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Abstract: In this paper, we propose a reflective polarizer in terahertz regime, which utilizes the
Bulk-Dirac-Semimetal (BDS) metasurface can be dynamically tuned in broadband. The proposed
polarizer is capable of converting the linear polarized wave into the circular polarized or the cross
polarized waves by adjusting the Fermi energy (EF) of the BDS. In the frequency range of 0.51 THz
and 1.06 THz, the incident linear polarized wave is converted into a circular polarized wave with
an axial ratio (AR) less than 3 dB when EF = 30 meV. When EF = 45 meV, the cross-polarization
conversion is achieved with the polarization conversion ratio (PCR) greater than 90% in the band
of 0.57−1.12 THz. Meanwhile, the conversion efficiencies for both polarization conversions are in
excess of 90%. Finally, the physical mechanism is revealed by the decomposition of two orthogonal
components and the verification is presented by the interference theory.
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1. Introduction

In recent years, terahertz (THz) technology has developed rapidly in many fields, such as
sensing [1], imaging [2] and radar [3] because terahertz waves have very low photon energy, strong
penetrability, and obvious characteristic absorption peaks, making terahertz technology show significant
research value and great prospects in material detection, security inspection, military, and wireless
communications. The increasing demand of unoccupied and unregulated bandwidth for wireless
communication systems inevitably leads to the extension of operation frequency toward the lower THz
frequency range. THz communication, with a higher carrier frequency, allows for fast transmission of
huge amounts of data as needed for new emerging applications [4]. However, the practical application
of THz technology has great limitations due to the lack of THz devices such as absorber, sensor,
and polarizer. As a basic THz device, polarizer, controlling and manipulating the polarization of THz
waves can convert the linear polarization waves into circular polarization waves or cross polarization
waves [5]. Conventionally, the THz polarizer is designed by using the techniques of birefringent
material [6], photonic crystals [7] or the grating [8]; nevertheless, these techniques suffer from demerits
such as bulky configurations and low efficiency.

Metamaterials, with the feature being easy to integrate, have enabled the realization of many
phenomena and functionalities unavailable through use of naturally occurring materials. Many basic
metamaterial structures, such as metal split-ring resonators [9], exhibit a birefringence suitable for
polarization conversion [10], have been mostly investigated in both microwave range and THz range.
In recent years, exhibiting extraordinary responses in various desired frequency regime, metamaterials
have been widely applied as an effective means to manipulate polarization of the electromagnetic
waves [11,12]. The manipulation of metasurface is highly dependent on the geometric structures of the
cells [13]. Therefore, metasurface-based polarizers have been widely studied because they are capable
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of flexibly and effectively regulating the polarization state of the THz wave. Grady et al. demonstrated
ultrathin, broadband, and highly efficient metamaterial-based THz polarizer that can reflect a linear
polarization wave and convert it into a cross polarization one [5]. Liu et al. proposed a broadband
THz cross-polarizer operating in transmission mode using a single-layer metasurface [14]. Moreover,
an ultra-wideband high-efficiency reflective linear-to-circular (LTC) polarizer based on metasurface at
THz frequencies was proposed by Jiang et al [15]. However, the above metasurface-based polarizers,
designed by using gold, are restricted in some practical applications due to a lack of reconfigurability.

With the increasing demand for reconfigurable devices, two-dimensional (2D) materials such as
graphene and black phosphorus (BP), with the adjustable conductivity, have attracted tremendous
attention in the light of the reconfigurable metasurfaces [16,17]. Graphene, with its unique electronic
and optical properties, has been widely applied in reconfigurable polarizer. Utilizing the tunability of
graphene, an ultra-broadband LTC polarizer and a cross-polarizer are, respectively, present in [18]
and [19], and the operating bands can be easily switched to other frequencies. BP, due to its puckered
hexagonal honeycomb structure with ridges caused by sp3 hybridization, offers attractive alternatives
to narrow-gap semiconductors for optoelectronics across mid-infrared and THz frequencies [20].
For example, [21] proposed a broadband reflective LTC polarizer in a mid-infrared regime based on
monolayer BP (phosphorene) metamaterial. Generally, 2D matearials have been attracting increasing
attention as a candidate in the design of THz polarizer. However, their moderate carrier mobility
(e.g., 2 × 105 cm2V−1s−1 at 5 K for graphene [22] and 5 × 105 cm2V−1s−1 at 30 K for BP [23]) are still a
limitation in their application.

