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Abstract: The isothermal second-order elastic stiffness tensor and isotropic moduli of β-1,3,5,7-
tetranitro-1,3,5,7-tetrazoctane (β-HMX) were calculated, using the P21/n space group convention,
from molecular dynamics for hydrostatic pressures ranging from 10−4 to 30 GPa and temperatures
ranging from 300 to 1100 K using a validated all-atom flexible-molecule force field. The elastic
stiffness tensor components were calculated as derivatives of the Cauchy stress tensor components
with respect to linear strain components. These derivatives were evaluated numerically by imposing
small, prescribed finite strains on the equilibrated β-HMX crystal at a given pressure and temperature
and using the equilibrium stress tensors of the strained cells to obtain the derivatives of stress with
respect to strain. For a fixed temperature, the elastic coefficients increase substantially with increasing
pressure, whereas, for a fixed pressure, the elastic coefficients decrease as temperature increases,
in accordance with physical expectations. Comparisons to previous experimental and computational
results are provided where possible.
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1. Introduction

The high explosive 1,3,5,7-tetranitro-1,3,5,7-tetrazoctane, also known as octahydro-1,3,5,
7-tetranitro-1,3,5,7-tetrazocine (HMX), is an important energetic material which is used in a number of
high performance military explosive and propellant formulations [1]. Several polymorphs of HMX
are known [2–5], among which β-HMX is the thermodynamically stable form at standard ambient
conditions. The elastic properties of β-HMX are important for understanding processes such as shock
propagation and the resulting hot-spot formation that ultimately lead to ignition and detonation
initiation [6].

Accurate experimental determination of elastic coefficients in molecular high explosives is
challenging due to the low crystal symmetries characteristic of many energetic substances. This is
particularly evident in the case of β-HMX for which there exist substantial differences among measured
values of the elastic tensor obtained using different experimental techniques [7–9]. This disparity in
the experimental data has been ascribed to sample purity and processing variations and is further
complicated with questions about how to interpret or process the results [6,10].

In part because of these complexities, there are virtually no experimental data for elastic properties
of β-HMX under the high temperatures and pressures relevant to high-explosive initiation and
detonation. In the absence of practical experimental alternatives, molecular dynamics (MD) provides a
viable path to obtaining some of the needed information. In the present study, we use MD to obtain
elastic coefficients of β-HMX for wide intervals of temperature and hydrostatic pressure. The results
obtained herein can be used both as a general reference and as input data for mesoscale continuum
models of shock propagation and detonation initiation in β-HMX [11,12].
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2. Computational Details

2.1. Theoretical Background and System Preparation

The elastic stiffness tensor Cij (written here in Voigt notation) was calculated using the direct
method, which is based on the following equation

Cij =
∂σi
∂ε j

. (1)

Here, ε j denotes one of six linear strain components and σi is one of six Cauchy stress components.
For monoclinic crystals such as β-HMX, the stiffness tensor contains 13 independent non-zero
elastic coefficients. We chose linear strain rather than the often-used Lagrange strain because it
is work-conjugate to the Cauchy stress (see [13], Section 2.2.4) and it is the Cauchy stress that is
typically provided as output from MD simulations. For the small strains used in this work we can
expect any differences arising due to the use of linear rather than Lagrange strains to be negligible.
The partial derivatives in Equation (1) were calculated numerically using finite differences. To achieve
this, we adopted the following four-step procedure.

First, a crystal cell of β-HMX (P21/n space group setting) was equilibrated for 1 ns at the
temperature and pressure of interest using the isobaric-isothermal (NPT) ensemble. Next, 100 ps of
isochoric-isothermal (NVT) simulation was performed using the time-averaged crystal cell parameters
from the NPT trajectory. In the third step, small linear strains were imposed on the NVT-equilibrated
crystal cell and NVT simulations were performed on the strained cells. Finally, the elastic coefficients
Cij were obtained by numerical differentiation of the stresses with respect to strains.

