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Abstract: We use a simple statistical model to investigate the effects of an applied magnetic field and of
the dilution of site elements on the phase diagrams of biaxial nematic systems, with an emphasis on the
stability of the Landau multicritical point. The statistical lattice model consists of intrinsically biaxial
nematogenic units, which interact via a Maier–Saupe potential, and which are characterized by a
discrete choice of orientations of the microscopic nematic directors. According to previous calculations
at zero field and in the absence of dilution, we regain the well-known sequence of biaxial, uniaxial,
and disordered structures as the temperature is increased, and locate the Landau point. We then focus
on the topological changes induced in the phase diagram by the application of an external magnetic
field, and show that the Landau point is destabilized by the presence of an applied field. On the other
hand, in the absence of a field, we show that only a quite strong dilution of nematic sites is capable of
destabilizing the Landau point.

Keywords: biaxial nematic transition; field behavior; diluted nematic systems

1. Introduction

In a number of recent investigations [1–6], we have performed some calculations for
simple statistical lattice models to characterize the biaxial structures in liquid crystalline systems.
These statistical models are based on fully-connected Maier–Saupe pair interactions, with a restricted
choice of orientational degrees of freedom. They are amenable to detailed calculations, and have been
shown to account for most of the qualitative features of the nematic phase diagrams, including the
well-known sequences of biaxial nematic, uniaxial nematic, and isotropic structures, as the temperature
is raised. At a special value of temperature and of a parameter gauging the degree of biaxiality, model
calculations point out the existence of a highly symmetric Landau multicritical point, with a direct
transition from a biaxial nematic to an isotropic phase.

In this work, we revisit the same simplified lattice models with a view to perform detailed
calculations to investigate the effects produced by an applied field and by the dilution of nematogenic
elements. Besides assuming a generalized form of the Maier–Saupe interactions between nematogenic
units on a lattice site, we still make a discrete choice of the orientations of the microscopic nematic
directors. This special choice, which is reminiscent of an old work of Zwanzig to treat the Onsager
model of rigid cylinders, has also been shown to lead to the well-known first-order transition between
simple uniaxial nematic and isotropic phases.

The effects of a magnetic field on the phase diagram of nematogenic molecules exhibiting biaxial
phases have been the subject of a number of investigations over the years. For micellar lyotropic systems
such as potassium laurate/1-decanol/water mixtures, in which shape anisotropy of the micelles is
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presumably strongly dependent on the temperature and on the concentration of the various components,
the existence of a biaxial nematic phase is known since the pioneering work of Yu and Saupe [7]. Besides
the biaxial phase, these systems also exhibit rod-like and disk-like uniaxial nematic phases, and,
in general, upon heating, these uniaxial phases exhibit a discontinuous transition to an isotropic phase.
Nevertheless, the three nematic phases and the isotropic phase become equal at the Landau multicritical
point. In the neighborhood of the Landau point, experiments performed for three different values of
concentration [8] show that application of a magnetic field turns the transition between the rod-like
uniaxial and the isotropic phases into a crossover, while preserving the discontinuous nature of the
transition between the disk-like uniaxial and the isotropic phases.

For mineral lyotropic systems, the combination of an intrinsic magnetic moment and a negative
anisotropy of the magnetic susceptibility leads to a very strong induced magnetic birefringence [9] and
to phase separation into a uniaxial nematic and a biaxial nematic due to entropic effects associated
with polydispersity [10].

In thermotropic systems, prompted by experimental results [11] for bent-core, intrinsically biaxial
molecules with an essentially fixed shape, there have been studies on the combined effect of biaxiality
and a magnetic field on the temperature of the first-order uniaxial to a paranematic phase transition,
on the stability of the various phases, and on the presence of multicritical points [11–16]. In particular,
within the phenomenological Landau–de Gennes theory, Mukherjee and Rahman [13] have identified
the destabilization of the Landau point and its splitting into one critical and two tricritical points.

In the present work, we go beyond the analysis of a Landau expansion. As we start from a
microscopic statistical model, we are able to perform calculations to analyze the global phase diagram,
which includes considerations on the stability of the Landau multicritical point and also illustrations
of the behavior of the uniaxial and biaxial order parameters as temperature and degree of biaxiality
are changed.

On the other hand, our motivation for investigating the effects of dilution is purely theoretical,
as we would like to check whether the phase diagram of our simple model survives in the presence of
an ingredient that is inescapable in the real world. Our results show that this is indeed the case, making
clear that representing a fluid by a lattice model does not introduce any artifacts in our obtained
phase diagrams.