Because of the ultrahigh mobility of 9× 106 cm2V−1s−1 at 5 K [24,25], recently, Bulk Dirac semimetals
(BDSs) showed promise in the design potential of a THz polarizer. For instance, Dai et al. investigated
a broadband tunable THz cross-polarizer based on BDSs [26]. With increasing EF, the cross-conversion
bandwidth is widened and exhibits a blue-shift. Furthermore, they proposed a dynamically tunable
broadband LTC polarizer based on metasurface [27], where the proposed metasurface consists of
a center-cut cross-shaped metallic patterned structure with a sandwiched BDS ribbon. Both of the
above-mentioned designs in [26] and [27] achieve the adjustable performance in terms of frequency,
but the absence of polarization reconfigurability is still a limitation to their application.

In this paper, we present a BDS-based broadband reconfigurable polarizer operating in the THz
region. By controlling the Fermi energy of the BDS, the proposed polarizer can dynamically switch the
conversion mode between cross polarization and LTC polarization without reoptimizing the structures.
The LTC polarization conversion with AR < 3 dB and cross-polarization conversion with PCR > 80%
opera at an identical frequency band with a relative bandwidth (RBW) of 64%. Then, the physical
mechanism and the verification were investigated by the decomposition of two orthogonal components
and the interference theory, respectively.

2. Materials and Methods

The schematic of the proposed metasurface-based polarizer is shown in Figure 1. The polarizer
consists of a double-arc BDS structure with a thickness of 0.17 µm, a dielectric layer with permittivity
εr = 3.0 and a loss tangent tanθ = 0.001, and a fully reflective gold mirror. The circular-polarized
(CP) wave or x-polarized (XP) wave can be reflected when the y-polarized (YP) wave is incident on
the polarizer. The geometric parameters of the polarizer include unit length L = 94.0 µm, dielectric
thickness h = 50.0 µm, the distance from the center of the arc to the edge of the cell a = 22.0 µm, outer
radius Ro = 70.7 µm, inner radius Ri = 57.7 µm, and half of the angle corresponding to the outer arc α =

31.5◦ and inner arc β = 25.2◦.
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Figure 1. Design of the polarizer, (a) 5 × 5 unit structure diagram, (b) A unit cell diagram. 
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where σintra and σinter represent the intraband and interband contributions, respectively. ħ and g are 
respectively the reduced Planck constant and the degeneracy factor, EF, vF, and kF are respectively the 
Fermi level, Fermi speed, and Fermi Momentum, moreover kF is calculated by EF/ħvF. G(E) = n(−E) − 
n(E), and n(E) is the Fermi distribution function. In the case of electron-hole (e−h) symmetry of the 
Dirac spectrum for the nonzero temperature T, the real and imaginary parts of the longitudinal 
dynamic conductivity of the Dirac semimetal can be expressed as 

( ) ( )
2

Re 2
24

Fgke Gσ
π

Ω = Ω −


 (2) 

( ) ( ) ( )2
2 2

2 2 20

/ 24Im 1 8
324 4

cF

F

G Ggke T d
E

ε επσ ε ε
π ε

    − Ω     Ω = + + Ω      Ω Ω −      
∫



 (3) 

In more detail, with a low-temperature limit, such as T ≪ EF, in the electron-hole (e−h) symmetry of 
the Dirac spectrum, the complex conductivity is expressed as [28] 
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At the long wavelength limit (the local response approximation), the longitudinal dynamic
conductivity of the Dirac 3D electron gas in BDSs can be calculated by the Kubo formalism [28]:
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where σintra and σinter represent the intraband and interband contributions, respectively. h̄ and g are
respectively the reduced Planck constant and the degeneracy factor, EF, vF, and kF are respectively the
Fermi level, Fermi speed, and Fermi Momentum, moreover kF is calculated by EF/h̄vF. G(E) = n(−E)
− n(E), and n(E) is the Fermi distribution function. In the case of electron-hole (e−h) symmetry of
the Dirac spectrum for the nonzero temperature T, the real and imaginary parts of the longitudinal
dynamic conductivity of the Dirac semimetal can be expressed as
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In more detail, with a low-temperature limit, such as T� EF, in the electron-hole (e−h) symmetry
of the Dirac spectrum, the complex conductivity is expressed as [28]
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where Ω = h̄ω/EF + jvF/(EFkFµ) is the normalized frequency, and the relative permittivity of the BDSs
can be expressed as ε = εb + iσ/ωε0, where εb = 1 is the effective background dielectric constant and ε0
is the permittivity of vacuum.