We used a 3D-periodic crystal cell consisting of 6× 4× 5 unit-cell replications along the a, b, and c
crystallographic axes, respectively. This crystal cell contains 240 HMX molecules (6720 atoms). Similar
cell sizes for both β-HMX and other molecular-crystal high explosives are thought to be large enough
to produce size-converged elastic properties of bulk crystals [6,14]. Temperatures T = 300, 500, 700,
900, and 1100 K and pressures P = 10−4, 5, 10, 20, and 30 GPa were considered. These pressures were
chosen to match the interval considered in Ref. [15]. At atmospheric pressure (10−4 GPa), β-HMX
is known to undergo a phase transition to the α polymorph (orthorhombic) at approximately 420 K
and the δ polymorph (hexagonal) when heated above approximately 450 K [16,17]; δ-HMX melts at
about 550 K. However, with the force field that we use in this work the crystal remains stable (in the
sense that melting does not occur) at 700 K and 1 atm for simulations lasting several nanoseconds.
The crystal does melt at 1 atm somewhere between 700 and 900 K. Therefore, for the pressure P = 1
atm, we only considered temperatures up to 700 K. However, we observed that β-HMX remains
crystalline all the way to 1100 K at 5 GPa and higher pressures. This is consistent with the MD-based
melt curve of β-HMX reported recently by Kroonblawd and Austin [18]. They predicted that at 5 GPa
β-HMX melts at 1320 K and the melting temperatures get higher for pressures above 5 GPa. Thus,
overall, we studied 23 temperature and pressure combinations. We emphasize that the results below
for the higher temperatures should be interpreted with caution because HMX may decompose on
relevant time scales at those temperatures, at least at 1 atm [16].

When choosing the strain size, one has to consider the following arguments. On the one hand,
one wants the strain to be sufficiently small to yield a reliable finite-difference approximation for
the numerical evaluation of derivatives. On the other hand, if the strain is too small, the resulting
change in stress is also small and, because there is a significant thermal noise in stress calculations,
long simulation times are required to obtain converged results. Considering these factors, strains
εi were chosen to be ±0.004 when i = 1, 2 or 3 and ±0.008 when i = 4, 5 or 6. The six strains
required to obtain the full set of elastic coefficients were applied by distorting the simulation box in
the following way. If the edge vectors of an unperturbed triclinic cell are given by vectors a, b, and c,



Crystals 2020, 10, 1123 3 of 15

then the geometry of the simulation box can, with no loss of generality, be described by the upper
triangular matrix

h0 =

ax bx cx

0 by cy

0 0 cz

 (2)

by aligning a with the positive x axis and requiring b to lie in the xy plane [19]. Then, the upper
triangular matrix h for the the strained cell is given by

h = (I ± εi)h0, (3)

where I is the 3 × 3 identity matrix and εi is one of the following six upper triangular matrices

ε1 =

ε1 0 0
0 0 0
0 0 0

 , ε2 =

0 0 0
0 ε2 0
0 0 0

 , ε3 =

0 0 0
0 0 0
0 0 ε3

 , (4)

ε4 =

0 0 0
0 0 ε4

0 0 0

 , ε5 =

0 0 ε5

0 0 0
0 0 0

 , ε6 =

0 ε6 0
0 0 0
0 0 0

 . (5)

Each of the strained simulation cells was equilibrated in the NVT ensemble for 100 ps after which
the average stress tensor over a 4 ns NVT production trajectory was accumulated. For the pressure
of 1 atm and temperatures of 300, 500, and 700 K the changes in stress tensor were small because the
crystal is less rigid at the low pressure. Therefore, for those three cases, the trajectory was run for
12 ns to achieve better convergence of the elastic coefficients. Once the stress tensor components were
obtained, the numerical derivatives in Equation (1) were evaluated as follows

Cij ≈
σi(ε j)− σi(−ε j)

2ε j
, (6)

where σi(ε j) denotes the time-averaged strain tensor component for the equilibrated crystal cell
with strain ε j applied. Because of the elastic tensor symmetry, we expect Cij = Cji when i 6= j.
This was indeed the case, with differences between Cij and Cji typically less than 0.2 GPa. For these
off-diagonal elements of the elastic tensor, we report the average of Cij and Cji. As part of our analysis
we also obtained the eight elastic coefficients that are expected to be zero in a monoclinic crystal.
These coefficients were, indeed, very small, never exceeding 0.08 GPa in magnitude. Three examples of
the full 6× 6 Cij matrices obtained in this work are given in the Supplementary Materials. In addition
to the elastic coefficients, the Voigt, Reuss, and Voigt–Reuss–Hill average bulk and shear moduli were
calculated using standard expressions [8,20].