In Section 2, we define the statistical model in terms of a quite general and elegant two-tensor
formalism, proposed [17] by Sonnet, Virga, and Durand (SVD), and which includes all physically
reasonable pair interactions between nematogenic elements. With a discrete choice of the microscopic
directors, this model Hamiltonian is restricted to a six-state model, which we dub SVD6. Furthermore,
we choose a relation between two interaction parameters, the “geometric-mean condition”, which
preserves the main features of the phase diagrams, and which has been widely used in the area.
We obtain a number of results for the phase diagram of this SVD6 model, in terms of temperature
T and a parameter ∆, which comes from the geometric-mean condition and provides a form of
gauging the degree of biaxiality. In particular, we locate the Landau multicritical point. In Section 3,
we discuss the inclusion of an external field in the SVD6 Hamiltonian with the geometric-mean
condition. The effects of a magnetic field come from an intricate competition between the magnetic
free energy, the entropy and the interactions between nematogens, which can be fully accounted for
by the elementary statistical model. In general, the presence of an external field breaks the symmetry
necessary to stabilize the Landau point. Except for the very special circumstances of a fully isotropic
diamagnetic susceptibility, the main result is the splitting of the transition lines and the disappearance
of the Landau multicritical point. We then turn to the study of the effects of dilution. In Section 4,
we use the SVD6 model, with the recourse to the geometric-mean condition, to show that the presence
of dilution, as far as it is not a strong dilution, does not introduce any qualitative changes with respect
to the initial phase diagrams. However, in the zero-field limit and for quite large dilutions, the Landau
point turns into a first-order transition, which is similar to the behavior of the critical line in a strongly
diluted Ising ferromagnet.
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2. The SVD Model

The Hamiltonian representing the interactions between the nematogens in the mean-field SVD
model [17] can be written as

HSVD = − A
2V ∑

µ,ν∈{x,y,z}

( V

∑
i=1

qµν
i

)2

+ 2γ

(
V

∑
i=1

qµν
i

)(
V

∑
i=1

bµν
i

)
+ λ

(
V

∑
i=1

bµν
i

)2
 , (1)

in which the parameter A > 0 gauges the interaction between nematogens, the dimensionless
parameters γ and λ are responsible for a dependence of that interaction on the relative orientation
of the nematogens, and V is the number of nematogens, while qµν

i and bµν
i , with µ, ν ∈ {1, 2, 3},

are the components of two traceless tensors associated with the ith nematogen. Explicitly, for a generic
nematogen with principal axes along the unit vectors n̂1, n̂2 and n̂3, we have

q =
3
2

n̂1 ⊗ n̂1 −
1
2

I and b =
3
2
(n̂2 ⊗ n̂2 − n̂3 ⊗ n̂3) , (2)

I being the 3× 3 identity matrix.
For our simplified model, we restrict the directors to point along the Cartesian axes [18,19], so that

each nematogen takes only six distinct states, defining a new Hamiltonian

HSVD6 = − A
2V ∑

α∈{x,y,z}

( V

∑
i=1

qαα
i

)2

+ 2γ

(
V

∑
i=1

qαα
i

)(
V

∑
i=1

bαα
i

)
+ λ

(
V

∑
i=1

bαα
i

)2
 . (3)

Labeling the states of a generic nematogen as ζ(k), k ∈ {1, 2, 3, 4, 5, 6}, the values of the diagonal
components of the tensors q and b, as well as of the z component of the first principal axis are
given in Table 1. Further restricting ourselves to the case λ = γ2, the widely used geometric-mean
condition [20,21], Equation (3) can be written as

HSVD6 = − A
2V ∑

α∈{x,y,z}

[
V

∑
i=1

(qαα
i + γbαα

i )

]2

. (4)

As further discussed in Section 3, the parameter γ appearing in the last expression can be
interpreted as a simplified measure of the intrinsic biaxiality of the nematogens. The effect of γ on the
interaction energies under different relative orientations of a pair of nematogens replaces the entropic
effects due to the different excluded volumes associated with these orientations for a pair of hard
biaxial polyhedra, which, in the case of strong shape anisotropy, can also lead to the spontaneous
appearance of stable biaxial phases [22].

