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Abstract: Spin electronic states and optical properties of a circular ruthenium (Ru) terpyridine com-
plex with a triarylamine core (CTTC) are theoretically investigated by first-principles calculations
within an all-electron numerical orbital scheme based on spin density functional theory (SDFT),
which demonstrate five well-defined redox states for electrochromic functions. Atomic structure of
CTTC molecule is obtained by geometric optimization, and its electronic structure with a decreasing
semiconductor band-gap exhibits five consecutive single-electron redox states of Ru-coordinated cen-
ters. Except for CTTC in (Ru)3+4 redox state exhibiting a net spin of 2.25 (h̄/2), the other redox states
are almost zero in total spin. Density distribution and energy-splitting of spin states indicate that the
ferromagnetic coupling of Ru cations coordinating with terpyridine/triarylamine ligands originates
dominantly from the spin polarization of Ru 4d-orbitals coordinated by N- and C-2p electrons of
triarylamine. CTTC molecule in each redox state represents a well-discriminated absorption in visible
region, with the highest characteristic peaks locating at 24.2, 20.2, 21.3, and 19.3/21.7 (103 cm−1) and a
manifold of peaks at 13.4~25.3 (103 cm−1) for +2~+6 redox states, respectively. Theoretical electronic
structure and optics of CTTC complex are used to evaluate the underlying physical mechanism of
realizing a multi-color visible electrochromism by four couples of redox pairs, which is suggested to
be applied for monitoring electrical information.

Keywords: multistate redox; electrochromism; first-principles calculation; electronic state; optical
absorption spectrum

1. Introduction

Electrochromism of electroactive molecules is a manifestation of the reversible switch
between distinguishable redox states under electric excitation, displaying reversible alter-
nations in optical properties and transparency, which plays an important role in energy
conservation, building, and aerospace at present [1–3]. Electrochromic molecules with
a specific multistate redox can present consecutively shifting optical signals under low
electric excitation that could be precisely identified for monitoring characteristic electri-
cal information and constructing multiple channel outputs of molecular switches [4–6].
Redox switching between three states has been comprehensively reported recently for
electrochromics, while it is still a challenge for more than four redox states [7–10]. Since the
higher and lower redox states can be reduced and oxidized respectively under ambient
atmosphere and temperature, multistate redox reactions in specific functional molecules are
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required to occur at relatively low-oxidation states. Meanwhile, the adjacent redox states
should evidently be distinguished to avert disproportionation reactions and realize well-
defined optical responses for electrochromic applications. Furthermore, electrochromic
molecular switches are primarily implemented on the surface of transparent electrodes
by depositing individual molecules [11–13]. As a result, in practical applications, the
multistate molecules are separated in space to fulfill self-charge transfer for redox reactions.
Especially, the insufficient stability of transparent electrodes and solid-state electrolytes in a
certain voltage window limits the full potential of electrochromic molecules experimentally
discovered to date [14]. Therefore, it is pertinent to investigate electrochromic mecha-
nisms by quantum mechanics calculations of individual molecules, which can essentially
elucidate the electronic states and optoelectronic transitions for molecular designs.

Ruthenium-amine-conjugated (cyclometalated ruthenium) complexes with low poten-
tial Ru(III/II)-C bonds have recently been characterized to represent a sufficient absorption
discrimination in visible and near-infrared (NIR) regions through redox processes of at
least three oxidation states [15–18], which show potential to be efficiently applied for elec-
trochromic switches and variable optical attenuators in fiber-optic communications [19–21].
Triggered by these cyclometalated ruthenium complexes with four redox states at low-
potentials, in the present study, we specifically investigate a cyclometalated triruthenium
complex with a triarylamine core by first-principles calculations of electronic structure and
optoelectronic transition in various redox states, which accounts for its magnetism and
multistate-redox electrochromics.

