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Abstract: Alkali tantalates are encouraging functional materials with versatile properties that make
them potential players in microelectronics, photocatalytic processes or medicine. Here, KTaO3 single
crystals with 0.27% Li and 0.15% or 0.31% Mn contents determined by inductively coupled plasma
spectroscopy analysis are studied at low temperatures using dielectric spectroscopy in a frequency
range of 102–106 Hz. Both Li and Mn doping are found to induce separate low-frequency dielectric
relaxations of comparable strength in KTaO3. The relaxation dynamics follow the Arrhenius law with
activation energy values of ~77 and 107 meV, attributing the relaxation origin to the dipoles formed
by off-centre Li+K and Mn2+

K ions, respectively.

Keywords: perovskites; polar dielectrics; co-doping; dielectric relaxation

1. Introduction

Alkali tantalates, such as KTaO3 (KT) and LiTaO3, are members of the ferroic family
of lead-free compounds with potential applications for electronic components and tissue
engineering, respectively [1]. Their solid solution K1–xLixTaO3 has also been particularly
intensively studied, wherein displacements of small Li ions on K sites generate strong
local dipole moments, which couple electrostatically to the KT polar soft mode [2,3]. As
a result, both dielectric relaxations and ferroelectric phase transition were reported for
heavily Li-doped KT. For K1–xLixTaO3 systems with x < 0.008 [4], however, no phase
transition but only relaxation was reported [2–10]. The dielectric relaxation was also
reported in weakly (0.01–0.3%) Mn-doped KTaO3 single crystals [11–13]. By analogy to
Li-doped KT, the origin of the relaxation was shown to be the off-centre displacement
of dopant ions on the K site in one of the six <001>-type crystal directions [2,3,12]. In
addition to the majority of the results obtained on single crystals, low-frequency dielectric
relaxations were further observed for Li- or Mn-doped KT ceramics [8,14–16]. However,
in contrast to K0.98Li0.02TaO3 ceramics [9], no ferroelectric phase transition was detected
in polycrystalline K0.985Mn0.015TaO3±δ [16]. Moreover, the low-temperature dielectric
relaxation strength or permittivity amplitude in Li-doped KT was reported to be enhanced
by weak Cu [5] or Ca donor co-doping [17], respectively, while the ferroelectric order and
dipole-glass phase were reported to coexist in 1.2% Nb and 0.14% Li co-doped KT single
crystals [18].

However, to the authors’ best knowledge, no research on the dielectric response has
been undertaken for Li and Mn co-doped KTaO3. Therefore, the effect of Li and Mn
co-doping on the dielectric properties of KT single crystals is addressed in this work.
The dielectric permittivity of KT single crystals with 0.27% Li and 0.15% or 0.31% Mn is
explored as a function of temperature and frequency and compared with a reference single
0.73% Li-doped KT crystal.
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2. Materials and Methods

The crystals were grown by the self-flux solution method with conditions similar to
reported elsewhere for undoped KTaO3 [19]. First, for Li doping, the Li2CO3 precursor was
used to prepare the reference Li-doped KT single crystal. Then, MnO2 was used for Mn
doping. For the dielectric measurements, gold electrodes were sputtered on major parallel
faces of naturally shaped polished crystals. Complex dielectric permittivity, consisting
of real part ε′ and imaginary part ε′′, as well as the dissipation factor tanδ = ε′′/ε′, were
measured in the frequency f range of 102–106 Hz on heating after cooling down to temper-
ature T of 16 K using a precision LCR-meter (HP 4284A, Hewlett Packard, Palo Alto, CA,
USA). A He closed-cycle cryogenic system (Displex APD-Cryostat HC-2, Allentown, PA,
USA) equipped with silicon diode temperature sensors and a digital temperature controller,
Scientific Instruments Model 9650, was used for T variation.

