
crystals

Article

Numerical Simulation of Ice Fractures Process of the
Yellow River Based on Disk Specimen

Juan Wang 1, Jiao Zhou 1, Yu Deng 2,3,*, Goncharov Vadim 4 and Peng Zhang 1

1 School of Water Conservancy Engineering, Zhengzhou University, Zhengzhou 450001, China;
wangjuan@zzu.edu.cn (J.W.); zzuzhoujiao@163.com (J.Z.); zhangpeng@zzu.edu.cn (P.Z.)

2 Yellow River Institute of Hydraulic Research, Zhengzhou 450003, China
3 Research Center on Levee Safety Disaster Prevention MWR, Zhengzhou 450003, China
4 State Marine Technical University of Saint-Petersburg, 190121 Saint-Petersburg, Russia; vkgonch@mail.ru
* Correspondence: dengyu@hky.yrcc.gov.cn

Received: 27 May 2020; Accepted: 6 July 2020; Published: 10 July 2020
����������
�������

Abstract: To study the influence of the changes in crystals on a micro scale as well as their effect on
the macro mechanical properties of river ice and to mitigate the limitation of the objective conditions
in a physical examination of river ice, it is necessary to analyze the fracture process of river ice using
a micro numerical calculation method. Thus, a numerical model was established to simulate the
cracking process of river ice based on disk specimen. Upon comparison with the physical experiment,
the results of the numerical model show agreement with the fracture toughness and cracking process.
Based on the numerical model, the obtained material parameters of Yellow River ice laid a foundation
for the study of the cracking process of river ice on a macro-, meso-, and multiscale.
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1. Introduction

River ice is a quasibrittle and crystal material. The material parameters and structural parameters
have always been a difficult problem in river ice engineering research. Generally, a theoretical analysis,
physical experiment, and numerical simulation are necessary. A theoretical analysis summarizes the
basic theory and method of river ice mechanics and provides the physical basis and criteria for river
ice fracture mechanics. The results of a physical experiment provide the real material properties of
river ice. A numerical simulation provides a way to explain river ice performance on a macro-, meso-,
and multiscale.

In the microscopic scale, the water molecules in ice can form four hydrogen bonds and
regular crystal lattice. A lot of hydrogen bonds need be broken in ice fracture. Pritcha [1] and
Solomentsev et al. [2] have carried out systematic research in water and ice hydrogen bonding, which
provide a reference for the study of ice fracture at a microscale.

In simulating ice fracture, many methods can be adopted. The finite element method is one of the
most common methods for simulating the ice fracture. Kendall [3] proposed a new failure criterion
that is based on the fracture energy balance theory and explained that the force required for fracture
depends on the fracture mode, the fracture surface energy of the material, and the geometry and
elasticity of a specimen. Zou et al. [4] described the effects of a fracture and the spalling on ice structure
interactions. According to the strain energy release rate at the crack tip, a crack with a different length
and position was numerically investigated. In addition, the crack propagation in Kendall’s double
cantilever theory was explored. Evans et al. [5] examined the cracking and spalling process of brittle
thin plates under an edge load, and they revealed the overall crack propagation rate, the crack growth
load, and peeling. Xiao et al. [6,7] established a damage calculation model of ice that is based on
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the nonlinear damage Burgers model of a viscoelastic body based on Kelvin and Maxwell elements.
The model was verified and calibrated via the analysis of laboratory test data. Han Lei et al. [8]
systematically analyzed the whole failure process of ice cone interaction with ANSYS and obtained
the change law of ice force and deflection relationship curve with failure mode. The main difference
between wedge beam bending failure and plate bending failure was the subsequent deformation
ability and the ice force increment in the failure process.

The discrete element method is another method that is often employed in ice fracture calculation.
In the 1970s, Condell [9] proposed a calculation method of discrete elements to address the fracture
mechanism of discontinuous medium materials. This method has been extensively employed in many
research studies. In the study of ice fracture, Korlie [10] investigated the evolution and fracture process
of a three-dimensional ice crack under stress and compression and established a set of nonlinear
ordinary differential equations to simulate the generation, propagation, and fracture of an ice crack.
Jirasek et al. [11,12] discussed the macro fracture characteristics of random particles and proposed
an iterative algorithm for solving larger systems. The algorithm applied the inelastic force of an
external load instead of a change in stiffness, and it determined the macro average fracture energy of
two-dimensional particles and the average size of an effective loading area with the size effect method.
Ji et al. [13,14] carried out systematic research on the interaction between sea ice and offshore platform
structures that are based on the discrete element model.