Table 1. Values of the diagonal components of the tensors q and b and of the z component of the
principal axes of a generic nematogen in the six possible states ζ(k) of the restricted model.

k qxx bxx qyy byy qzz bzz (
nz

1
)2

(nz
2)

2 (
nz

3
)2

1 − 1
2

3
2 − 1

2 − 3
2 1 0 1 0 0

2 − 1
2 − 3

2 − 1
2

3
2 1 0 1 0 0

3 − 1
2

3
2 1 0 − 1

2 − 3
2 0 0 1

4 − 1
2 − 3

2 1 0 − 1
2

3
2 0 1 0

5 1 0 − 1
2

3
2 − 1

2 − 3
2 0 0 1

6 1 0 − 1
2 − 3

2 − 1
2

3
2 0 1 0
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3. Effects of a Magnetic Field

In order to consider the effects of a magnetic field, we add to the Hamiltonian of our simplified
model the interactions of the nematogens with a uniform and constant field ~H = Hẑ applied along the
z axis in the laboratory frame [23]. We then write

H = HSVD6 −
1
2

V

∑
i=1

3

∑
j=1

χj

(
~H · n̂j,i

)2
, (5)

in which χj gauges the coupling with the magnetic field when the jth principal axis n̂j of an object lies
along the field direction, and the index i runs over all objects. In view of the fact that, even under the
geometric-mean condition, there are in general different interaction energies associated with distinct
relative orientations of the principal axes of a pair of nematogens, no symmetry should be expected
between field effects associated with choices of the sets of parameters {χ1, χ2, χ3} such as {χ, 0, 0},
{0, χ, 0} and {0, 0, χ}.

The partition function Z of the model can be evaluated by introducing an auxiliary diagonal tensor
Q = diag

{
Qxx, Qyy, Qzz

}
via three Gaussian identities which allow us to eliminate the quadratic terms

arising from Equation (4), yielding

Z = ∑
{ζ}

e−βH =

(
βAV
2π

)3/2

∑
{ζ}

∫
[dQαα] exp

{
− βAV

2 ∑
α

Q2
αα

+ ∑
α,i

βAQαα (qαα
i + γbαα

i ) +
βH2

2 ∑
i,j

χj

(
nz

j,i

)2
}

, (6)

in which [dQαα] = dQxxdQyydQzz and β = T−1 is the inverse temperature (we use a system of units
for which Boltzmann’s constant kB = 1). Evaluating the sums over the nematogen index i and the
states of each nematogen, we obtain

Z =

(
βAV
2π

)3/2 ∫
[dQαα] exp {−βVψ (Q)}, (7)

with
ψ (Q) =

A
2 ∑

α

Q2
αα − T ln 2− T ln φ (Q) (8)

and

φ (Q) = e
3
2 βAQxx+

1
4 β(χ2+χ3)H2

cosh
[

3βAγ

2
(
Qyy −Qzz

)
− β (χ2 − χ3) H2

4

]
+ e

3
2 βAQyy+

1
4 β(χ2+χ3)H2

cosh
[

3βAγ

2
(Qzz −Qxx) +

β (χ2 − χ3) H2

4

]
+ e

3
2 βAQzz+

1
2 βχ1 H2

cosh
[

3βAγ

2
(
Qxx −Qyy

)]
. (9)

The partition function can be evaluated by means of the steepest descent method. The equilibrium
states correspond to those values 〈Q〉 of the tensor Q that minimize the functional ψ (Q). As these
values are such that Q is traceless, we can write

〈Q〉 =

 − 1
2 (S + η) 0 0

0 − 1
2 (S− η) 0

0 0 S

 , (10)
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in which S and η play the roles of order parameters associated with the uniaxial and biaxial nematic
phases, respectively. Noticing that at the mean-field level 〈Q〉 can be identified with 〈q + γb〉,
we also have

〈Q〉 = 3
2
[〈n̂1 ⊗ n̂1〉+ γ (〈n̂2 ⊗ n̂2〉 − 〈n̂3 ⊗ n̂3〉)]−

1
2

I. (11)

Substituting Equation (10) in Equation (8) we obtain

ψ (S, η) =
3A
4

S2 +
A
4

η2 − T ln 2− T ln φ (S, η) , (12)

with

φ (S, η) = e−
3
4 βA(S+η)+ 1

4 β(χ2+χ3)H2
cosh

[
βA∆

4
(η − 3S)− β (χ2 − χ3) H2

4

]
+ e−

3
4 βA(S−η)+ 1

4 β(χ2+χ3)H2
cosh

[
βA∆

4
(η + 3S) +

β (χ2 − χ3) H2

4

]
+ e

3
2 βAS+ 1

2 βχ1 H2
cosh

(
βA∆

2
η

)
. (13)

Notice that in the above equations we introduced a biaxiality parameter ∆ = 3γ so that we can
compare our phase diagrams with the one obtained at zero field by Boccara, Medjani and De Seze [24].
If, for the sake of comparison, we assume that the traceless part of the inertia tensor and the q + γb
tensor of an object are proportional to each other, we may interpret that, as ∆ is increased, the shape of
the nematogen changes from calamitic (“rod-like”) uniaxial for ∆ = 0, to strongly biaxial for ∆ = 1,
and finally to discotic (“disk-like”) uniaxial for ∆ = 3 (see the appendix in [4]). In this paper, we always
work in the interval 0 ≤ ∆ ≤ 3.