2.2. Force Field and MD Simulation Details

All MD simulations were performed using the LAMMPS package [19]. The nonreactive,
fully flexible molecular potential for nitramines proposed by Smith and Bharadwaj [21] and further
developed by Bedrov et al. [22] was employed in all of the MD simulations. This force field
is well-validated and has been used in numerous previous studies of HMX [14,15,22–26]. In the
current study, we modified the original nitramine force field used in [22] by adjusting the N-O and
C-H harmonic bond stretching force constants to better reproduce the corresponding experimental
vibrational mode frequencies (see [25] for more details). We further modified the original force field by
adding a 1/r12 repulsive-core term to the non-bonded pair interaction potential. The reason for this
latter modification is to eliminate the unphysical very-short-range attractive well in the Buckingham
pair potential used in the original force field. The parameters of the 1/r12 repulsive core are chosen
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in such a way that the system dynamics is practically unaffected under the conditions we study in
this paper. More details can be found in the supporting information for the work by Zhao et al. [27].
A cut-off distance of 11 Å was used for repulsion, dispersion, and short-range Coulomb interactions.
Long-range electrostatic interactions were calculated using the PPPM method with the relative error in
the forces set to 1× 10−6. A time step of 0.2 fs was used. Sample input decks including all force-field
parameters and the crystal cell description are included in the Supplementary Materials.

2.3. Error Analysis

The output of the MD simulations is the stress tensor as a function of time for a given
thermodynamic state. Generally, the observations in this sequence are correlated for time differences
that are shorter than some intrinsic correlation time. Therefore, we cannot use the sample standard
deviation for error analysis. Instead, we need to apply a more sophisticated analysis applicable to
correlated data. We follow the approach of Flyvbjerg and Petersen [28], which requires calculation of
c(t), the time correlation function for each dataset (stress component in our case), for data obtained
after n time steps (n + 1 data points). The correlation function is given by

c(t) =
1

n− t

n−t

∑
k=1

(σi(t)− 〈σi〉)(σi(k + t)− 〈σi〉), (7)

where angular brackets denote the time average. Then, the error s is calculated using the
following equation:

s2 =
c(0) + 2 ∑t′

t=1(1− t
n )c(t)

n− 2t′ − 1 + t′(t′+1)
n

. (8)

Here, t′ is a cut-off time chosen to be much larger than the correlation time of c(t) but much
smaller than n. We observed typical relaxation times for c(t) of about 5000 time steps (1 ps) so we used
t′ = 50,000 (10 ps). The errors for the elastic coefficient values reported in the next section are reported
as ±s.

3. Results and Discussion

3.1. Isotherms and Isobars

Although the main topic of the present study is calculation of the elastic coefficients, we also
obtain predictions of β-HMX unit-cell volume as functions of pressure and temperature. Figure 1
shows unit-cell volume V as a function of pressure P at 300 K obtained in this work, along with MD
results due to Sewell et al. [14] and experimental data of Yoo and Cynn [29], Gump and Peiris [30],
and Olinger et al. [31]. The inset in Figure 1 shows the lower pressure part of the same data. The red
curve in Figure 1 shows the third-order Birch–Murnaghan isotherm [32] fitted to our isotherm data.
Fitting compression data to isotherms is subtle [10]. Here, we applied simple, unweighted fits of the
Birch–Murnaghan fitting form to the experimental and simulated V = V(P) data. Our results are
close to those of Sewell et al. This is not surprising as they used practically the same force field but
with all covalent bonds fixed at constant values. The experimental results of Yoo and Cynn [29] are in
overall qualitative agreement with our data but show slightly higher compressibility of the material.
In addition, our simulations do not predict the subtle phase transition reported in [29] at approximately
27 GPa. Although we have limited results below 10 GPa, the changes in volume that we predict in this
region are also similar to the volume changes observed experimentally in [30,31]. We provide in the
Supplementary Materials the full set of lattice parameters and unit-cell volumes for all pressures and
temperatures studied. The bulk moduli extracted from the experimental isotherm data are compared
to our MD results in the next subsection.



Crystals 2020, 10, 1123 5 of 15

This work

MD, Sewell et al.

Exp. 1, Yoo and Cynn

Exp. 2, Gump and Peiris

Exp. 3, Olinger et al.

0 10 20 30 40
300

350

400

450

500

P (GPa)

V
(Å
3
)

This work

MD, Sewell et al.

Exp. 1, Yoo and Cynn

Exp. 2, Gump and Peiris

Exp. 3, Olinger et al.

0 2 4 6 8 10

400

420

440

460

480

500

520

P (GPa)

V
(Å
3
)

Figure 1. Comparison of the 300 K isotherm from the present simulations to previous MD [14] and
experimental results [29–31] at standard ambient temperature. V is the unit-cell volume. The red curve
is the third-order Birch–Murnaghan isotherm [32] fitted to our data. The two fitting parameters of the
Birch–Murnaghan equation are K0 = 16.3 GPa and K′0 = 9.1. The inset shows the lower pressure part
of the same data.