2. Theoretical Calculation Methodology

A molecular model of the cyclometalated triruthenium complex with a triarylamine
core and terpyridine terminals (CTTC) is initially constructed using Monte Carlo (MC)
molecular simulation method [22] according to the reported chemical configuration, as
shown in Figure 1 [23], which is used as the input structure for geometry optimization
of energy minimization. Total energy, electron structure, and optical property of CTTC
molecule are calculated using the first-principles method based on spin density func-
tional theory (SDFT) as implemented in DMol3 program of Materials Studio v2017R2
(Accelrys Inc., San Diego, CA, USA) software package [24,25], which are performed utiliz-
ing all-electron numerical orbital basis-set scheme with PBEsol gradient-corrected (GGA)
exchange–correlation functional [26]. Wave functions of intrinsic electron states are ex-
pended by double numerical polarized (DNP) basis-set with a global orbital cutoff of 5.0 Å
to adequately reduce the error from basis-set finiteness. Coordinating center Ru atoms
with 4d single-electron occupied states may cause spin-splitting and net spin, which is
therefore incorporated by using different orbitals for the two spin states based on SDFT
with Dirac relativistic quantum mechanical equations [27]. Interactions between electrons
and atomic-core are described by all-electron-relativistic core treatment. Convergence toler-
ation for self-consistent field (SCF) iteration is set as 1.0 × 10−6 Ha/atom (1 Ha = 27.2 eV),
and the direct-inversion iterative-subspace (DIIS) density mixing scheme with charge and
spin mixing amplitudes of 0.2 and 0.5 respectively is used to relax electrons [28]. Thermal
smearing of 0.002 Ha orbital occupations is employed to expedite SCF convergence. Geom-
etry optimization of total energy functional minimization is implemented with conjugate
gradient algorithm to obtain convergence quality of energy, force, and displacement lower
than 1.0 × 10−5 Ha, 0.002 Ha/Å, and 0.005 Å, respectively [29]. Dispersion correction of
exchange–correlation functional is included to evaluate weak dispersion interactions [30].
Non-polarized optical properties are calculated by time-dependent DFT (TD-DFT) excita-
tion method with the adiabatic local exchange density-functional approximation (ALDA)
kernel describing exchange-correlation terms [31].

CTTC is modeled as an isolated molecule in vacuum without consideration of its
surrounding dielectric medium during calculations. The different redox states of CTTC
model are distinguished by initially setting the total charge of (Ru)3 (three Ru cations
in union) in CTTC molecule to be +2~+6 respectively, with the whole charge of CTTC
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molecule being balanced to zero, which is schemed as the starting point for SCF iteration
to obtain the most nearby energetic minimum for electronic relaxations. By SCF iterations,
different energy minimum points from the initial specifications on every redox state have
been reached, implying that all these redox states really exist and are well modeled. On
this ground, theoretical schemes for modeling different redox states of CTTC complex
are feasible, which are hereby valid for multiple-energy-point calculations in geometry
optimization to retain relaxed atomic structures of all the modeled redox states.
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Figure 1. Schematic chemical configuration of triruthenium complex with a triarylamine core.

3. Results and Discussion
3.1. Molecule Structure

Although it is difficult to prepare CTTC molecular crystals in experiments due to the
complex molecule structure, CTTC modeling has been accomplished on atomic scale to
theoretically predict molecular structures by the energy-minimized geometry optimization
in first-principles calculations, as representatively shown by the atomic-relaxed structures
of +3 state CTTC molecule in Figure 2. According to geometric optimization, each redox
state of CTTC complex is almost same in a stable coordination structure with a higher
coordinating energy, as listed in Table 1 for the relaxed molecular structure of CTTC
molecule in various redox states. CTTC molecule is in a pesudo-C3 symmetry around the
central amine, with three C-N bonds in a planar configuration and three C-N-C angles
(∠CNC) identically approaching 120◦. Each unit phenyl of triarylamine core is in the same
atomic plane with two pyridines bonding on both sides, which are perpendicular to the
atomic plane of terpyridine terminal. In particular, three pyridine-phenyl-pyridine units of
triarylamine core form a three-wheel propeller configuration with dihedral angles of 27.66◦,
36.92◦, and 43.54◦, respectively, to the central amine plane. Cyclometalated ruthenium
cations are sixfold coordinated by five pyridine N and one terminal C of triarylamine core
in an octahedral configuration with a Ru-C bond length of ~1.944 Å and Ru-N coordinating
lengths of 1.94~2.05 Å. The averaged distance between ruthenium ions and the central
nitrogen atom is around 6.18 Å. Furthermore, we have calculated the cohesive energy of
a system constituting multiple CTTC molecules, demonstrating that van der Waals force
between CTTC molecules is too weak to form molecular crystals, which is consistent with
experimental reports [23].
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Figure 2. (a) Geometrically optimized molecular configuration and (b,c) the scaled local schematics showing atomic planes
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Table 1. Molecular structures and energies of CTTC molecule in various redox states.

