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Abstract: The absorbers method is here applied by interposing filters of variable thickness between
the X-ray source and a detector so to attenuate the radiation intensity by using the attenuation coeffi-
cient as a selective photon energy operator. The analysis of the signal provided by a polycrystalline
diamond thin film detector exposed to the energy-selectively-attenuated X-ray beam was used for
the reconstruction of the radiation spectrum. The 50 µm thick diamond detector achieves conditions
of linear response to the dose rate of the incident radiation (linearity coefficient of 0.997 ± 0.003)
for a bias voltage ≥90 V, corresponding to an electric field ≥1.8 × 104 V/cm. Once the absorbers
method is applied, only the detector signal linearity to dose rate allows reconstructing the source
X-ray bremsstrahlung spectrum with sufficiently high accuracy.

Keywords: diamond; ionizing radiation detection; X-ray spectrum reconstruction

1. Introduction

The superior diamond resistance to ionizing radiation associated with its unique elec-
tronic properties like the mobility of charge carriers, the wide bandgap energy (5.47 eV) [1]
and the consequent low leakage current makes it an appealing material for the detection
of photons from UV [2–4] to X-rays [5–7], charged particles [8–10], thermal [11] and fast
neutrons [12–15]. Detectors based on diamond demonstrated a fast response [6,16] and
high sensitivity [17] to X-ray beams, providing high applied electric fields with low bias
voltage [18] as well as photovoltaic-mode operations [19,20], which enabled the successful
application to the medical sector for the monitoring of radiation beams utilized in radi-
ation therapy [21–23] and mammography [24]. Diamond films can be even utilized as
suitable active material in electrochemical devices [25], radiovoltaic batteries [26–29], and
concentrated solar converters [30] as well as it is an efficient electron emitter [31–33].

Although physical properties such as tissue equivalency and damage resistance are
common to all diamond films, the electronic properties differ significantly as a function of
the different film microstructures. Specifically, single-crystal films produced by chemical
vapor deposition (CVD) homoepitaxy are preferred to polycrystalline films where sensitiv-
ity and fast response are required, especially for the high mobility and saturation velocity
of both charge carriers connected to charge collection efficiency approaching 100% and tol-
eration to high electric fields. However, homoepitaxial single-crystal films have a reduced
size far lower than 1 cm2, limited by the diamond plate (usually a cheap high-pressure
high-temperature—HPHT crystal) acting as a growth seed [34]. Another strategy has been
the development of photodiodes consisting of thin p-type/intrinsic layers grown on HPHT
substrates, that were successfully integrated within commercial dosimeters [35,36]. On
the other hand, the promising diamond-on-iridium technology demonstrated to produce
single-crystal diamond films up to almost 4 inches [37], even though the resulting film
electronic properties are comparable to homoepitaxial diamond on restricted areas up to
1 cm2 [38]. As a matter of fact, today the application of single-crystal diamond is limited to
the monitoring of small radiation fields as well as the relatively high cost of single-crystal
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diamond films hampers the practical application of more pixels in mosaic detectors. Con-
versely, polycrystalline diamond films can be produced by CVD heteroepitaxy, usually on
crystalline silicon wafers. The mobility and collection efficiency of charge carriers is lower
than single-crystal films, thus hampering the use of polycrystalline diamond detectors
in pulsed mode. However, the deposition capability of polycrystalline diamond on large
areas allows the fabrication of cheap detectors with a spatial resolution for large radiation
fields. Another advantage of polycrystalline films is the easy separation from the growth
substrate with chemical etching, which favors the development of thin films with respect to
the technologically demanding cut of homoepitaxially-grown single-crystal plates, charac-
terized by a low yield and waste of material. Moreover, the low leakage current of diamond
films avoids the fabrication of complicated semiconductor architectures in favor of simple
metal–diamond–metal structures, usually arranged according to a sandwich configuration
with the aim to exploit all the film’s active volume. Schottky diodes or photoconductors
can be fabricated as a function of the selection of the specific electrode material with respect
to the specific diamond film microstructure.