Figure 2 shows the five isotherms calculated in the present study. The higher temperature
isotherms lie above the lower temperature ones. This behavior is physically reasonable: unit-cell
volume increases as the temperature increases due to thermal expansion. The relative volume increase
with increasing temperature becomes less pronounced for higher pressures. Otherwise, the isotherms
are all quite similar.
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Figure 2. Isotherms for 300, 500, 700 , 900, and 1100 K. V is the unit-cell volume. Lines are added to
guide the eye.

Figure 3a shows isobars for the five pressures considered. As expected, the unit-cell volume
increases as the temperature increases. The volume increase becomes less pronounced for higher
pressure isobars. While the increase in unit-cell volume with increasing temperature is not surprising,
the changes in the unit-cell geometry exhibit some interesting features. Figure 3b–d show the lengths
of the unit-cell vectors a, b, and c, respectively. Surprisingly, at 5 and 10 GPa, the length of vector a
decreases as the temperature increases. Somewhat similarly, at 20 and 30 GPa, vector c shows almost
no change in length as the temperature changes. Similar counterintuitive behavior of some unit-cell
lattice vectors was observed experimentally but not emphasized by Gump and Peiris [30]. Figure 3e
shows how angle β (the angle between vectors a and c) changes with temperature and pressure. For a
given temperature, β decreases with increasing pressure (the crystal becomes “more orthorhombic”).
For a given pressure, the angle increases slightly as the temperature increases.
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Figure 3. (a) Unit-cell volume as a function of temperature for five different pressures. (b) The length
of unit-cell vector a as a function of temperature for five different pressures. (c) The same as (b) but for
vector b. (d) The same as (b) but for vector c. (e) The same as (b) but for monoclinic lattice angle β.
Lines are added to guide the eye.
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3.2. Elastic Coefficients

The calculated elastic coefficients and corresponding bulk and shear moduli on the 300, 500,
700, 900, and 1100 K isotherms are listed, respectively, in Tables 1–5. There are two clear trends in
the results. For a given temperature, magnitudes of the elastic coefficients increase substantially
with increasing pressure. For a given pressure, magnitudes of the elastic coefficients decrease with
increasing temperature. Both trends are physically plausible: As the crystal is compressed at a given
temperature, it is expected to become more stiff and so the elastic coefficients become larger. On the
other hand, as the crystal temperature increases at constant pressure, the crystal expands and in doing
so becomes less stiff.

Table 1. Pressure-dependent elastic coefficients and isotropic moduli of β-HMX at 300 K in units
of GPa.

P 10−4 GPa 5 GPa 10 GPa 20 GPa 30 GPa

C11 22.97± 0.04 87.71± 0.05 136.23± 0.05 212.62± 0.07 277.01± 0.05
C22 22.62± 0.05 67.08± 0.07 101.66± 0.07 160.72± 0.06 214.17± 0.06
C33 21.67± 0.04 62.11± 0.06 93.95± 0.05 153.45± 0.04 208.63± 0.04
C44 8.645± 0.004 19.461± 0.007 26.790± 0.008 37.463± 0.008 46.138± 0.009
C55 10.407± 0.006 34.08± 0.01 49.280± 0.009 70.034± 0.007 84.259± 0.008
C66 9.527± 0.005 19.662± 0.008 25.694± 0.008 33.804± 0.006 39.855± 0.007
C12 9.20± 0.03 36.93± 0.04 59.88± 0.04 101.23± 0.05 139.99± 0.04
C13 12.32± 0.03 52.95± 0.04 81.07± 0.04 126.08± 0.04 165.53± 0.03
C23 12.37± 0.03 46.49± 0.05 73.71± 0.04 123.13± 0.04 169.11± 0.03
C15 −0.43± 0.01 −11.32± 0.02 −17.00± 0.02 −22.33± 0.02 −25.23± 0.02
C25 4.47± 0.01 11.1± 0.02 16.05± 0.02 22.02± 0.02 25.63± 0.02
C35 1.84± 0.01 2.48± 0.02 4.37± 0.02 7.22± 0.01 9.39± 0.01
C46 2.248± 0.003 6.06± 0.005 8.517± 0.005 12.455± 0.006 15.391± 0.006
KV 15.00± 0.02 54.40± 0.02 84.57± 0.02 136.41± 0.02 183.23± 0.02
KR 14.6± 0.4 53± 3 82± 4 134± 4 180± 4

KVRH 14.8± 0.2 54± 1 83± 2 135± 2 182± 2
GV 7.941± 0.006 20.010± 0.008 28.164± 0.009 40.017± 0.009 49.062± 0.007
GR 6.79± 0.03 13.70± 0.06 19.04± 0.07 28.10± 0.07 35.45± 0.06

GVRH 7.37± 0.02 16.86± 0.03 23.6± 0.03 34.06± 0.03 42.25± 0.03

Table 2. Pressure-dependent elastic coefficients and isotropic moduli of β-HMX at 500 K in units
of GPa.