However, existing research results need to be further enriched regarding the structural and
material characteristics as well as the evolution law of microcracks of river ice based on the microscopic
mechanics theory and the numerical simulation method. The response mechanism of the macro-,
meso-, and multiscale of river ice also needs be constructed. In this paper, natural river ice in the
freezing period of the Yellow River was chosen as a research object, and a calculation model of the river
ice fracture was established with the Brazilian disc splitting method. There are several advantages of
this method: it is easy to process ice samples, it is not affected by specimen size and material properties,
and more tests can be carried out in limited origin ice cubes [15,16]. The disk splitting and fracture of
river ice were simulated and analyzed on a micro scale, and the fracture process of an ice disk was
simulated under the conditions of different grain sizes and different ice samples. The method can reflect
not only the whole process of ice crystal damage but also the influence of ice crystal shape, distribution
form, interface transition area, and other micro components on the macro mechanical properties of
river ice. The method can effectively avoid the influence of various objective factors—such as sampling,
time, region, and environment—and the subjective factors of manual operation in the test process;
it can also promote the recognition of the mechanical properties of river ice materials.

2. Ice Sampling Observation and Physical Test of the Yellow River

Natural river ice materials in the Toudaoguai reach of Inner Mongolia during the freezing period
of the Yellow River were collected as test objects. According to the field ice crystal test, the obtained ice
samples can be approximately divided into granular ice on the surface, columnar ice under the surface,
ice flower ice, and columnar ice under the ice flower ice. The ice samples comprised columnar ice
under the surface. The ice sample density was approximately 0.95 g/cm3; the sediment content ranged
between 1.2% and 2.0%, and the bubble content was 1%. Based on an analysis of the advantages and
disadvantages of various test methods [16–19], the Brazilian disk splitting method was selected as
the test method to analyze the ice splitting tensile strength and the fracture toughness of the Yellow
River. The test device is shown in Figure 1, R is the radius and H is the distance between the upper
and lower loading platforms. The diameter range of the ice samples was from 60 to 100 mm, and the
thickness was approximately half of the diameter. The test temperatures range were from −3 to −15 ◦C.
The strain rate was controlled within the range of 10−5 to 10−1 s−1, and the data obtained from the test
and the specific analysis results were detailed in the literature [20].
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Figure 1. Schematic of Brazilian disc splitting test device. (a) The schematic of a sample specimen 
test. (b) The physical test device of Yellow River ice. 
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The crystal microstructure of Yellow River ice was mainly composed of the ice grain size and 
distribution, ice crystal boundary, and initial defect at meso level. 

According to the experimental results carried out by our research group in the early stage, the 
column ice of the Yellow River was chosen to be the simulated object. The grain diameters of 
column ice varied from 3 to 70 mm, among which grains with diameter larger than 30 mm were 
about 2%. To simulate random and irregular polycrystalline grains, Voronoi polygons were 
adopted to simulate grains. Based on the ANSYS Parametric Design Language (APDL) of ANSYS 
software, a numerical model of river ice meso structure was established, and the size and 
distribution of grains were simulated. 

The solid element (Plane 182) was adopted to simulate the grains and the boundary between 
the grains; the thickness of the grain boundary was considered to be 50–150 µm (approximately 2% 
of the grain size). In order to control the quality and reliability of the meshes, the line element size 
was used to control the mesh generation, in which the line was divided into one element when its 
length was less than 1 mm, and the element size of the line was set to 1 mm when its length was 
greater than 1 mm. River ice is a crystal composite with defects, and its internal initial defects 
include bubbles, impurities, and microcracks. Bubbles are the most common defect, and their 
volume fraction is about 1% to 4% in the Toudaoguai of the Yellow River [21]. It is assumed that the 
bubble is the initial defect, which is simulated by a damage element. In the model, initial defects are 
randomly distributed on the boundary between the grains, and the number of bubbles in each 
damage element is no more than 1. The sketch maps are shown in Figure 2. 

Figure 1. Schematic of Brazilian disc splitting test device. (a) The schematic of a sample specimen test.
(b) The physical test device of Yellow River ice.

3. Numerical Simulation of River Ice

Based on the data and results of the physical test of Yellow River ice, a calculation model of Yellow
River ice was constructed. To perform a comparison with the physical test results, the Brazil disk
method was utilized in the numerical simulation of the river ice. The main contents include the ice
crystal structure model, constitutive relation and failure criteria, model parameters, etc.

3.1. Crystal Structure Model of Yellow River Ice

The crystal microstructure of Yellow River ice was mainly composed of the ice grain size and
distribution, ice crystal boundary, and initial defect at meso level.

According to the experimental results carried out by our research group in the early stage,
the column ice of the Yellow River was chosen to be the simulated object. The grain diameters of
column ice varied from 3 to 70 mm, among which grains with diameter larger than 30 mm were
about 2%. To simulate random and irregular polycrystalline grains, Voronoi polygons were adopted
to simulate grains. Based on the ANSYS Parametric Design Language (APDL) of ANSYS software,
a numerical model of river ice meso structure was established, and the size and distribution of grains
were simulated.