Minimizing Equation (12) we arrive at the state equations

∂ψ

∂S
=

3A
2

S− T
∂ ln φ

∂S
= 0

∂ψ

∂η
=

A
2

η − T
∂ ln φ

∂η
= 0

(14)

If there are multiple solutions to Equation (14), the equilibrium state corresponds to the solution
with the smallest value of ψ (S, η). At high temperatures and at zero field, there is an isotropic,
disordered solution S = η = 0. At lower temperatures, depending on the choice of ∆ and χH2,
there may appear uniaxial solutions, for which η = 0 6= S, and biaxial solutions, for which S 6= 0
and η 6= 0. At zero field, due to the six-fold symmetry of the problem, there are degenerate
solutions for the ordered phases, so that for every uniaxial solution (S, η) = (S0, 0) there are
equivalent solutions (S, η) =

(
− 1

2 S0,± 3
2 S0

)
. Of course, these do not correspond to biaxial solutions,

which are not three-fold but six-fold degenerate. In fact, for each pair of biaxial solutions (S0,±η0),
with η 6= 0, there are equivalent solutions

(
− 1

2 S0 ∓ 1
2 η0, 3

2 S0 ∓ 1
2 η0

)
and

(
− 1

2 S0 ± 1
2 η0,− 3

2 S0 ∓ 1
2 η0

)
.

In the biaxial phase, comparison of Equations (10) and (11) in the T → 0 limit indicates that
the zero-field values of η range from η = −max {∆, (∆ + 3)/2} to η = max {∆, (∆ + 3)/2}.
When plotting the values of S and η in Figures 1–3, we select for each choice of ∆ and T the solution
that provides the clearest distinction between the phases.

Phase boundaries and multicritical points can be determined by the behavior of ψ (S, η) and its
derivatives at the solutions of Equation (14).

3.1. Behavior at Zero Field

We first offer a short review of the phase diagram at zero field (H = 0), shown in Figure 1 and
already discussed in [4,5,24].
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(a) (b)

Figure 1. Phase diagram at zero field, in the T × ∆ plane. The color code shows the behavior of (a) the
uniaxial order parameter S, which is zero in the high-temperature isotropic phase (I), and (b) the biaxial
order parameter η, which is nonzero only in the low-temperature biaxial (B) phase. Notice that at
low and intermediate temperatures the value of S associated with the smallest equilibrium value of
|η| changes sign along the line ∆ = 1 on which the Landau point (∆L, TL) = (1, 1) is located. Solid
(dashed) lines indicate continuous (first-order) transitions. The calamitic (U+) and discotic (U-) uniaxial
phases are also indicated.

When ∆ = 0, nematogens are intrinsically (calamitic) uniaxial, so that no biaxial phase is
expected. Therefore, there is only a first-order transition between the uniaxial and the isotropic
phases, which occurs at the temperature for which

∂ψ

∂S

∣∣∣∣
(S0,0)

= 0 and ψ (S0, 0) = ψ (0, 0) . (15)

As the biaxiality parameter ∆ is increased, a biaxial solution appears at a sufficiently small
temperature. For fixed ∆, the temperature corresponding to the continuous transitions between the
biaxial and the uniaxial phases is obtained from

∂ψ

∂S

∣∣∣∣
(S1,0)

=
∂2ψ

∂η2

∣∣∣∣
(S1,0)

= 0. (16)

The lines of first-order uniaxial-isotropic and continuous biaxial-uniaxial transitions meet at the
Landau multicritical point (∆L, TL), the location of which is determined by the conditions

∂2ψ

∂S2

∣∣∣∣
(0,0)

=
∂3ψ

∂S3

∣∣∣∣
(0,0)

= 0, (17)

derived by noticing that at that point S0 and S1 both tend smoothly to zero. For H = 0, the above
equations reduce to

βA
(

∆2 + 3
)
− 4 = β2 A2

(
∆2 − 1

)
= 0, (18)

so that, measuring T in units of the energy scale A, the solution to Equation (17) is

(∆L, TL) = (1, 1) . (19)
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Further increasing the value of ∆, the temperature of the biaxial–uniaxial transition decreases,
becoming zero again at ∆ = 3, when the nematogen is once more a (discotic) uniaxial object. At the
intermediate-temperature uniaxial phases, the uniaxial order parameter is positive (S0 > 0) if ∆ < ∆L
and negative (S0 < 0) if ∆ > ∆L.