P 10−4 GPa 5 GPa 10 GPa 20 GPa 30 GPa

C11 18.13± 0.05 82.57± 0.07 130.73± 0.07 207.17± 0.06 271.05± 0.06
C22 17.86± 0.06 63.7± 0.1 98.52± 0.09 157.49± 0.08 210.88± 0.07
C33 18.11± 0.04 59.69± 0.09 90.79± 0.08 149.96± 0.08 204.88± 0.05
C44 7.421± 0.006 18.07± 0.01 25.473± 0.009 36.35± 0.01 44.75± 0.01
C55 8.474± 0.008 32.25± 0.01 47.30± 0.01 68.13± 0.01 82.48± 0.01
C66 8.076± 0.006 18.887± 0.009 25.21± 0.01 33.44± 0.01 39.47± 0.01
C12 7.17± 0.04 35.38± 0.06 58.46± 0.05 99.99± 0.05 138.53± 0.05
C13 9.83± 0.03 51.81± 0.06 80.23± 0.05 125.67± 0.05 165.20± 0.04
C23 9.26± 0.04 43.70± 0.07 70.94± 0.06 120.28± 0.05 166.16± 0.04
C15 −0.16± 0.01 −10.98± 0.02 −16.66± 0.02 −22.08± 0.02 −25.00± 0.02
C25 3.78± 0.02 10.57± 0.02 15.54± 0.03 21.81± 0.02 25.53± 0.02
C35 1.19± 0.01 1.47± 0.03 3.64± 0.03 6.65± 0.02 8.91± 0.02
C46 1.779± 0.004 5.732± 0.007 8.071± 0.006 11.830± 0.007 14.779± 0.008
KV 11.85± 0.02 51.97± 0.03 82.14± 0.03 134.06± 0.02 180.73± 0.02
KR 11.4± 0.4 51± 5 80± 6 131± 5 178± 5

KVRH 11.6± 0.2 51± 3 81± 3 133± 3 179± 3
GV 6.650± 0.007 18.85± 0.01 27.0± 0.01 38.83± 0.01 47.803± 0.009
GR 5.74± 0.04 12.85± 0.1 18.02± 0.09 27.19± 0.08 34.52± 0.07

GVRH 6.20± 0.02 15.85± 0.05 22.49± 0.05 33.01± 0.04 41.16± 0.04
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Table 3. Pressure-dependent elastic coefficients and isotropic moduli of β-HMX at 700 K in units
of GPa.

P 10−4 GPa 5 GPa 10 GPa 20 GPa 30 GPa

C11 12.78± 0.06 77.56± 0.07 125.53± 0.06 201.65± 0.07 265.28± 0.09
C22 12.09± 0.07 60.1± 0.1 95.0± 0.1 154.48± 0.09 207.48± 0.08
C33 14.05± 0.06 57.6± 0.1 87.6± 0.1 146.64± 0.07 201.32± 0.07
C44 6.051± 0.007 16.60± 0.01 23.84± 0.02 35.04± 0.01 43.44± 0.01
C55 6.147± 0.009 30.50± 0.02 45.25± 0.013 66.17± 0.01 80.61± 0.01
C66 6.316± 0.008 17.89± 0.01 24.63± 0.01 33.09± 0.01 39.07± 0.01
C12 4.87± 0.05 34.02± 0.06 57.05± 0.06 98.76± 0.06 137.35± 0.06
C13 7.09± 0.04 51.09± 0.07 79.52± 0.06 125.28± 0.05 165.20± 0.05
C23 6.43± 0.05 41.23± 0.08 68.23± 0.07 117.79± 0.06 163.43± 0.06
C15 0.09± 0.02 −10.86± 0.03 −16.35± 0.02 −21.93± 0.03 −24.75± 0.02
C25 2.94± 0.02 10.03± 0.04 15.16± 0.03 21.52± 0.03 25.47± 0.03
C35 0.75± 0.02 0.29± 0.04 2.93± 0.03 6.02± 0.02 8.46± 0.02
C46 1.272± 0.006 5.485± 0.007 7.73± 0.01 11.31± 0.01 14.22± 0.01
KV 8.41± 0.02 49.77± 0.03 79.75± 0.03 131.82± 0.03 178.45± 0.03
KR 7.9± 0.4 48± 6 77± 8 129± 7 175± 7