The experiment here described aims at demonstrating that a polycrystalline diamond
detector can be used for reconstructing the spectrum of an X-ray beam impinging on it with
the use of the absorbers method. A necessary condition is that the detector should have
a linear response to the energy deposited by the radiation per unit time or, equivalently,
to the radiation dose rate. The idea of realizing such a spectrometry system is revisited
from the experience of the crystallographers in the early twentieth century, interested in the
determination of the energy spectrum distribution emitted by their X-ray sources. Indeed,
differently from other methods based on the analysis of the Poisson noise of the detector
signal [39] or on the stripping method [40] applied to photon-counting detectors [41] and
similarly to what performed in [42] by applying the least square method, the absorbers
method consists in applying an energy selective attenuation to a radiation beam by means
of absorbers of different thickness. With a sufficient number n of detector signal values
obtained by interposing a (n − 1) number of absorber thicknesses (which includes also
the condition of absence of absorbers), it is possible to reconstruct the spectrum emitted
by the radiation source, since the attenuation coefficient is an energy-dependent operator
correlated to the photoelectric cross sections of the absorber and of the detector material.
For such reason, the absorbers method is valid up to energies of about 100 keV, where
the Compton effect is negligible for a large range of materials. The condition of response
linearity to radiation dose rate for the diamond detector is not trivial to be obtained, since
the electrodes and the detector size may significantly alter the correct response to the
radiation dose rate. The electrodes’ thickness, usually made of metals, should be as low as
possible not to induce undesired radiation absorption with unexpected energy dependence,
whereas, in order to avoid lack of lateral electronic equilibrium, the electrodes’ size should
approach the film surface area [43], as well as the detector size should be significantly
smaller than the radiation field [44].

The aim of the present work is to demonstrate that the absorbers method, revisited
by refining the model, is able to reconstruct accurately the X-ray spectrum of beams
characterized by high photon fluxes, which do not allow a pulsed mode for detector signal
formation but current mode. Therefore, a relatively cheap polycrystalline diamond detector
can be effectively used if characterized by a linear signal to the radiation dose rate, that
anyway represents the necessary condition to be satisfied by any generic detector for a
correct application of the method.

2. Materials and Methods

The employed X-ray beam is produced by a copper anode Philips microfocus tube,
consisting of three features: the copper Kα and Kβ intensity lines (situated at the energy
EKα = 8.05 and EKβ = 8.90 keV, respectively) and the continuous bremsstrahlung radiation
(Figure 1a). In all the experiments the copper Kβ line is almost totally suppressed by a
20 µm nickel foil, therefore the resulting radiation spectrum impinging on the diamond
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detector mainly consists of two contributions: the sharp copper Kα intensity line and the
continuous bremsstrahlung spectrum defined for energy below the value Emax = q Vacc,
where q is the elementary electron charge and Vacc the tube accelerating voltage.
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Figure 1. (a) The intensity spectrum of the X-ray beam produced by the copper anode tube supplied at Vacc (Emax = q Vacc

and λmin = 1240/Emax) passes through a nickel filter in order to suppress the Kβ line (b) and then the radiation intensity
is attenuated by the absorbers (Nichrome in the 3D plot) characterized by a defined thickness x. (c) Finally, the beam
impinges perpendicularly on the diamond sandwich detector, biased along the bulk direction. (d) The attenuation coefficient
dependences on photon energy of diamond, Ni, Al and Nichrome absorbers denote the common E−8/3 dependence up to
about 100 keV, as well as the characteristic absorption edges typical of each specific material.

The materials used as absorbers are metals of known attenuation coefficient depen-
dence on photon energy: pure aluminum foils were used to attenuate the X-ray tube
emission operating at Vacc of 30 kV, whereas pure Nichrome foils (density of 8.4 g cm−3

and nominal composition in a mass of 80% Ni – 20% Cr, data confirmed by energy-
dispersive X-ray spectroscopy analysis) were used at Vacc of 40 kV. On the other hand, the
cathode current was always kept at 30 mA. Considering that radiations of different energy
undergo different attenuation, for an absorber of small thickness the Kα line intensity is
predominant with respect to the bremsstrahlung contribution, while the opposite situation
takes place at large thickness values (Figure 1b, elaborated by applying the attenuation
coefficients tabulated in [45]).

The detector positioned perpendicularly to the incident radiation beam (Figure 1c) con-
sists of a 50 µm free-standing polycrystalline diamond film with a lateral size of 8 × 8 mm2,
which is far smaller than the X-ray beam diameter on the detector plane (>5 cm). The
diamond film was grown by a microwave CVD system in a 0.5% methane/hydrogen con-
centration at 700 ◦C on an <100> oriented p-type silicon substrate, subsequently chemically
etched in a standard HNO3:HF diluted solution in water. After the silicon etching, the dia-
mond film was treated in a 1:1:1 HNO3:H2SO4:HClO4 solution to remove the non-diamond
phases. Successively, two 200 nm thick 7 × 7 mm2 large silver contacts were thermally
evaporated on the opposite sides of the film, called transversal or sandwich configuration,
in order to bias the device along its bulk direction. Since the density of surface defect states
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of polycrystalline diamond films is able to pin the Fermi level and, in case of high defect
density, to reduce the depletion region under the contacts [46], the resulting electrodes
generally have a nearly ohmic behavior independently from the specific metal used. Ag
was preferred to other metals for its good adhesion, stability over time, and fabrication
easiness (no post-thermal annealing). The contacts’ thickness was limited to 200 nm in
order not to perturb the impinging radiation spectrum. An ohmic behavior at low bias
voltages <10 V and a non-linear exponential one at higher voltages were measured in the
film dark current, whereas the room temperature film resistivity was measured to be >1013