Redox State
Mean Bonding Length/Å Mean

∠CNC/◦
Triarylamine

Dihedral Angle/◦
Total

Energy/Ha
Coordinating

Energy/HaC-N Ru-C Ru-N

+2 1.414 1.948 2.026 119.979 27.60/36.86/43.45 −17759.64085 1.4289
+3 1.416 1.944 2.034 119.986 27.66/36.92/43.54 −17759.64275 1.4276
+4 1.417 1.952 2.037 119.963 27.63/36.90/43.51 −17759.64295 1.4265
+5 1.419 1.949 2.025 119.998 27.54/36.68/43.36 −17759.64078 1.4296
+6 1.420 1.948 2.058 120.011 27.38/36.46/43.07 −17759.63343 1.4171

3.2. Multistate Redox Mechanism

Ru complexes with a single metal-coordinated center will represent multistate redox
reactions of coordination electron-pair offset caused by Ru(II)/Ru(III) transition under
the electric field. Multiple coordination center atoms in polycore Ru complexes with the
coordination bonds remaining during polymerization lead to multiple single-electron oxi-
dation processes with the same oxidation potentials as their mono-core constitutes [15,17].
Therefore, a variety of consecutive reversible redox reactions can occur between the three
Ru complexation centers and the N coordinating ligands of terpyridine and triarylamine,
leading to the different coordination bonds (Ru-N) that well determine Ru-carbon (Ru-C)
bonding characteristics, which may cause net spin for CTTC by spin polarization. We
analyze the Ru-C bonding and Ru-N coordination properties by calculating deformation
electron density to evaluate charge transfer between consecutive redox states of CTTC,
as shown by SCF calculation results in Figure 3, in which deformation electron density is
contoured on the atomic planes of terpyridine and triarylamine-phenyl, respectively. The
maximum deformation electron density arises around Ru ions at the routes towards C and
N atoms, implying that the orbital electrons of Ru atoms have been partially transferred
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from coordination centers to N and C atoms at octahedral vertices. Deformation density is
illustrated by green-colored area around Ru cation, as shown in Figure 3, which is higher
for +6 redox state than that for +3 state of CTTC molecule. It is hereby suggested that
charge transfer from Ru to C and N will be exacerbated when CTTC alters towards a higher
redox state.
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Although three Ru coordination centers in CTTC molecule are almost separated
in space to independently perform Ru(II)/(III) transition in redox reactions with three
terpyridine terminals under different coordination environments, it is not reasonable to
individually consider three Ru cations which are symmetrically conjugated by triarylamine
core of CTTC molecule. Therefore, we take three Ru cations in coordination centers as a
whole to identify multiple redox states of CTTC molecule by initially specifying three Ru
ions to be in the same oxidation state for first-principles calculations of electronic structure
and optical absorption spectrum, as mentioned in Section 2.

3.3. Electronic Orbitals and Density of States

The calculated electronic structures of CTTC molecular structures in different redox
states obtained from geometric optimization are represented by molecular orbital energy
spectra and density of electronic states (DOS), as shown in Figure 4. Energy levels of
electronic states concentrate to energy bands above the lowest unoccupied molecular orbital
(LUMO) and below the highest occupied molecular orbital (HOMO). CTTC molecule
represents a semiconducting character of electronic energy bands, with the band-gap
declining from 1.4 to 0.4 eV when (Ru)3 oxidation state (CTTC redox state) increases from +2
to +6. Only in +4 redox state, electronic spin-polarization of CTTC leads to obvious energy
spin splittings near HOMO so that a part of down-spin (β) states is converted to up-spin
(α) states, with the residual β-states shifting towards lower energy, merely remaining α-state
electrons at HOMO. Therefore, a higher number of up-spin states than down-spin states are
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occupied in valence band (below HOMO) to engender a net spin of CTTC molecule (molecular
magnetic moment). As comparatively noted from Figure 4b–d, with the increase in redox
state, the highly degenerated energy levels of unoccupied molecular orbitals gradually split
into an extended band (+4 and +5 states) and even into uniformly distributed multiple mini-
bands (+6 state) in the range of 1.5~3.1 eV above HOMO, which is completely included
into visible region of optoelectronic transitions.
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redox states of (a) +2, (b) +3 (c) +4, (d) +5 and (e) +6, with vacuum free electron level being referenced as energy zero and
HOMO/LUMO being labeled.