We note that this phase diagram qualitatively agrees with the one obtained from computer
simulations of a hard biaxial ellipsoid fluid, as a function of the shape anisotropy of the particles [25].
It also reproduces various aspects of phase diagrams of a variety of lyotropic systems [7,26–29],
regarding their nematic phases.

3.2. Phase Diagrams in a Field

The effect of a magnetic field is the result of an intricate competition between the magnetic
free energy, the entropy and the mutual interactions between nematogens, as dictated by the
geometric-mean condition.

The first noticeable effect of a nonzero field is the disappearance of the Landau point, except
for the fully symmetric choice χ1 = χ2 = χ3, which makes all three principal axes of a nematogen
equally likely to lie parallel to the field, having the sole effect of globally shifting all energy levels.
This can be checked by fixing H and one of χj, say χ2, and solving for ∆, βA, χ1 and χ3 the conditions
in Equation (17) supplemented by

∂ψ

∂S

∣∣∣∣
(0,0)

= 0 and
∂2ψ

∂η2

∣∣∣∣
(0,0)

= 0, (20)

the latter conditions being necessary for a continuous transition from a biaxial phase to a stable
isotropic phase at a candidate Landau point. The only solution ever obtained is ∆ = 1, βA = 1 and
χ1 = χ2 = χ3, irrespective of the value of the field.

Nonetheless, for the special choice χ2 < χ1 = χ3, which makes the n̂2 principal axis of a
nematogen less likely to lie perpendicular to the field, while making the n̂1 and n̂3 principal axes
equally likely to lie parallel to the field, the isotropic phase is stable at a point fulfilling the conditions
in Equation (17), although the second condition in Equation (20) is not satisfied.

As a typical example of the phase diagram in the presence of a field, let us consider the case
χ1 ≡ χ 6= 0 and χ2 = χ3 = 0, which is representative of regime |χ1| > |χ2| , |χ3|. With this choice,
the isotropic phase does not minimize the free energy at any finite temperature, being replaced by a
paranematic phase in which η = 0 but S takes a small but nonzero value. This can be rationalized as
follows. Assuming χ > 0, it can be checked that the magnetic energy of a nematogen is minimized
when the principal axes n̂1 is parallel to the field direction z. From Equations (10) and (11), taking

into account that
〈
n̂j ⊗ n̂j

〉zz
=

〈(
nz

j

)2
〉

and noticing that in a nonzero field the symmetry between〈(
nz

1
)2
〉

,
〈
(nz

2)
2
〉

and
〈(

nz
3
)2
〉

is explicitly broken, making
〈(

nz
3
)2
〉
=
〈
(nz

2)
2
〉
< 1

3 and
〈(

nz
1
)2
〉
> 1

3

at high temperatures, it is clear that S = 〈Qzz〉 > 0. Likewise, assuming χ < 0, so that the magnetic
energy of a nematogen is minimized when the principal axes n̂1 is perpendicular to the field direction
z, at high temperatures we have

〈(
nz

3
)2
〉
=
〈
(nz

2)
2
〉
> 1

3 and
〈(

nz
1
)2
〉
< 1

3 , so that S = 〈Qzz〉 < 0.
The general aspect of the phase diagram for both χ > 0 and χ < 0 is shown in Figure 2. In both

cases, the Landau point disappears to give rise to a pair of multicritical points: a simple critical point
signaling the end of a first-order transition line between the uniaxial and the paranematic phases
(which are actually a single phase, in much the same way as the liquid and gaseous phases in simple
fluids) and a tricritical point separating regions of first-order and continuous transitions between a
biaxial phase and the paranematic phase. The dependence of the uniaxial and biaxial order parameters
on ∆ and T is illustrated in Figure 3, for the case χ > 0. Notice the extension of the biaxial phase
towards the region occupied, at zero field, by the discotic uniaxial phase.
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(a) (b)

Figure 2. Main plots: Phase diagrams in the presence of a field of intensity H = 0.1, with the choice
χ1 ≡ χ 6= 0 and χ2 = χ3 = 0, both for χ = 1 (a) and χ = −1 (b). The Landau point is replaced by a
simple critical point Pc and a tricritical point Pt. The regions corresponding to the paranematic (PN)
and the biaxial (B) phases are also indicated. Insets: Dependence of the values of ∆ at Pc (orange curve)
and Pt (blue curve) on the product χH2. Apart from small shifts produced by the field, a combined
parametric T × ∆ plot obtained from the values of T and ∆ at Pc and Pt as χH2 is varied would closely
follow the first-order lines in Figure 1.