Ωcm over the explored voltage range. The film was illuminated by prolonged irradiation
(about 10 Gy total dose), usually called the “priming” process and aimed to saturate the
deep level traps and reach the conditions of a stable response [47,48]. Under operating
conditions, the detector was biased by a voltage source and the current flowing through
it is measured by a picoammeter (both the functionalities were performed by a Keithley
487 instrument). The net signal produced by the device results in the subtraction of the
“dark” current from the total current measured under X-ray exposure, and this operation
is performed at each chosen bias voltage. The radiation dose rate was monitored by the
ionization chamber Thermo Scientific (Erlangen, Germany) NE2536/3C, designed for X-ray
photons and connected to the electrometer Thermo Scientific Dose Farmer mod. 2670.

For the described configuration, the radiation energy deposited per unit time in the
detector depending on the absorber thickness x, f (x), can be described as:

f (x) ∝
∫ Emax

0
F(E)e−αNi(E)dNi e−αF(E)x

(
1− e−αD(E)d

) E
w

dE (1)

where F(E) is the component of energy E of the copper emission spectrum, while the
second and third terms represent the intensity transmitted by the dNi thick Nickel filter
and by the absorbers, respectively, the fourth term is the fraction of intensity absorbed
by the device and E/w represents the quantity of generated electron–hole pairs, being w
the mean ionization energy to generate such a pair in the detector material (w = 13.1 eV
in diamond [49]). αNi(E), αF(E), αD(E) are the attenuation coefficient of the Ni filter, the
absorber and the diamond detector, respectively. Equation (1), performing some simple
analytical steps, can be written as:

f (x) ∝
∫ Emax

0
F∗(E)e−αF(E)[x+x0] dE, (2)

being F∗(E) = F(E)
(

1− e−αD(E)d
)

E/ w and x0 = dNiαNi(E)/αF(E), which is a constant
independent from energy since the linear attenuation coefficient dependence on photon
energy of Ni and of the absorbers Nichrome and Al is proportional to the empirical kE−8/3

function (Figure 1d), where k is a constant related to the specific material. This is true until
the photon absorption can be ascribed to the photoelectric effect and is generally valid up
to about 100 keV also for other absorbers (e.g., Cu, Cr, Co).

As previously described, the copper emission spectrum F(E) results from the super-
position of three contributions: Kα and Kβ lines, which can be mathematically modelled
as delta Dirac functions δ(E) and the bremsstrahlung spectrum, that can be modelled as a
continuous function of E defined for 0 ≤ E ≤ Emax and zero for E > Emax:

F(E) = aδ(E− EKα) + bδ(E− EKβ) + cFbremm(E) (3)

being a, b, c coefficients with a constant value at each given Vacc. The introduction of the
nickel filter causes the suppression of the Kβ contribution and the significant attenuation
of the bremsstrahlung contribution up to 8.33 keV [45]. As a consequence, Equation (2) can
be separated into two terms:

f (x) ∝ fKα(x) + fbremm(x) (4)
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where fKα(x) = ΦKαF∗(EKα) exp{−αF(EKα)(x + x0)} is the solution of the integral for a
delta Dirac function contribution, where ΦKα is a constant and fbremm(x) is expressed by:

fbremm(x) ∝
∫ Emax

0
F∗bremm(E)e−αF(E)[x+x0] dE (5)

where F∗bremm(E) = Fbremm(E)((1− e−αD(E)d)E/w).
It can be shown that an approximated solution of the Equation (5) is similar to that of

a diffusion integral [50], with the following solution:

fbremm(x) = Φbremme−αF(Emax)(x+x0)−B
√

x+x0 (6)

where Φbremm is a constant. This is a function of the value that αF(E) assumes at Emax, and
of the B coefficient, dependent on the energy spectrum of the impinging radiation.

3. Results

Figure 2 shows the photogenerated current Iph by the detector as a function of the
radiation dose rate Ď and at given bias voltage Vb, obtained by the Nichrome absorber
interposition. The experimental data are fitted by Fowler’s equation Iph(Vb) ∝ Ď∆, where
∆ is the linearity coefficient that has to assume the value 1 for a detector acting as an ideal
dosimeter [51]. The inset of Figure 2 shows the ∆ coefficient as a function of Vb, thus
highlighting that the bias voltage progressively favors the detector linearity to dose rate up
to 90 V, after that the linearity remains constant since the signal practically saturates. Such
behavior can be explained by considering that the collection efficiency of photogenerated
charges to the electrodes increases with bias voltage, which induces a more correct signal
output with respect to the energy deposited by the radiation.
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Figure 2. The detector signal to dose rate dependence. The experimental points are well fitted by
Fowler’s equation. Inset: the value of the ∆ coefficient tends to the unity for a voltage corresponding
to the signal saturation region (≥90 V), approaching the behavior of an ideal dosimeter.