Orbital-dependent (partial) atomic-projected density of state (PDOS) indicates orbital
components and atomic contributions for intrinsic electron states of CTTC molecule, which
are essential to elucidate electronic attributes in multistate redox alternations, as shown
in Figure 5. Electronic states at HOMO are majorly derived from Ru 4d-orbitals (Ru-4d),
with a minor contribution from 2p-orbitals of N and C atoms (N-2p and C-2p). In contrast,
LUMO only consists of the major C-2p and minor N-2p components. Due to the electron
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transfer partially from Ru cations to the coordinating N and bonding C atoms with the
increase of redox state, the five redox states are demarcated by +4 state: for +2 and +3
states, Ru-4d component of HOMO decreases in consistence with the increment in C-
2p and N-2p components of the occupied molecule orbitals just below HOMO; for +4
state, spin polarization splits HOMO band into two bands so as to decrease the density
of states at HOMO; for +5 and +6 states, HOMO level has been down-shifted into the
high-density band just below the original HOMO due to the aggravation of electron
transfer in coordination bonds, which transforms Ru-4d component to C-2p and N-2p
components of LUMO when redox state rises from +5 to +6. The interaction between Ru
and coordination ligands depends essentially on the electron transfer between Ru-4d and
(N-C)-2p orbitals, which determines electronic-level distributions and momentum matrix
elements of optoelectronic transitions.
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3.4. Magnetic Property

Due to ferromagnetic spin-coupling of three Ru cations at complex center, CTTC
molecule presents a specific net spin of 2.25h̄/2 resulting from the sin-polarization of
Ru-4d orbitals only in +4 redox state. Hence, only the spin asymmetric distribution and
energy splitting of +4 state CTTC is specifically analyzed to investigate magnetic attributes
of CTTC, as shown in Figure 6, illustrating spin density iso-surfaces and spin-resolved
partial PDOS.
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redox state of CTTC molecule.

Spin density iso-surfaces of CTTC molecule in +4 redox state, as shown in Figure 6a, indi-
cate the asymmetric distribution of α and β states resulting from spin polarization around
Ru cations. The major α and minor β electrons are respectively distributed around the
interval and internal spaces of (Ru)3-conjugated triarylamine, which means the remarkably
higher density of α-state electrons than that of β-state electrons around Ru cations leads
to a substantial net spin (magnetic moment). The ferromagnetic alignment of three spin-
polarized Ru cations is coupling with the paramagnetic triarylamine core and diamagnetic
terpyridine terminals. Meanwhile, spin polarization extends α-states to a higher density of
energy levels by shifting β-states to α-states near HOMO in electron relaxations and thus
causes the energy spin-splitting of electronic states near Fermi level, as shown in Figure 6b.
Spin-splitting is partially contributed to by the ferromagnetic coupling between Ru cations,
further leading to a higher number of α-state electrons than β-state electrons. The spin-
and orbital-resolved PDOS of +4 state CTTC demonstrates that the energy spin-splitting of
intrinsic electron states near the Fermi level is essentially derived from the spin polarization
of Ru 4d-orbitals being coordinated by N-2p electrons and bonded with C-2p electrons, as
manifested by 2/3 Ru-4d and 1/3 triarylamine-(N-C)-2p components of α-state electrons
at HOMO, further confirming that spin symmetry of α and β states has been destroyed.
It is thus suggested that CTTC magnetism could be under the electrical control of Ru
oxidation states.
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3.5. Optical Absorption Spectrum