(a) (b)

Figure 3. Phase diagram at a field H = 0.15, with the choice {χ1, χ2, χ3} = {1, 0, 0}, in the T× ∆ plane.
The color code shows the behavior of (a) the uniaxial order parameter S, which is always nonzero in
the paranematic phase, which extends up to high temperatures, and (b) the biaxial order parameter η,
which is nonzero only in the biaxial phase, which now extends to intermediate temperatures when
∆ > 1. Notice that both S and η present a steep but nonsingular behavior in the region corresponding,
at zero field, to the continuous transition between the biaxial and the discotic uniaxial phases.

The conditions for locating a first-order transition between the uniaxial and the paranematic
phases are

∂ψ

∂S

∣∣∣∣
(S0,0)

=
∂ψ

∂S

∣∣∣∣
(S′0,0)

= 0 and ψ (S0, 0) = ψ
(
S′0, 0

)
, (21)

and at the associated critical point the solutions S0 and S′0 become degenerate, so that

∂2ψ

∂S2

∣∣∣∣
(S0,0)

=
∂ψ

∂S

∣∣∣∣
(S0,0)

= 0. (22)
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A first-order transition between the biaxial and the paranematic phases occurs for

∂ψ

∂η

∣∣∣∣
(S2,η2)

=
∂ψ

∂S

∣∣∣∣
(S2,η2)

=
∂ψ

∂S

∣∣∣∣
(S′0,0)

= 0 and ψ (S2, η2) = ψ
(
S′0, 0

)
, (23)

while a continuous transition between those same phases satisfies

∂ψ

∂S

∣∣∣∣
(S′0,0)

=
∂2ψ

∂η2

∣∣∣∣
(S′0,0)

= 0. (24)

Finally, the location of the tricritical point can be determined from the conditions

∂ψ

∂S

∣∣∣∣
(S′0,0)

=
d2ψ

dη2

∣∣∣∣
(S′0,0)

=
d4ψ

dη4

∣∣∣∣
(S′0,0)

= 0. (25)

Notice that these last conditions involve total derivatives of the free-energy functional with respect
to η, which means that, while calculating those derivatives, S′0 is implicitly treated as a function of η.

The multicritical points originating from the destabilization of the Landau point become
increasingly separated as the magnetic field becomes more intense, as the insets in Figure 2 show.
In the limit of an infinite field, only a continuous biaxial-paranematic phase transition remains.

The existence of a tricritical point on the line of biaxial to paranematic phase transitions is compatible
with the predictions of [16], which assumes a more restrictive pair interaction independent of a biaxiality
parameter, as well as with those of [6], in which nematogens are intrinsically uniaxial. In the latter case,
the located tricritical point is observed for χ < 0 and at the value of the magnetic field necessary for
our tricritical point to reach the uniaxial limit ∆ = 0; see the inset in Figure 2b. This same qualitative
behavior for the appearance of a tricritical point in the uniaxial-paranematic transition was predicted for
hard rods or hard plates with χ < 0 [30].

Similarly, the critical field associated with a critical end point of the first-order transition line
between the uniaxial and the paranematic phases, which has been observed for a fixed biaxiality
parameter by various authors [6,11,12,15,31], corresponds to the value of the field, which makes our
simple critical point reach the uniaxial limit ∆ = 0 for χ > 0; see the inset in Figure 2a. Again, the same
qualitative behavior for the appearance of a critical end point in the uniaxial-paranematic transition
was predicted for hard rods or hard plates with χ > 0 [32].

Assuming that the biaxiality parameter of a system shows little variation with temperature or the
strength of the magnetic field, which would be reasonable for thermotropic liquid crystals, our results
suggest that, starting from a biaxial phase and heating the system under a constant field up to the
transition to the paranematic phase, the nature of that transition should change from first-order to
continuous (or vice-versa, depending on the sign of χ) at a certain value of the field, signaling the
tricritical point. Estimating the value of that field would require an estimate of the biaxiality parameter
∆ for the system, under the assumption that the geometric mean condition is at least approximately
applicable. We expect that lyotropic systems, for which presumably there is a significant dependence
of the biaxiality parameter on both the temperature and the composition of the mixture [26,27,29],
are better candidates for the observation of a tricritical point.

