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Abstract: Herein, we reported on the precise growth and optical waveguide characteristics of
hexagonal tris(8-hydroxyquinoline)aluminum(III) (Alq3) micro-crystals (MCs). The hexagonal
Alq3 MCs were prepared using surfactant-assisted assembly growth with the help of
cetyltrimethylammoniumbromide (CTAB), in which the crystallization occurred as a result of
molecular assembly and packing. Also, we adjusted the molar ratio of Alq3 and CTAB for the
control degree of crystallization. The formation and structure of Alq3 MCs were investigated using
field-emission scanning electron microscopy and X-ray diffraction pattern experiments, respectively.
The solid-state laser confocal microscope-photoluminescence spectra and charge-coupled device
images for the Alq3 MCs were measured to study the luminescence efficiency and colors, respectively.
The optical waveguide performance of the hexagonal Alq3 MCs was measured for each side direction.
According to our results, crystalline Alq3 micro-crystals are promising materials for application to the
development of optical communication devices.

Keywords: organometal; Alq3; crystallinity; surfactant; photoluminescence; waveguide; confocal
microscope

1. Introduction

The development of optoelectronic devices based on smart functional organic materials has
recently drawn much attention because of their promising practical applications [1,2]. Among various
configurations, highly crystalline organic materials are of particular interest as they can serve as
ideal platforms for advanced optoelectronic applications with good stability and charge transfer
properties [3–5]. Organic crystal structures offer unique advantages, such as relatively high electrical
performance and good processability, making them complementary to inorganic materials, which
have been demonstrated in light-emitting diodes, photovoltaic cells, field-effect transistors, optical
waveguides, and lasers [6–10]. In particular, crystalline structures of organic molecules with remarkably
improved optoelectronic characteristics are achievable, enabling propagation of emission by active
optical waveguiding in a crystal [11–13].

To achieve high luminescence characteristics, densely-stacked molecules, and large grain sizes,
single crystallinity is usually required. Therefore, our materials can exhibit high-efficiency emission with
a self-assembled structure that can produce single-crystalline materials without any local impurities
and extended defects [14]. In addition, the improvement of crystallinity is always a problem in organic
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crystal structures, in which high charge transport mobility and remarkable optical behaviors are
expected in highly ordered crystal structures [15–18].

Herein, we investigated the precise control of growth conditions and optical waveguide
characteristics based on hexagonal tris(8-hydroxyquinoline)aluminum(III) (Alq3) micro-crystals (MCs).
Unlike previous reports, we introduced the ideal experimental construction of crystal structures
with high crystallinity using simple surfactant-assisted assembly growth in a de-ionized (DI) water
solution [19]. It is important to optimize the growth conditions, such as the moral ratio between
organic molecules and surfactants, because the role of surfactant is very important in crystal growth,
and crystallinity is closely related to optical properties [20]. Optical properties are determined by the
behavior of the exciton. In general, the exciton of well-formed crystal has a high degree of freedom
and has excellent optical properties [21,22]. The assembly of molecules to hexagonal crystals with
well-defined morphologies requires driving forces from the molecules themselves, including molecular
stacking and Van der Waals forces [23–26]. A process using the cetyltrimethylammoniumbromide
(CTAB) surfactant induced the self-assembly of Alq3 molecules by these driven forces.

The results were confirmed by scanning electron microscopy (SEM) and X-ray diffraction (XRD)
experiments. The solid-state laser confocal microscope (LCM)-photoluminescence (PL) spectra and
color charge-couple device (CCD) images for the Alq3 MCs were acquired to study the luminescence
efficiency and colors, respectively. The optical waveguide performance of the hexagonal Alq3 MCs
was measured for each side direction. The results demonstrated that crystalline organic materials
could potentially be applied to the development of optical communication devices with high optical
waveguide emission performance.

2. Materials and Methods

2.1. Materials and Preparation

Chemical reagent: the tris(8-hydroxyquinoline)aluminum(III) (Alq3, C27H18AlN3O3, purity
99.995%) and cetyltrimethylammoniumbromide (CTAB, CH3(CH2)15N(Br)(CH3)3, purity 99%) used in
the experiment were purchased from Sigma Aldrich (Darmstadt, Germany). Alq3 was dissolved in
chloroform to achieve a concentration of 10 mM. Alq3 was blended with chloroform using a hot-plate
magnetic stirrer to ensure that it dissolves perfectly, and CTAB was prepared in DI water to reach a
concentration of 10 mM.

