride, Na₃HoCl₆. Z. Kristallogr. New Cryst. Struct. **2001**, 216, 19.
- 13. Schurz, C.M.; Meyer, G.; Schleid, T. Na₃DyCl₆. Acta Crystallogr. 2011, E67, i33.
- 14. Meyer, G. Na₃GdCl₆: Einkristalle der Tieftemperaturform bei der metallothermischen Reduktion von GdCl₃ mit Na. Z. Anorg. Allg. Chem. **1984**, 517, 191-197.
- 15. Sheldrick, G.M. SHELXS-97, Program for Structure Analysis; University of Göttingen: Göttingen, Germany, 1998.
- 16. Sheldrick, G.M. *SHELXL-93, Program for Crystal Structure Refinement*; University of Göttingen: Göttingen, Germany, 1993.
- 17. Wilson, A.J.C. *International Tables for Crystallagraphy*; Kluwer Acad. Publ.: Dordrecht, The Netherlands, 1992; Volume C.
- 18. Stoe. X-RED 1.22, Stoe Data Reduction Program (C); Stoe & Cie GmbH: Darmstadt, Germany, 2001.
- 19. Stoe. X-Shape 1.06, Crystal Optimisation for Numerical Absorption Correction (C); Stoe & Cie GmbH: Darmstadt, Germany, 1999.

© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).