3. Results and Discussion

The ultimate concentration of the dopants in the crystals was determined by induc-
tively coupled plasma spectroscopy (ICPS) analysis, as presented in Table 1. Accordingly,
we have got two Li and Mn co-doped crystals with Mn contents of 0.15% or 0.31% and a
constant Li content of 0.27% as well as the reference single Li-doped KT crystal with Li
content of 0.73%. All the dopant contents are below 0.8%, which according to literature,
should not result in any ferroelectric phase transition but should induce dielectric relax-
ations [2–4]. At the same time, in spite of a large number of literature reports on Li-doped
KT crystals [2–10], the real molar Li content in the crystals is rarely determined [6]; instead,
it is often just estimated to be 35% of the Li molar concentration in the melt [7,10,17,18]
based on the empirical relationship reported by van der Klink and Rytz [20]. However,
in the case of our reference Li-doped KT crystal, the ultimate Li content was found to be
just about 15% of the Li concentration in the melt, thus likely being dependent on the
crystal growth conditions. Concerning the relation between the nominal melt concentration
and ultimate crystal content of Mn in KT, our ICPS analysis indicates it to be about 10%.
An order of magnitude decrease in the dopant concentrations during the crystal growth
was also reported for Co, Mn, Cu and Fe elements in KT crystals, although without any
specifications for each element as well as for the chemical analysis kind [21].

Table 1. Li and Mn contents in KTaO3 single crystals according to ICPS analysis as well as the
Arrhenius law relaxation time at infinite temperatures τ0 and activation energy U for dielectric
relaxations observed on them.

ICPS Results Arrhenius Law

Li content
(%)

Mn Content
(%)

Relaxation I Relaxation II

τ0 (s) U (meV) τ0 (s) U (meV)

0.27(3) 0.15(2) 1.16(15) × 10−13 79.18(55) 1.41(29) × 10−14 108.83(99)
0.27(3) 0.31(3) 1.68(26) × 10−13 77.18(69) 2.95(37) × 10−14 105.34(68)

ε′(T) of the reference Li-doped KT single crystal shown in Figure 1a reveals a dielectric
relaxation reflected by a diffuse peak, where the amplitude and position depend on the
frequency (see Appendix A Figure A1) in contrast to undoped KTaO3, revealing no fre-
quency dispersion and a continuous increase in the dielectric permittivity with decreasing
temperatures [19] in accordance with the incipient ferroelectric behaviour. As shown in
Figure 1b,1c, this relaxation (I) is also seen in both ε′′(T) and tanδ(T) of Li-doped KTaO3
with the peak temperatures of about 50 K at 17 kHz. Co-doping with Mn is found to induce
an additional peak in temperature dependences of both the dielectric permittivity and
dissipation factor at about 62 K, as shown in Figure 1 and marked as relaxation II. The
relaxation II peak amplitude increases with the increasing Mn content. Thus, we can clearly
associate relaxation I with Li doping and relaxation II with Mn doping.
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Figure 1. Real ε′ (a) and imaginary ε′′ (b) parts of the dielectric permittivity and dissipation factor
tanδ (c) of KTaO3: 0.73% Li (solid line), KTaO3: 0.27% Li and 0.15% Mn (open squares) and KTaO3:
0.27% Li and 0.31% Mn (solid circles) single crystals as a function of temperature T at about 17 kHz.

The observed dielectric response has differences comparing with that for other co-
doped KT crystals [5,17,18]. In contrast to the enhancement of Li-induced relaxation by
Cu co-doping [5], we have observed that Mn co-doping induces independent relaxation
instead. There is a kind of similarity with Li and Ca co-doped KT crystals, where not only
the dielectric permittivity peak but also the permittivity level in a presented temperature
range of 4–200 K was found to be raised by about an order of magnitude by donor Ca2+

co-doping on the K+ site [17]. However, in our case, Mn2+ co-doping on the K+ site [12,16]
only enhances the permittivity level about twice at 100 K and does not raise it below 27 K,
inducing independent relaxation once again in contrast to Ca co-doping. In the case of
Nb and Li co-doped KT crystals, the ferroelectric phase transition was induced by Nb at a
temperature below that of the Li-induced relaxation, enhancing the relaxation intensity as
well [18]. In our crystals, however, there was not a lower temperature phase transition but
higher temperature relaxation induced by Mn co-doping without an evident effect on the
Li-induced relaxation strength.