KVRH 8.1± 0.2 49± 3 78± 4 130± 4 177± 4
GV 5.072± 0.009 17.59± 0.02 25.64± 0.01 37.6± 0.01 46.50± 0.01
GR 4.32± 0.04 11.7± 0.1 16.8± 0.1 26.1± 0.1 33.47± 0.09

GVRH 4.70± 0.02 14.67± 0.06 21.20± 0.06 31.86± 0.05 39.98± 0.05

Table 4. Pressure-dependent elastic coefficients and isotropic moduli of β-HMX at 900 K in units
of GPa.

P 5 GPa 10 GPa 20 GPa 30 GPa

C11 72.71± 0.08 120.59± 0.08 196.33± 0.07 259.59± 0.07
C22 56.03± 0.02 91.5± 0.1 150.98± 0.09 204.1± 0.1
C33 56.5± 0.1 84.3± 0.1 143.0± 0.1 197.67± 0.07
C44 15.23± 0.02 22.01± 0.02 33.48± 0.02 42.01± 0.02
C55 28.94± 0.02 43.11± 0.02 64.13± 0.02 78.73± 0.02
C66 16.63± 0.02 23.86± 0.02 32.70± 0.02 38.67± 0.01
C12 32.93± 0.08 55.99± 0.08 97.40± 0.06 136.14± 0.06
C13 50.54± 0.07 79.25± 0.07 124.88± 0.06 165.18± 0.05
C23 39.11± 0.09 65.75± 0.09 115.00± 0.07 160.90± 0.06
C15 −10.91± 0.03 −16.33± 0.03 −21.70± 0.03 −24.55± 0.03
C25 9.36± 0.04 14.71± 0.03 21.39± 0.04 25.34± 0.03
C35 −1.43± 0.03 2.15± 0.04 5.44± 0.03 7.95± 0.03
C46 5.22± 0.01 7.54± 0.01 10.80± 0.01 13.66± 0.01
KV 47.83± 0.04 77.60± 0.04 129.43± 0.03 176.20± 0.03
KR 46± 9 75± 13 126± 8 173± 9

KVRH 47± 5 76± 6 128± 4 175± 5
GV 16.34± 0.02 24.16± 0.02 36.3± 0.01 45.16± 0.01
GR 10.7± 0.2 15.1± 0.2 24.9± 0.1 32.3± 0.1

GVRH 13.53± 0.08 19.62± 0.08 30.58± 0.05 38.72± 0.06



Crystals 2020, 10, 1123 10 of 15

Table 5. Pressure-dependent elastic coefficients and isotropic moduli of β-HMX at 1100 K in units
of GPa.

P 5 GPa 10 GPa 20 GPa 30 GPa

C11 67.54± 0.09 115.6± 0.1 190.9± 0.1 253.4± 0.1
C22 51.8± 0.2 87.3± 0.2 147.7± 0.1 200.82± 0.09
C33 56.5± 0.1 80.7± 0.2 139.39± 0.08 193.90± 0.06
C44 14.16± 0.02 19.98± 0.02 31.76± 0.03 40.52± 0.02
C55 27.44± 0.02 40.98± 0.03 62.00± 0.02 76.64± 0.02
C66 15.38± 0.02 22.77± 0.02 32.27± 0.02 38.21± 0.02
C12 32.1± 0.1 55.07± 0.09 96.25± 0.09 135.02± 0.08
C13 49.66± 0.08 79.58± 0.09 124.56± 0.07 165.05± 0.06
C23 37.5± 0.1 63.1± 0.1 112.78± 0.07 158.41± 0.06
C15 −10.79± 0.03 −16.53± 0.03 −21.57± 0.03 −24.35± 0.03
C25 8.34± 0.04 14.36± 0.04 21.12± 0.04 25.19± 0.04
C35 −3.60± 0.04 1.40± 0.04 4.87± 0.03 7.44± 0.03
C46 4.9± 0.01 7.40± 0.01 10.45± 0.01 13.16± 0.01
KV 46.03± 0.04 75.46± 0.05 127.24± 0.04 173.90± 0.03
KR 44± 11 72± 24 124± 13 171± 10