The solid element (Plane 182) was adopted to simulate the grains and the boundary between the
grains; the thickness of the grain boundary was considered to be 50–150 µm (approximately 2% of
the grain size). In order to control the quality and reliability of the meshes, the line element size was
used to control the mesh generation, in which the line was divided into one element when its length
was less than 1 mm, and the element size of the line was set to 1 mm when its length was greater than
1 mm. River ice is a crystal composite with defects, and its internal initial defects include bubbles,
impurities, and microcracks. Bubbles are the most common defect, and their volume fraction is about
1% to 4% in the Toudaoguai of the Yellow River [21]. It is assumed that the bubble is the initial defect,
which is simulated by a damage element. In the model, initial defects are randomly distributed on the
boundary between the grains, and the number of bubbles in each damage element is no more than 1.
The sketch maps are shown in Figure 2.
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Figure 2. Finite element model of the river ice crystal structure: (a) typical sample diagram of the ice 
crystal structure of Yellow River; (b) structure diagram of the numerical model of the Brazil disk 
specimen; (c) initial defects inside the disk; and (d) sketch map of the whole model. 
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The river ice materials exhibit strong brittleness in the failure process [22]. The microstructure 
and micro components properties are important influence factors. To analyze the influence of the 
crystal structure on the mechanical performance of the river ice, the mesoscopic components were 
considered homogeneous linear elastic material, and the grains and grain boundaries were 
assumed to be elastic brittle materials and isotropic in the same cross section [21]. The maximum 
tensile stress criterion was applied in the failure criterion of the grain. A certain range of slides were 
allowed between the two grains. The range would not exceed the grain boundary. The failure of the 
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criteria are shown in Equations (1) to (3). For the element with initial damage, according to the 
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were modified, that is to say, the elastic modulus of the element after failure was considered to be 
the minimum value (10−5 to 10−4 of the original value), and its contribution to the stiffness matrix 
was disregarded. 

Figure 2. Finite element model of the river ice crystal structure: (a) typical sample diagram of the
ice crystal structure of Yellow River; (b) structure diagram of the numerical model of the Brazil disk
specimen; (c) initial defects inside the disk; and (d) sketch map of the whole model.

3.2. Constitutive Relationship and Failure Criteria

The river ice materials exhibit strong brittleness in the failure process [22]. The microstructure
and micro components properties are important influence factors. To analyze the influence of the
crystal structure on the mechanical performance of the river ice, the mesoscopic components were
considered homogeneous linear elastic material, and the grains and grain boundaries were assumed to
be elastic brittle materials and isotropic in the same cross section [21]. The maximum tensile stress
criterion was applied in the failure criterion of the grain. A certain range of slides were allowed
between the two grains. The range would not exceed the grain boundary. The failure of the grain
boundary was considered to be tensile and shear failure. The constitutive relations and failure criteria
are shown in Equations (1)–(3). For the element with initial damage, according to the element location,
the corresponding failure criteria of the grain and grain boundary are adopted.

σ = Eε (1)

σ1 ≤ σt (2)

τmax ≤ τb (3)

where σ is stress, E is elastic modulus, ε is the strain, σt is the tensile strength of the ice material, τb is
the shear strength of the ice material, σ1 is the first principal stress of the element, and τmax is the
maximum shear stress of the element.

When the element lost its bearing capacity after failure, the material properties of the element
were modified, that is to say, the elastic modulus of the element after failure was considered to be
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the minimum value (10−5 to 10−4 of the original value), and its contribution to the stiffness matrix
was disregarded.

3.3. Computational Parameters

In the numerical model of the river ice, two kinds of parameters should be identified: crystal
structure parameters and crystal material parameters. The crystal structure parameters mainly include
the grain size, grain distribution, grain boundary formation, and initial defects. The crystal material
parameters mainly include the elastic modulus, strength, mechanical properties of grain boundary,
and other parameters. The main parameters of river ice are shown in Table 1 [21].

Table 1. Main parameter values of river ice in the numerical calculation.