4. Introducing Dilution

Next we turn our attention to a “nematic lattice gas” model consisting of V sites, which can
be either empty or occupied by a single object among N ≤ V nematogens. This possibility can be
represented at each site i by an occupation variable ti ∈ {0, 1}, and if the nematogens interact via the
the extension of the Hamiltonian in Equation (4), the canonical partition function of the model at zero
field can be written as
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Z = ∑
{t}

′ ∑
{ζ}

exp

 βA
2V ∑

α∈{x,y,z}

[
V

∑
i=1

ti (qαα
i + γbαα

i )

]2

+
β

2

V

∑
i=1

3

∑
j=1

tiχj

(
~H · n̂j,i

)2

, (26)

in which the prime in the summation over the set {t} of occupation variables indicates that it should
be restricted to those configurations for which

V

∑
i=1

ti = N. (27)

This restriction can be relaxed by introducing a chemical potential µ (not to be confused with the
tensor index in Equation (1)) to enforce that the last equation be satisfied on average. We then have to
calculate the grand-partition function

Ξ = ∑
{t}

∑
{ζ}

exp

 βA
2V ∑

α∈{x,y,z}

[
V

∑
i=1

ti (qαα
i + γbαα

i )

]2

+
β

2

V

∑
i=1

3

∑
j=1

tiχj

(
~H · n̂j,i

)2
+ βµ

V

∑
i=1

ti

 . (28)

Following the same strategy as in the previous section and introducing an auxiliary diagonal
tensor Q = diag

{
Qxx, Qyy, Qzz

}
via three Gaussian identities, which allow us to eliminate the

quadratic terms in Ξ, we obtain

Ξ =

(
βAV
2π

)3/2

∑
{t}

∑
{ζ}

∫
[dQαα] exp

{
− βAV

2 ∑
α

Q2
αα+

+ ∑
α,i

βAQααti (qαα
i + γbαα

i ) +
β

2 ∑
i,j

tiχj

(
~H · n̂j,i

)2
+ βµ

V

∑
i=1

ti

}
, (29)

and performing the sums over the nematogen index i, the occupation variables and the states of each
nematogen, we can write

Ξ =

(
βAV
2π

)3/2 ∫
[dQαα] exp {−βVΨ (Q)} , (30)

with a grand functional

Ψ (Q) =
A
2 ∑

α

Q2
αα − T ln Φ (Q) , (31)

in which

Ψ (Q) = 6 + 2e
3
2 βAQxx+

1
4 β(χ2+χ3)H2+βµ cosh

[
3βAγ

2
(
Qyy −Qzz

)
− β (χ2 − χ3) H2

4

]
+ 2e

3
2 βAQyy+

1
4 β(χ2+χ3)H2+βµ cosh

[
3βAγ

2
(Qzz −Qxx) +

β (χ2 − χ3) H2

4

]
+ 2e

3
2 βAQzz+

1
2 βχ1 H2+βµ cosh

[
3βAγ

2
(
Qxx −Qyy

)]
. (32)

Adopting again the parametrization in Equation (10) we can write the grand functional in terms
of S and η, obtaining

Ψ (S, η) =
3A
4

S2 +
A
4

η2 − T ln Φ (S, η) , (33)
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with

Φ (S, η) = 2e−
3
4 βA(S+η)+ 1

4 β(χ2+χ3)H2+βµ cosh
[

βA∆
4

(η − 3S)− β (χ2 − χ3) H2

4

]
+ 2e−

3
4 βA(S−η)+ 1

4 β(χ2+χ3)H2+βµ cosh
[

βA∆
4

(η + 3S) +
β (χ2 − χ3) H2

4

]
+ 2e

3
2 βAS+ 1

2 βχ1 H2+βµ cosh
(

βA∆
2

η

)
+ 6. (34)

In the limit βµ� 1, as expected for a fully occupied lattice, Equation (33) reduces to

Ψ (S, η) = ψ (S, η)− µ, (35)

in which ψ (S, η) is given by Equation (12).
The equilibrium values of S and η are obtained by minimizing Ψ (S, η) with respect to both

variables at a fixed chemical potential, yielding the state equations

∂Ψ
∂S

=
3A
2

S− T
∂ ln Ψ

∂S
= 0

∂Ψ
∂η

=
A
2

η − T
∂ ln Ψ

∂η
= 0

, (36)

and once again there may exist isotropic, uniaxial and biaxial solutions.
In the presence of a nonzero field, it is straightforward to show that for small dilution we recover

the same qualitative results of Section 3 regarding the destabilization of the Landau point, which is
replaced by a simple critical point and a tricritical point.