Figure 2 illustrates the dielectric response evolution for Li and Mn co-doped KT
crystals with the frequency. The relaxation I peak temperature in ε′′(T) dependence varies
from about 42 K at 500–700 Hz to about 65 K at 1 MHz for both KTaO3: 0.27% Li + 0.15%
Mn (Figure 2a) and KTaO3: 0.27% Li + 0.31% Mn (Figure 2b) single crystals. At frequencies
below 500–700 Hz, the dielectric response obtained using our setup becomes too noisy for
proper analysis. The relaxation II peak temperature varies from about 53 K at 500 Hz to
about 70 K at 200 kHz for KTaO3: 0.27% Li + 0.15% Mn (Figure 2a) and from about 54 K at
700 Hz to about 79 K at 1 MHz for KTaO3: 0.27% Li + 0.31% Mn (Figure 2b) crystals. For
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0.15% Mn content, the relaxation II becomes too weak and is thereby hidden by relaxation
I above a frequency of 200 kHz to determine its peak temperature well.
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Figure 2. Real ε′ (top panels) and imaginary ε′′ (middle panels) parts of the dielectric permittivity and dissipation factor
tanδ (bottom panels) of KTaO3: 0.27% Li + 0.15% Mn (a) and KTaO3: 0.27% Li + 0.31% Mn (b) single crystals as a function
of temperature T at different frequencies from 500 Hz to 1 MHz.

Concerning the ε′′(T) peak intensity, it is evidently higher for relaxation I in KTaO3:
0.27% Li + 0.15% Mn crystal compared to that of relaxation II (Figure 2a). However, the
increase in Mn content to 0.31% also raises the relaxation II peak intensity, thus confirming
their relation once again. Moreover, for KTaO3: 0.27% Li + 0.31% Mn crystal with very
close Li and Mn contents, the ε′′(T) peak intensity is also very similar, particularly in the
low-frequency range (Figure 2b). Just at high frequencies, the intensity of relaxation II peak
becomes lower than that of relaxation I.

Using the ε′′(T) peak temperature values at corresponding frequencies, an analysis
of the dielectric relaxation dynamics was carried out assuming the Debye approximation.
Accordingly, the set of independent dipoles is characterized by a unique relaxation time
(τ), which is equal to the inverse of the angular relaxation frequency (ω = 2πf ). Then the
relaxation is described by the Arrhenius law:

τ = τ0exp(U/kBT), (1)
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where τ0 is the relaxation time at infinite temperatures; U is the activation energy of
the dipolar process; kB is the Boltzmann constant; T is the absolute temperature. The
dynamics of the diffuse peaks were examined using Arrhenius plots ln(τ) vs 1000/Tε ′′m
(Tε ′′m stands for the temperature at which the maximum of ε′′ occurs at the angular
frequency w = 2πf = τ−1), as presented in Figure 3. The activation energies U are found
to be 77–79 and 105–109 meV and pre-exponential term τ0 is 116–168 and 14–30 fs for
relaxations I and II, respectively, as presented in Table 1. A smaller ionic size and larger
off-centre displacement of Li+ ions compared to Mn2+ ones should be responsible for lower
relaxation activation energy and a larger relaxation time.
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Figure 3. Arrhenius plot ln(τ) versus 1000/Tε”m for the dielectric relaxations I (squares) and II (circles)
of KTaO3: 0.27% Li + 0.15% Mn (solid symbols) and KTaO3: 0.27% Li + 0.31% Mn (open symbols)
single crystals with fits to the Arrhenius law (solid lines) and the fit parameters.