The CTAB solution was placed into a 20 mL vial and stirred vigorously on a magnetic hot-plate.
Alq3 solution was added and strongly sprayed on the CTAB solution using a micropipette. The cap of
the vial was then closed, and stirring was maintained at high rpm for 5 min. The mixing solution was
kept on a 70 ◦C hot-plate for 8 h. Other solutions with the same ingredients and various amounts of
CTAB were prepared (Figure 1).
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2.2. Measurement

The shape and size of the Alq3 MCs were analyzed using field-emission SEM (Hitachi, SU-8010,
Tokyo, Japan) with an acceleration voltage of 15 kV. The XRD (X′Pert Powder Diffractometer, Malvern
Panalytical Ltd., Malvern, United Kingdom) spectra were captured at a voltage of 40 kV and a current
of 40 mA with Cu-Kα radiation (λ = 1.540 Å). The scanning rate was 0.02◦/s, and the 2θ range was
captured from 5◦ to 60◦. PL CCD images of the Alq3 were acquired using an AVT Marlin F-033C (λex =

435 nm) (Allied Vision, Exton, PA, USA). To compare the brightness (i.e., PL intensity) of the CCD
images of Alq3 MCs, the exposure time with the energy source was fixed at 0.1 s. LCM PL spectra were
acquired using a homemade LCM instrument (Axiovert 200, Zeiss GmbH, Oberkochen, Germany). The
405 nm unpolarized diode laser line was used for the LCM PL excitation. The Alq3 MCs were located
on a cover glass, which was placed on the XY piezo stage of the instrument. An oil-immersion objective
lens (N.A. of 1.4) was used to focus the unpolarized laser light on the crystal surface. The beam size of
the focused laser on the sample was calculated to be approximately 200 nm. The scattered light from
Alq3 MCs was collected through the same objective lens. The excitation laser (λ = 405 nm) light was
filtered out using a long-pass edge-filter (Semrock, Rochester, New York, USA). The red-shifted PL
signal caused by the Stokes shift was collected with a multimode fiber (core size = 50 µm) that acted
as a pinhole for the confocal microscope. The opposite end of the multimode fiber was connected to
a photomultiplier tube for the PL image or the input slit of a 0.3 m long monochromator equipped
with a cooled CCD for PL spectra measurement. Therefore, solid-state PL spectra were analyzed at the
nanometer scale. The laser power of the incident laser to reach the sample and the acquisition time for
each LCM PL spectrum were fixed at 50 µW and 0.1 s, respectively, for all confocal PL experiments.

3. Results and Discussion

We demonstrated a self-assembled growth of Alq3 MCs (Figure 1). This interesting material
was characterized by a strong self-assembling capability that led to the formation of a crystal wire,
exhibiting a dramatic increase in green emission upon the formation of MCs. With a surfactant, micelles
were formed in the solution, and growth began inside the micelles. In detail, hydrophilic DI water was
a poor solvent for Alq3, so they tended to aggregate itself. At the same time, CTAB formed micelles
that were hydrophobic on the inside and hydrophilic on the outside in DI water. The Alq3 molecule
entered the CTAB micelle to lower surface energy and was aggregated and nucleated. Therefore, the
result varied greatly depending on the ratio of surfactant to Alq3. Figure 2 shows SEM images of
structures formed by adjusting the molar ratio of Alq3 molecules to CTAB as a surfactant. If the critical
micelle concentration (CMC) was not reached because of the lack of surfactant, the micelles were not
formed in the solution, and the Alq3 molecules aggregated in random forms. Increasing the amount of
surfactant added to the growth reaction produced Alq3 MCs with a straight shape and ordered surface.
Figure 2a shows the growth of only Alq3 molecules without added surfactant, and the molar fractions
of Alq3:CTAB in Figure 2b–e were 1:0.1, 1:0.3, 1:0.6, and 1:1, respectively. At the molar fractions shown
in Figure 2c and higher, the CMC of CTAB was reached, and the form of MCs appeared. The length
and diameter of crystals in Figure 2c,d were 10 µm and 1 µm, respectively. Also, crystals from Figure 2e
had 12~15 µm and 2 µm, respectively. As the amount of surfactant increased, the diameter was thicker
than the lengthwise growth. Some crystals were grown well, even with a lack of CTAB, but they tended
to be less uniform in shape and size. With an excess amount of CTAB, many micelles were produced,
and nucleation occurred, so crystals did not grow and remained as small particles.
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Figure 2. Morphological analyses of Alq3 MCs. (a–e) SEM images of Alq3 MCs after assembly with
various amounts of surfactant. The molar fractions of Alq3:CTAB in (a–e) were 1:0, 1:0.1, 1:0.3, 1:0.6,
and 1:1, respectively. (Inset of (e): magnification cross-section image of Alq3 micro-rod).