Figure 3 shows plots of the device signal versus absorber thickness both for Nichrome
foils (Vacc = 40 kV) and, in the inset, for aluminum ones (Vacc = 30 kV). The black thick
curve represents the exact and numerically calculated solution of Equation(1), obtained by
interpolating the spectrum reported in [52] for a copper target tube with a 40 kV acceleration



Crystals 2021, 11, 1258 6 of 10

voltage. It is again evident that at increasing voltage values the detector response tends
to linearity; the experimental patterns indeed perfectly coincide with the theoretical one
for a bias voltage of 90 V (1.8 × 104 V/cm). For higher voltages the patterns continue to
superimpose the expected linear response; this condition physically corresponds to the
complete collection of all the carriers generated by the radiation. Unfortunately, owing
to the lack of the tabulated copper target spectrum for an accelerating voltage of 30 kV,
it is not possible to calculate the numerically exact solution of Equation (1) expected for
validating the experiment with aluminum foils.
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Figure 3. Plot of the detector signal versus absorber thickness as a function of the applied bias
voltage. The continuous thick curve, almost superimposing the signal at Vb ≥ 90 V, represents the
exact solution of Equation (1).

The fits shown in Figure 3 are performed by applying Equation(4), where the values of
the known constants are summarized in Table 1. The fits give the values of B = 7.95 cm−1/2

and ΦKα/Φbremm = 1.95 × 10−2 for Vb ≥ 90 V.

Table 1. Values of known coefficients derivable from [45] for Nichrome and aluminum absorbers.

Model/Fit Parameter Units Nichrome Absorbers Aluminum Absorbers

Emax keV 40 30

αNi(EKα) cm−1 432.8 432.8

αD(EKα) cm−1 16.1 16.1

αF(EKα) cm−1 746.1 135.7

αF(Emax) cm−1 35.8 3.04

x0 cm 2.13 × 10−3 5.11 × 10−2
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Once all the parameters have been integrated into the model and the values of B
are derived from the fits, the bremsstrahlung spectrum is immediately derivable by the
following expression [50]:

F∗bremm(E) ∝
B

2
√

π
(αF(E)− αF(Emax))

−3/2e
− B2

4(αF(E)−αF(Emax))
dαF(E)

dE
(7)

which describes the analytical function that, when integrated as in Equation (5), gives the
expression fbremm(x) in Equation (6), used to fit the experimental data. Figure 4 points
out the comparison between the copper bremsstrahlung spectral reconstruction and the
reported spectrum in [52] as a function of radiation wavelength. We observe that the X-ray
spectrum described by Equation (7) is a good approximation of the reference spectrum,
showing a small underestimation for low wavelength values (high energies) mainly due
to iodine contamination reported in the spectrum in literature (emission line situated at
33.17 keV) and a small overestimation for high wavelength values, which is probably due to
the approximation of totally neglecting the copper Kβ intensity line in the model. However,
we must recall that the absorption of the bremsstrahlung is rather small with respect to the
Kα contribution (actually quantified by the f (x) tail at high x values), therefore the related
error can be considered acceptable, as well as the spectral reconstruction, can be considered
satisfying. The inset of Figure 4 shows the determination of the copper bremsstrahlung
spectrum with Emax = 30 keV, calculated by the aluminum absorbers data.
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4. Conclusions

The reported experiments highlight the importance of achieving collection efficiency
able to collect all the photogenerated charges of a diamond detector by means of correct
bias conditions. Different from the established literature of diamond detectors, this is
demonstrated for a peculiar aim: the capability to reconstruct accurately the impinging
radiation spectrum, performed by applying the revisited absorbers method and the related
model, if the detector response is linear with dose rate. Under such conditions, it is possible
to extract accurate spectrometry information from the detector signal. The demonstration of
the method effectiveness is here limited to the reconstruction of bremsstrahlung radiation
because the use of the fixed Ni filter reduced almost completely the contribution of the
Cu Kβ line on the detector plane, thus hampering its reconstruction and, consequently,
the comparison with the data reported in the literature. In the future, the use of variable-
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thickness Ni absorbers can even allow the accurate disentanglement of the Cu Kα and Kβ

peaks thanks to the energy position of its absorption edge.
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