On the other hand, in the limit of zero field (H = 0), to which we limit ourselves for the rest of
this section, a Landau point occurs when

∂2Ψ
∂S2

∣∣∣∣
(0,0)

=
∂3Ψ
∂S3

∣∣∣∣
(0,0)

= 0. (37)

The above condition on the third derivative yields ∆L = 1, while the remaining condition leads to

(βA− 1) eβµ − 1 = 0, (38)

the solution of which defines a line of Landau points corresponding to a varying chemical potential.
For βµ � 1, we recover the result βL A = 1 obtained at zero field in Equation (19). As µ is reduced,
the temperature corresponding to the solution of Equation (38) is also reduced, as it can be checked by
calculating the implicit derivative of β with respect to µ from Equation (38).

Besides having ∆ = 1 and fulfilling Equation (38), a true Landau point has to represent a stable
isotropic phase. In the present case, this requires that this phase be a minimum rather than a saddle
point of the grand functional. It turns out that, at the candidate Landau point, the second derivative of
Ψ (S, η) with respect to η is always zero at the isotropic phase (S, η) = (0, 0), but that the corresponding
fourth derivative,

∂4Ψ
∂η4

∣∣∣∣
(0,0)

=
27β3 A4 (1− e−βµ

)
8
(
1 + e−βµ

)2 , (39)

changes from positive for µ > 0 to negative for µ < 0, indicating that the Landau point corresponds to
a stable phase only if the chemical potential is nonnegative.

In order to obtain phase diagrams involving the concentration c of occupied sites rather than the
chemical potential µ, at every equilibrium point we need to solve for µ the equation
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c =

〈
1
V

V

∑
i=1

ti

〉
=

1
βV

∂

∂µ
ln Ξ, (40)

which is equivalent to solving

c = − ∂Ψ
∂µ

∣∣∣∣
(S,η)

=
Φ (S, η)− 6

Φ (S, η)
, (41)

with S and η assuming their equilibrium values and Φ (S, η) given by Equation (34).
In particular, at the Landau point the relation between µ and the concentration c is given by

c =
eβµ

1 + eβµ
, (42)

indicating that the Landau point is stable if c > 1
2 and unstable if c < 1

2 . Therefore, for small dilution
the Landau point is always stable. In this limit, the phase diagram is qualitatively the same as in the
fully packed limit, as illustrated in Figure 4.

Figure 4. Zero-field phase diagram for the diluted model, when the concentration of nematogens
corresponds to c = 0.75. Notice the lower temperature at the Landau point and a slightly more
asymmetrical uniaxial–biaxial transition line around the line ∆ = 1.

5. Conclusions

We use a recently proposed two-tensor formalism, which is based on the physically acceptable pair
interactions between nematogenic units, and assume a discrete set of orientations of the microscopic
nematic directors, to write a six-state lattice Hamiltonian. The fully-connected version of this system
is amenable to detailed statistical mechanics calculations. In the widely used geometric-mean
approximation for the model parameters, we regain the well-known phase diagram of nematic biaxial
systems, with sequences of biaxial-uniaxial-disordered phase transitions as temperature increases, and
the appearance of a well-defined Landau multicritical point. We locate the transition lines and the
position of the Landau multicritical point in terms of temperature and a parameter ∆ that gauges the
degree of biaxiality.

With the addition of an external magnetic field, we show that, except in a quite unusual
diamagnetic isotropic case, the topology of this phase diagram is entirely changed. Our calculations
indicate that the Landau point can no longer exist. In the phase diagrams, in terms of temperature
and the parameter ∆, we show that there appear a pair of multicritical points, and a simple critical
point at the end of the first-order border between a uniaxial and a paranematic phase. Also, we show
the onset of a tricritical point separating borders of first-order and continuous transitions between a
biaxial and a paranematic phase. We expect that lyotropic systems, for which presumably there is a
significant dependence of the biaxiality parameter on both the temperature and the composition of
the mixture [26,27,29], are good candidates for the observation of both the simple critical point and
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the tricritical point. We point out that our predictions for χ > 0 are fully compatible with available
experimental results for potassium laurate/1-decanol/water mixtures [8], which show, based on
measurements performed at three distinct concentrations in the neighborhood of the Landau point,
that the application of a magnetic field turns the transition between the rod-like uniaxial and the
isotropic phases into a crossover, while preserving the discontinuous nature of the transition between
the disk-like uniaxial and the isotropic phases. Locating the simple critical point and the tricritical
point in this system would require some extremely fine tuning, but in principle it should be feasible.

On the other hand, in the presence of moderate dilution the zero-field phase diagram is essentially
unchanged. For stronger dilution, however, the Landau point also disappears, which is very similar to
a phenomenon associated with a dilute ferromagnet.

Finally, we stress that, from a formal point of view, our results are equally applicable to the
situation in which a liquid crystal is subject to an electric rather than a magnetic field [33].
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