XRD measurements were performed to analyze the effect of various amounts of surfactant on the
crystallinity during the crystal growth process. The XRD spectra, shown in Figure 3, corresponded
to the Alq3 MCs of Figure 2a,e, assigned planes (001), (010), (011), and (021) with 2-theta values of
6.3◦, 7.0◦, 11.4◦, and 17.9◦, respectively [27]. The as-grown Alq3 MCs showed a typical α-phase and
showed increasing crystallinity with increasing amounts of CTAB (from Figure 2b (molar ratio 1:0.1)
to Figure 2e, (molar ratio 1:1.0)). Crystals of α-Alq3 were triclinic, space group P−1, a = 13.58 Å, b
= 12.44 Å, c = 7.75 Å, respectively. Also, we could reasonably infer that α = 69.90◦, β = 89.47◦, γ =

82.52◦ according to the XRD spectra and Rajeswaran’s results [25,28]. Therefore, CTAB could control
both the crystallinity as well as morphology, such as the shape and size of Alq3 MCs (CCDC, Refcode
QATMON01) [29].
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Based on its high quantum yield, Alq3 has been used in various optoelectronic fields as a green
light-emitting layer from the early stage of organic light emitting diodes (OLED) development. Alq3

showed strong green fluorescence when irradiated with 405 nm energy, and the main peak was
measured at 520 nm, as shown in Figure 4. In many previous studies, it was difficult to quantitatively
compare the PL characteristics, such as the intensity or full width at half maximum (FWHM), of Alq3

crystals by using bulk CCDs or by measuring solid PL in solution or large areas [30–32].
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Figure 4. PL (photoluminescence) spectra of Alq3 MCs depending on the molar ratio of Alq3 to CTAB.

In this study, a quantitative comparison was performed by measuring solid PL from a single Alq3

crystal using a laser with a spot size of approximately 200 nm. This figure showed that the PL signal
was measured even in amorphous random structures mass-created without CTAB. To compare the PL
intensity as quantitatively as possible, the same energy was irradiated and measured for a single unit
of Alq3 MCs. The better crystallization and alignment of the molecules could increase the intensity of
the PL because the disturbance is reduced during emission when excited electrons move to the ground
state. In addition, a smoother crystal surface led to less scattering of incident energy and emitted
fluorescence, which increased the intensity of PL because more light could be gathered to pass into the
detector. However, some PL intensity was measured even in the absence of CTAB because of the lack
of a uniform shape and presence of relatively many Alq3 molecules per unit area.

The highly crystalline structures of Alq3 MCs could conduct photon propagation along the
direction of crystal packing. Therefore, we could obtain optically active PL waveguide performance.
A schematic illustration of an optical waveguide experiment is shown in Figure 5a. The excitation
position was presented as a bright green luminescence spot in the color CCD images in the inset of
Figure 5b, and the position could be moved along the axial direction of Alq3 MCs. It showed very
bright luminescence spots at both tips and relatively weaker emission from the bodies of the wires,
which are typical characteristics of an optical active waveguide caused by self-absorption. From the
out-coupled luminescence CCD images and PL spectra results, the emission intensity was relatively
weak at the endpoint, and the main peaks of the guided PL spectra gradually decreased with increasing
propagation length, which could be attributed to the re-absorption energy loss process of the guided
light during propagation caused by the interaction, such as total reflection, due to difference in dielectric
constant between crystal surface and surrounding atmosphere or substrate, as shown in Figure 5b.
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The original PL main peak for the Alq3 material at 520 nm was filtered through reabsorption during
propagation, and the output PL peaks were observed at 525 nm, as shown in Figure 5b.
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MCs was estimated to be 0.381 dB/µm. Considering that the propagated optical signal was measured,
we suggested that they are a good candidate for potential materials for application in the development
of optical communication devices [33,34].

4. Conclusions

We investigated the precise control of crystallinity with various amounts of CTAB and the optical
waveguide performance of hexagonal Alq3 MCs. Unlike previous reports, we proposed an ideal growth
condition for the crystal structure with high crystallinity by a simple surfactant-assisted self-assembly
method in DI water. Hexagonal crystals with well-defined morphologies required driving forces
from the molecules themselves, including molecular stacking and Van der Waals forces. The CTAB
surfactant could cause micelles in DI water to induce the self-assembly of Alq3 molecules by these
driven forces. We confirmed the dimensions and morphological properties using SEM and XRD
experiments. Furthermore, we measured the solid-state LCM-PL spectra and color CCD images of the
Alq3 MCs to determine the PL efficiency and colors, respectively. The Alq3 MCs demonstrated optical
waveguide performance for each side direction of the hexagonal-shape. Our results demonstrated that
crystalline organic materials are promising materials for application to the development of optical
communication devices with high optical waveguide emission performance.
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