Temperature
(◦C)

Strain Rate
(s−1)

Elastic Modulus
of Grain

(GPa)

Strength of
Grain
(MPa)

Poisson’s
Ratio of
Grain

Elastic Modulus of
Crystal Boundary

(GPa)

Strength of
Crystal Boundary

(MPa)

Initial Defect
Content

(%)

Grain Size
(mm)

−10 10−5–10−6 9 1 0.3 5 0.5 6 2–10

4. Simulation Process of Disk Splitting

Based on the numerical calculation model of Yellow River ice, the fracture process of the river ice
was simulated and analyzed in the splitting tensile load. Displacement loading was adopted. That was,
the bottom of specimen was constrained, and the top surface is applied with downward displacement
load. Typical failure strain cloud pictures are shown in Figure 3. Figure 3a shows that the initial
crack was located on the grain boundary of the grains at the center position of the disk and gradually
extended outward along the grain boundary, which was objectively in line with the initiation mode of
the disk splitting tensile test. At the same time, the displacement began to occur at the loading position
of the disk specimen, and the strain was the largest at the loading interface. With the increase in load,
the cracks gradually increased and formed the central main crack that penetrated the ice specimen
(Figure 3b). Macro cracks gradually expanded and caused the final failure (Figure 3c).
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5. Simulation Results and Discussions

5.1. Simulation Results Analysis

To verify the applicability of the model, the numerical simulation of the Brazil disc test was carried
out. Typical failure modes in the numerical calculation are shown in Figure 4. It can be seen from
Figure 4a that the initial crack was located at the grain boundary of the grains at the center position
of disk and gradually expanded along the grain boundary to penetrate the central main crack of the
ice specimen (Figure 4b). This is consistent with the basic principle of Brazilian disc. When the disc
platform adopts uniform load and the center angle is greater than 20 degrees, the maximum stress
value of the disc center is ensured. The macroscopic fractures gradually extended and caused the
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ultimate failure of the ice specimen (Figure 4c). The simulated failure form was similar to the failure
form of the river ice physical test (Figure 4d).
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In order to analyze the fracture properties of Yellow River ice, the fracture toughness was calculated
by the simulated peak load according to the method in Reference [20]. The simulation results were
compared with the experimental results of the river ice, as shown in Figure 5. The calculated values
showed agreement with the experimental values. The average error of both groups of data was
approximately 10%.
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5.2. Scale Effect of Fracture Toughness

The size effect of fracture toughness of river ice is not obvious at the test scale. Dempsey et al.
performed a series of measurements on floating ice sheets of the Spray Lakes Reservoir [23] and
discovered that although the fracture toughness of ice was scattered, it increased as the size increased.
For the lake ice, the fracture toughness increased from 100 kPam1/2 for the smallest specimens (0.34 m)
to 300 kPam1/2 for the largest specimens (28.64 m). From these results, they concluded that the fracture
toughness of the ice exhibited a scale effect. However, Schulson et al. suggested that the values obtained
offered a measure of resisting crack propagation when a floating ice cover was loaded rather slowly and
that the results should not be taken as evidence that the fracture toughness of ice is size-dependent [24].

To further analyze the size effect of fracture toughness, the disk diameters of the model were set
to 60, 70, 80, and 100 mm according to the parameters of the river ice physical test, and the platform
loaded angle of 2 alpha was set to 30◦. The crystal structure models of four different sizes are shown in
Figure 6. The size of the four images in Figure 6 is reduced by 1/2. The influence of the specimen size on
the fracture toughness is shown in Figure 5. With an increase in specimen size, the fracture toughness
did not exhibit any difference. It can be deduced that the scale effect of fracture toughness is not obvious
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within a certain scale range for Yellow River ice, which is consistent with the physical experiment
results. For larger-sized ice samples, the scale effect of fracture toughness needs further analysis.
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5.3. Effect of Grain Size on Fracture Toughness

To study the effect of grain size on the fracture toughness of river ice, a finite element model of
different grain sizes was established, as shown in Figure 7. The specimen diameter size is 80 mm.
The effect of different grain sizes on the fracture toughness of river ice was calculated. Nixon and
Schulson reported the fracture toughness of ice for a range of grain sizes. From the results of systematic
experiments at −10 ◦C on bubble-free, granular fresh-water ice that was manufactured in a laboratory,
whose grain size was varied from 1.6 to 9.3 mm, they developed the following relationship [25]:

KIC = KIO + φd−1/2 (4)

where KIC is fracture toughness, KIO is the material constant, Φ is the size correlation coefficient, d is
the grain size in millimeters, KIO = 58.3 kPam1/2, and Φ = 42.4 kPamm1/2.
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Although the fracture toughness values of two kinds of ice materials are different due to their
material properties, the effects of grain size on the fracture toughness are consistent. It can be seen
from Figure 8 that the fracture toughness of ice decreases slightly with an increase in grain size. Thus,
it can be speculated that the grain size is an influential factor for the fracture toughness of river ice,
but the influence is little.
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and initial defects was established by secondary development based on ANSYS software. According to
an analysis of calculating the result, the model can better simulate the fracture process of the river ice.
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with the physical test results of Yellow River ice, and the mean error between the simulated results of
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that affected the outcome of the results.
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