Table 1 shows some representative BDSs with various εb and g. In this study, AlCuFe was
selected as the BDS material and its dynamic conductivity is shown in Figure 2, where g = 40, Ec = 3,
vF = 106 m/s, and µ = 3 × 104 cm2V−1s−1. The hatched regions indicate the normalized frequency
range for the THz gap, h̄ω/EF ≈ 1.30, 0.87, and 0.65 corresponding to EF = 30 meV, 45 meV, and 65 meV
when f = 10 THz. It is clear that in the low frequency of THz gap, the real component can be neglected
because it is far lower than the imaginary component.
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Table 1. Representative Bulk Dirac semimetals (BDSs) with different εb and g.

Dirac Semimetal εb g

AlCuFe 1 40
TaAs 6.2 24

Eu2IrO7 6.2 24
Na3Bi 12 4

Cd3As2 12 4
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This periodic structure is emulated by CST Microwave Studio, in which the infinite periodic array
is simulated by the utilization of the periodic boundary conditions in x and y directions. Because of
the anisotropy of the proposed metasurface, the x and y polarized components are simultaneously
produced, with a YPincident wave, in the reflective wave. Therefore, the conversion principle can be
clearly demonstrated by the reflective wave expression of Er = rxyexp(jϕxy)Eyiex + ryyexp(jϕyy)Eyiey,
where rxy and ryy are, respectively, the magnitudes of the reflection coefficient for y-to-x and y-to-y
polarization conversion, ϕxy and ϕyy are the corresponding phases. Then, phase difference is defined by
∆ϕ = ϕyy − ϕxy. When rxy = ryy =

√
2/2 and ∆ϕ = 2n ± π/2 (n is an integer), the perfect LTC polarization

conversion is brought; with “−” and “+”, the reflected waves are, respectively, the right-hand circular
polarization (RHCP) wave and the left-hand circular polarization (LHCP) wave. On contrast, the total
cross polarization conversion is brought with rxy = 1 and ∆ϕ = 2n ± π [29]. In order to achieve a high
efficiency of polarization conversion, the reflection coefficient amplitudes should be controlled as
highly as possible within the demanded ∆ϕ.

3. Results and Discussions

With EF = 30 meV of BDS (AlCuFe), the reflection coefficient magnitudes and the phase difference
are shown in Figure 3a. One can observe that rxy ≈ ryy ≈

√
2/2 and ∆ϕ ≈ −90◦ or 270◦ in the frequency

range of 0.51–1.06 THz. Similarly, ∆ϕ ≈ 90◦ in the range of 0.41–0.46 THz with rxy ≈ ryy ≈
√

2/2.
The results indicate that the incident linear polarized wave is converted into a RHCP wave within a
broadband and a LHCP wave within a narrow band. When the EF is adjusted to 45 meV, ryy < 0.3
and rxy > 0.9 in the frequency range of 0.57–1.12 THz, as shown in Figure 3b, which means that the
YPincident waves are converted into the cross-polarized reflected waves by the polarizer.
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For the LTC polarization conversion, the remarkable characteristic can also be measured by the
efficiency ηLTC = rxy

2 + ryy
2 and the axial ratio, AR = 10 lg(tanβ) with β = arcsin(V/I)/2 [13], obtained

from the stokes parameter in Equation (3) [30]. In contrast, for cross-polarization conversion, the cross
polarization conversion efficiency is estimated as ηcross = rxy

2 and PCR = rxy
2/(rxy

2 + ryy
2) is defined to

further investigate the performance [31].

I = ryy
2 + rxy

2

Q = ryy
2
− rxy

2

U = 2ryyrxy cos ∆φ
V = 2ryyrxy sin ∆φ

(6)

For different EF, the calculated PCR and AR are presented in Figure 4a. One can observe that
the relative bandwidth (RBW) with PCR > 0.8 reaches 71% and the RBW of RHCP and LHCP with
AR < 3 dB are, respectively, 71% and 11%. More significantly, a RBW of 64% is obtained in the
identical frequency band; moreover, both ηLTC and ηcross are greater than 90%, as shown in Figure 4b,
which indicates the high performance of the proposed polarizer.
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In addition, the AR and PCR of the proposed design as the function of incident angle (θ) and
frequency are simulated, as shown in Figure 5a,b. It is clear that in the θ range of 0◦ and 50◦, the BWs
of AR < 3 dB and PCR > 0.8 are almost invariant. One can obtain the robustness of the proposed
polarizer in case of oblique incidence.
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With various EF, the conductivity of the BDS (AlCuFe) is adjustable, which causes the reconfigurability
of the proposed BDS-based polarizer. Therefore, it is reasonable to study the effects of various EF on the
conversion performance. The AR for EF = 25, 30, and 35 meV are shown in Figure 6a. It can be seen that
an optimal LTC polarization conversion performance can be obtained when EF = 30 meV. Figure 6b shows
the PCR gradually improves with increasing EF from 25 to 45 meV, and the operating frequency band
exhibits a blue shift. Furthermore, the bandwidth of PCR becomes narrower gradually with increasing EF,
which will lead to the degradation of the conversion performance. From Figure 6, one can conclude that
the design polarizer achieves the optimized performances of cross polarization conversion with EF = 45
meV and the LTC polarization conversion with EF = 30 meV.
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4. Mechanism and Verification