The Arrhenius law parameters for relaxation II of Li and Mn co-doped KT single
crystals presented in Table 1 are very close to the U = 104–110 meV and τ0 = 5–20 fs values
obtained on 0.01–0.3% Mn-doped KTaO3 crystals using dielectric spectroscopy and electron
spin resonance analysis [11,12], as shown in Table 2. The values of 105 meV and 46 fs
reported for single-phase 1.5% Mn-doped KT ceramics [16] are also rather close. The origin
of relaxation II observed in Li and Mn co-doped KT crystals with the activation energy
of ~107 meV can thus be attributed to the displacement of Mn2+ from the centre of the
K+ site in one of the six <001>-type directions, as reported for Mn-doped KTaO3 single
crystals [12].



Crystals 2021, 11, 1222 6 of 8

Table 2. Arrhenius law parameters for the dielectric relaxation dynamics in weakly (≤1%) Li- or
Mn-doped as well as co-doped KTaO3 single crystals.

Composition
Arrhenius Law

Ref.
τ0 (fs) U (meV)

KT: (0.01–0.1%) Mn 20 105–110 Nowick et al., 1994 [11]
KT: (0.01–0.3%) Mn 5–20 104–110 Laguta et al., 2000 [12]
KT: (0.01–0.3%) Mn 83–200 93–98 Venturini et al., 2005 [13]

KT: 1% Li - 55–79 Doussineau et al., 1993 [22]
KT: 0.9% Li 13 86 Borsa et al., 1980 [23]
KT: 0.6% Li 135 78 Prosandeev et al., 2001 [6]
KT: 0.18% Li - 78 Trybula et al., 2012 [10]
KT: 0.18% Li 22–57 82–84 Dec et al., 2005 [7]

KT: (0.1–1.0)% Li 60–67 82–84

Trepakov et al., 1999 [5]KT: 0.1% Li + 0.02 wt.% Cu 33 81
KT: 0.5% Li + 0.1 wt.% Fe 45 84

KT: 0.6% Li + 0.03 wt.% Cu 33 81
KT: 0.14% Li + 1.2% Nb 30 89 Trepakov et al., 2001 [18]
KT: 5% Li + 0.0015% Ca 240 79 Wakimoto et al., 2006 [17]

The relaxation parameters for Li weakly (≤ 1%) doped and co-doped KT single crystals
reported in literature, mainly using the dielectric spectroscopy technique [5–7,10,17,18,22]
sometimes accompanied by nuclear magnetic resonance [23], are also listed in Table 2. They
are closer to the relaxation I parameters presented in Table 1 for Li and Mn co-doped KT
single crystals. The closest U of 78–79 meV and τ0 of 135–240 fs values are those reported
for KT: 0.18% Li [10] and KT: 0.6% Li [6] crystals as well as for KT: 1% Li [22] and one of
the relaxations of 5% Li + 0.0015% Ca co-doped KT crystal [17]. One of the relaxations
of 2–10% Li-doped KT ceramics has parameters of 76–78 meV and 11–270 fs as well [8].
Thus, the relaxation I with the activation energy of ~78 meV evidently originates from the
reorientation of Li+ between equivalent positions on K+ sites of KT crystals [2].

4. Conclusions

KTaO3 single crystals with 0.27% Li and 0.15% or 0.31% Mn contents determined by
ICPS analysis were grown by the self-flux solution method. Their dielectric spectroscopy
characterisation at temperatures between 16 and 104 K in a frequency range of 102–106 Hz
showed two pronounced dielectric relaxations in contrast to other co-doped KTaO3 single
crystals. The Arrhenius law parameters U~78 and 107 meV, as well as τ0~142 and 22 fs,
were found for these relaxations, helping to attribute them to the formation of polar
regions by the introduction and off-centre displacements of Li+ and Mn2+ on the K+

site, respectively.
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