KVRH 45± 6 74± 12 126± 6 172± 5
GV 15.17± 0.02 22.48± 0.02 34.83± 0.02 43.72± 0.02
GR 9.9± 0.2 12.8± 0.2 23.4± 0.2 31.0± 0.1

GVRH 12.55± 0.09 17.6± 0.1 29.10± 0.07 37.34± 0.06

As an example, Figure 4 shows the pressure dependence of the elastic coefficients and isotropic
moduli at 300 K (using data from Table 1). As the pressure changes from 1 atm to 30 GPa,
the magnitudes of the elastic coefficients increase by a minimum of about four-fold for C66 to about
60-fold for C15. The Voigt–Reuss–Hill bulk and shear moduli increase by about 12- and 6-fold,
respectively. Similar behavior is observed at the higher temperatures (not shown).
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Figure 4. Components of the elastic stiffness tensor at 300 K as functions of hydrostatic pressure.
(a) Diagonal components and the Voigt–Reuss–Hill bulk modulus. (b) Off-diagonal components and
the Voigt–Reuss–Hill shear modulus. Lines are added to guide the eye.

The typical temperature dependence of the elastic coefficients is shown in Figure 5, where the
results for pressure 5 GPa are presented. This is the lowest pressure among the ones we studied
for which β-HMX remains crystalline for all temperatures on the time scale considered. The elastic
coefficients decrease with increasing temperature approximately linearly. The rate at which the
magnitude of the elastic coefficients decreases with temperature ranges from about 2.5 GPa per 100 K
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for C11 to about 0.07 GPa per 100 K for C15. The Voigt–Reuss–Hill bulk and shear moduli decrease
with temperature at a rate of about 1 GPa per 100 K and 0.5 GPa per 100 K, respectively. Qualitatively
similar temperature dependence of the elastic coefficients was observed at higher pressures but the
rates at which the coefficients decrease become smaller.
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Figure 5. Components of the elastic stiffness tensor at 5 GPa as functions of temperature. (a) Diagonal
components and the Voigt–Reuss–Hill bulk modulus. (b) Off-diagonal components and the
Voigt–Reuss–Hill shear modulus. Data for 0 K are taken from Mathew and Sewell [15], who used
practically the same force field as here and a similar methodology. Lines are added to guide the eye.

In Figure 6, we compare our results at 1 atm and 300 K to the published theoretical and
experimental data for the β-HMX elastic coefficients variously at ambient conditions [7–9,14] or zero
temperature and pressure [15,33,34]. Our results are, in general, consistent with the MD simulations
of Sewell et al. [14] for which practically the same force field was used but with all the covalent
bonds frozen. As a result of the bond constraints, most of the elastic coefficients in [14] are slightly
larger in magnitude compared to our values. Similarly, there is an overall consistency with the
MD/energy-minimization results of Mathew and Sewell [15], obtained with practically the same
force field used here but at zero temperature. As can be expected, their values are higher than ours
because the crystal stiffens with decreasing temperature, as discussed above. The DFT results in
[33,34] give higher values of elastic coefficients and elastic moduli compared to ours. This is consistent
with the fact that those results correspond to zero temperature and pressure. Note that, although
DFT calculations have been used to calculate lattice parameters and unit-cell volumes on the cold
curve (see, e.g., [33]), to our knowledge, they have not been used to predict elastic coefficients at
elevated pressures. Moreover, incorporating temperature dependence into such calculations using,
for example, the quasi-harmonic approximation would be unreliable due to the need to account for
(anisotropic) thermal expansion across hundreds of kelvins; and explicit simulations analogous to,
and on the scale of, those studied here are practically infeasible. There is a significant disparity among
the various experimental results, which has been attributed to variations in measurement techniques
and sample purity. Reanalysis [6,14] of the experimental data has shown that this can also result from
lack of redundancy in the acoustic velocity measurements and sensitivity of the numerical solution to
initial conditions of the multivariate minimization used to extract the elastic coefficients. For example,
it is known that only five of the thirteen nonzero elastic coefficients reported in [7] were accurately
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determined [14]. Our results agree reasonably well with the experimental data of Sun et al. [9],
with more pronounced differences compared to the other experimental data.
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Figure 6. Components of the elastic stiffness tensor at 1 atm and 300 K from the present study,
previous theoretical results [14,15,33,34], and experimental values [7–9]. (a) Diagonal components and
the Voigt–Reuss–Hill bulk modulus. (b) Off-diagonal components and the Voigt–Reuss–Hill shear
modulus. The purple and red arrows emphasize the results from this work and the experimental
results due to Sun et al. [9], respectively.