In order to analyze the physical mechanism of polarization conversion, the incident YP wave is
decomposed into two orthogonal components presenting in Figure 7a, wherein the u-v coordinate
system is obtained by rotating the x−y coordinate system counterclockwise for 45◦ [29]. The incident
wave is set to be a YP wave propagating in the -z direction and can be decomposed into

Ei = Eie jkzey =
Eie jkzeu
√

2
+

Eie jkzev
√

2
(7)

Er =

(
ruuEie j(−kz+φuu) + ruvEie j(−kz+φuv)

)
eu

√
2

+

(
rvuEie j(−kz+φvu) + rvvEie j(−kz+φvv)

)
ev

√
2

(8)
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In the above formula, ruu, rvu, rvv, and ruv represent the reflection coefficient amplitudes for the
polarization conversion of u−u, u−v, v−v, and v−u respectively, ϕuu, ϕvu, ϕvv and ϕuv represent the
corresponding phases. When rvu = ruv = 0, ruu = rvv = r and ∆ϕ = ϕvv − ϕuu = 2n ± π/2, the reflected
wave is expressed as

Er =
rEie− jkz

(
e jφuueu + e j(φuu+2nπ±π/2)ev

)
√

2
(9)

It can be seen from Equation (6) that the reflected wave is a CP wave. Moreover, when rvu = ruv = 0,
ruu = rvv = r and ∆ϕ = ϕvv – ϕuu = 2n ± π the reflected wave is a cross-polarized wave and can be
expressed as

Er =
rEie− jkz

(
e jφuueu + e j(φuu+2nπ±π)ev

)
√

2
(10)
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When the u and v components excite simultaneously and EF = 30 meV, as shown in Figure 8a,
ruu = rvv ≈ 1, rvu = ruv ≈ 0 and ∆ϕ = ϕvv − ϕuu closing to −90◦/270◦ are obtained in the frequency range
of 0.5 and 1.08 THz, incidentally ∆ϕ being approximately 90◦ is obtained in the band of 0.41–0.46 THz,
i.e., the reflected waves are respectively RHCP wave and LHCP wave in these two bands. In contrast,
when EF = 45 meV, ruu = rvv ≈ 1, rvu = ruv ≈ 0 and ∆ϕ ≈ −180◦/180◦ is obtained, as shown in Figure 8b,
the cross-polarization conversion is realized. It is observed that the polarization conversions are
consistent with that in Figure 3.
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(a) LTC polarization conversion, (b) Cross-polarization conversion.

The verification can be further elaborated by the interference theory in the u−v coordinate system.
As present in Figure 7b, at the double-arc array interface, the incident wave is partially reflected with
a reflection coefficient of r12 = r12exp(iϕ12) and transmitted into the substrate with a transmission
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coefficient of t12 = t12exp(iθ12). The transmitted wave continues to propagate with a propagation phase
β =
√
εkd until it reaches the metal mirror, where ε and d are, respectively, the permittivity and the

thickness of the substrate, and k is the propagation constant in the substrate. After the reflection at
the metal mirror and the addition of another β, partial reflection and transmission occur again at the
double-arc interface with coefficients r21 = r21exp(iϕ21) and t21 = t21exp(iθ21). Similarly to the wave
propagation in a stratified media, the total reflection is the superposition of the multiple reflections [32]:

r = r12 − t12t21ei2β + t12r21t21ei4β
− t12r21

2t21ei4β + . . . (11)

r = r12 −
t12t21ei2β

1 + r21ei2β (12)

The results calculated by the interference theory are shown in Figure 8. The reflection coefficients
of the LTC polarization conversion and the cross-polarization conversion are consistent with the
simulation results, which verities the simulated results of the proposed polarizer.

5. Conclusions

In conclusion, a reconfigurable polarizer based on BDS metasurface is investigated in this paper,
and the conversion performance and physical mechanism are analyzed and presented. Our results
show that the proposed polarizer achieves a highly efficient linear-to-circular polarization conversion
or cross polarization conversion in broadband with different EF. This design is of great significance in
the wide application of metamaterials and the rapid development of THz technology.
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