Partial transfer of coordinating electron pairs in redox reactions of electroactive CTTC
can be manifested in optical absorption characteristics generated from optoelectronic
transitions. As indicated by the calculated optical absorption spectra for various states
of CTTC molecule in Figure 7, characteristic peaks in 24~26 (103 cm−1) range originate
from electron transitions of C-2p-conjugated bonds on benzene rings; optical transitions
from 2p-electrons of C-N conjugated bonds in pyridine and terpyridine appear in 20~24
(103cm−1) range; the discrete small absorption peaks at 8~13 (103cm−1) derive from the
transitions of Ru-4d electrons in coordination centers; in particular, optical absorption peaks
at 13~20 (103 cm−1) are generated from the N-2p and C-2p electrons of Ru-N coordination
and the Ru-C bond around Ru coordination center, which are the most sensitive to redox
state and well distinguished in visible region.
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CTTC complex exhibits multiple absorption peaks in wavelength range of 8~26 (103

cm−1) and represents five well-identified spectra individually for five redox states, as
shown in Figure 6; both +2 and +3 states show two absorption peaks in green and purple
visible regions, while +4, +5 and +6 states present two novel absorption peaks extending
from green to orange regions. As redox state rises up to +6, CTTC complex exhibits
eight characteristic absorption peaks throughout the whole visible region. In particular,
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energy spin-splitting, especially for +4 state, gives rise to orange and red absorption
peaks which are attributed to electron transitions from the down-splitted Ru-4d states
just below HOMO to C-2p LUMO, in contrast to yellow and orange absorption peaks of
both +5 and +6 states, which derive mainly from transitions of C-2p orbitals. As listed in
Table 2, the characteristic absorption wavelength, excitation energy, oscillator strength and
molecular orbitals (energy levels and orbital overlap) of peak optoelectronic transitions for
various redox states are sufficient to reveal multistate electrochromic performance of CTTC
complex. In summary, the conjugated complexation center (Ru)3 shows the red-shift and
yellow-orange-red appearances of visible absorption peaks in oxidation processes from +2
to +6 states. Absorption spectrum of CTTC molecule changes from a wide green-purple
band to green and purple peaks, then gives rise to orange/yellow absorption, and finally
averts to a variety of uniform absorption peaks in the whole visible region.

Table 2. Absorption wavelength λm, excitation energy Em (reference to vacuum electron level),
oscillator strength Os, molecular orbital energy level and overlap in characteristic optoelectronic
transitions of CTTC molecule under different redox states.

Redox State λm/nm Em/eV Os/a.u.
Molecular Orbital

Level/eV Orbital Overlap

From To

+2 528 2.35 0.09 −5.08 −2.72 0.41
+3 493 2.52 0.29 −3.32 −1.09 0.50
+4 464 2.67 0.16 −3.86 −1.24 0.39

+5
519 2.39 0.27 −3.34 −1.84 0.77
459 2.70 0.25 −3.47 −1.00 0.59

+6 399 3.11 0.18 −4.86 −1.96 0.47

4. Conclusions

Redox magnetism and electrochromism of a triangle-based cyclometalated triruthe-
nium complex with triarylamine as a conjugated-ligand core are investigated by first-
principles electronic structure calculations. Separated ruthenium atoms as conjugating com-
plexation centers are one-electron-oxidized subsequently to calculate molecular net spin
and optical absorption for elucidating electrochromic properties of ruthenium-complexed
triphenylaminium. CTTC Complex represents a semiconductor band-gap which decreases
from 1.4 to 0.4 eV when shifting from low to high redox states for realizing multicolor
electrochromic performance in visible region and possesses a considerable net spin mag-
netic moment in +4 redox state. The spin polarization of Ru-4d orbitals coordinated by
N-2p and bonded with C-2p electrons leads to the molecular magnetic moment of +4 state
CTTC complex, as manifested by spin-coupling of the ferromagnetic-coupled Ru cations
with the paramagnetic triarylamine core and diamagnetic terpyridine terminals. Densities
of electronic states also reveal optoelectronic-excitation attributes for all the five (Ru)3
oxidation states that could present four consecutive couples of one-electron redox. The
exceptional net spin of +4 state and the characteristic optical absorption spectrum of each
distinguished redox state suggest that CTTC complex is a prospective electrochromic mate-
rial for electric field detection. Particularly, significant contrasts between optical absorption
wavelengths of different redox states in visible region have been theoretically demonstrated
to be applied for optical inspection techniques in electrical power systems.
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