To the best of our knowledge, there are no experimental results for the elastic coefficients of
β-HMX at higher pressures even for 300 K. However, the room-temperature bulk modulus as a
function of pressure can be obtained from fits of experimental isothermal compression data to an
equation-of-state fitting form (here, the third-order Birch–Murnaghan equation of state), which yields
pressure P as a function of volume V. The volume-dependent bulk modulus K(V) can be calculated
as K(V) = −V(∂P/∂V)T . The pressure-dependent bulk modulus K(P) can then be obtained by
expressing the volume in K(V) as a function of pressure using the equation of state. This approach
is less precise than obtaining K directly from the elastic tensor at a given T and P due both to the
assumed form of the equation of state and the typically small numbers of data points on the isotherm
available for fitting. Table 6 lists the room-temperature bulk moduli calculated at five pressures using
this approach, for three sets of experimental data [29–31] and our calculated 300 K isotherm in Figure
1. The table also includes the pressure-dependent Voigt–Reuss–Hill bulk moduli reported in Table 1.
Note that the results for [30,31] at 10, 20, and 30 GPa represent extrapolations of the fitting form to
pressures higher than those for which the corresponding isotherms were measured.

Table 6. Room-temperature bulk moduli of β-HMX for five different pressures. Units are GPa.

P 10−4 GPa 5 GPa 10 GPa 20 GPa 30 GPa

This work (direct, KVRH) 14.8± 0.2 54± 1 83± 2 135± 2 182± 2
This work (isotherm fit) 16.3 52.3 81.1 133.9 183.9

Yoo and Cynn [29] 12.4 49.6 79.3 132.8 182.7
Gump and Peiris [30] 21.0 52.7 80.0 130.2 177.4

Olinger et al. [31] 8.4 64.1 102.1 167.8 227.4

In the table, one can see that the MD-based results (top two rows) are self-consistent in that the
bulk moduli computed directly from the elastic tensor and via the equation-of-state fit are in good
agreement for all pressures considered. Our values obtained by the direct approach are slightly larger
than those obtained using the data from Yoo and Cynn [29] for all pressures except 30 GPa, for which
they are about the same. Our estimates based on the data from [30,31] are less reliable because, as noted
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above, the pressure states considered in those references were below 8 GPa. Nevertheless, there is
good agreement between our results and those obtained based on the work of Gump and Peiris [30]
with the exception of P = 1 atm. Our values are lower than those obtained from the data in [31] for all
pressures except P = 1 atm, for which our value is larger.

4. Conclusions

We calculated second-order elastic coefficients of β-HMX (P21/n space group setting) as
derivatives of the Cauchy stress with respect to the linear strain using MD with a well-validated
fully flexible force field. A set of pressures between 1 atm (10−4 GPa) and 30 GPa and temperatures
between 300 and 1100 K was considered. The resulting elastic coefficients and bulk and shear elastic
moduli are reported in tabular form. The following dominant trends are observed. For a given
temperature, magnitudes of the elastic coefficients increase substantially with increasing pressure.
For a given pressure, magnitudes of the elastic coefficients decrease with increasing temperature.
The strong dependence of the elastic coefficients on pressure should be taken into account in mesoscale
continuum modeling and simulations.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4352/10/12/1123/
s1, Table S1: Equilibrium unit-cell volumes and lattice parameters for β-HMX as functions of temperature and
pressure. Table S2: Full 6 × 6 matrix of elastic coefficients Cij of β-HMX in units of GPa at 300 K and 1 atm
(10−4 GPa). The first column on the left and the top row are indices i and j. The matrix is very close to being
symmetric. Sixteen coefficients are close to zero as expected for the monoclinic crystal. Table S3: Full 6 × 6 matrix
of elastic coefficients Cij of β-HMX in units of GPa at 700 K and 1 atm (10−4 GPa). The first column on the left and
the top row are indices i and j. The matrix is very close to being symmetric. Sixteen coefficients are close to zero as
expected for the monoclinic crystal. Table S4: Full 6 × 6 matrix of elastic coefficients Cij of β-HMX in units of GPa
at 1100 K and 30 GPa. The first column on the left and the top row are indices i and j. The matrix is very close to
being symmetric. Sixteen coefficients are close to zero as expected for the monoclinic crystal.
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