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Abstract: Magnesium alloys are a strong candidate for various applications in automobile and
aerospace industries due to their low density and specific strength. Micro-alloying magnesium with
zinc, yttrium, and cerium enhances mechanical properties of magnesium through grain refinement
and precipitation hardening. In this work, a critical review of magnesium-based binary systems
including Mg-Zn, Mg-Y, Mg-Ce, Zn-Y, and Zn-Ce is presented. Based on the CALPHAD approach
and first-principles calculations, thermodynamic modeling of Mg-Zn-Y and Mg-Zn-Ce ternary phase
diagrams have been summarized. The influence of micro-alloying (yttrium and cerium) on the
mechanical properties of magnesium is discussed. A comparison between mechanical properties of
magnesium commercial alloys and magnesium–zinc–{yttrium and cerium} have been summarized in
tables.

Keywords: thermodynamic modeling; magnesium; phase diagram; liquidus projection

1. Introduction

The need for weight reduction in automobile and aerospace industries makes mag-
nesium alloys attractive due to their low density and high strength-to-weight ratio [1–3].
However, the use of magnesium alloys in structural parts is limited because of their poor
mechanical properties at elevated temperatures [4–16]. Many researchers investigated the
effect of micro-alloying on magnesium to enhance its mechanical performance [17–76]. The
addition of rare-earth (RE) elements are attractive and receive increasing attention because
of their excellent properties such as better creep resistance, grain refinement, improved
ductility, enhanced formability, and strength [40,43–45,54,55,60,61,67–72,76].

Micro-alloying magnesium with RE such as zinc and yttrium resulted in promis-
ing mechanical properties [27,31,35,40,44,46,55,58,60]. RE elements enhance mechani-
cal properties due to precipitation hardening through precipitation of nanoparticles of
ternary phases [27–71]. These phases have an ability to inhibit the growth of deformation
twins [18–23]. Furthermore, the addition of RE elements to Mg-Zn promote activation of
prismatic slip and increase the stacking fault energy, therefore weakening the texture of
magnesium alloys [35–40,44,51,61,66,72]. Micro-alloying magnesium with zinc increases
its fluidity in casting [77], whereas yttrium addition has a remarkable effect on aging
precipitation and high solid solution strengthening [78–80]. Moreover, cerium tends to
precipitate a thermally high stable compound (Mg2Ce) in magnesium rich region, which
improve microstructure stability at elevated temperatures. Diluting zinc in Mg-Ce alloy
significantly improves stretch formability by modifying the basal plane texture through
solid solution hardening mechanism [81–85]. Moreover, the highest zinc in Mg-Ce alloy
improves yield strength and ultimate tensile strength through precipitation of intermetallic
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compounds. Whereas the ratio of Ce/Zn increases, grain refinements and loss of formabil-
ity occurs [71,81–88]. Mg-Zn-Y alloys display promising mechanical properties because of
precipitates of thermally stable ternary compounds (W-Mg3Y solid solution, I-Mg3YZn6,
and LPSO-phase Mg12ZnY) as well as high solubility of yttrium in magnesium.

To better understand phase stability, phase relation, and the effect of precipitation on
age hardening, knowledge of binary and ternary phase diagrams is essential. Additionally,
accurate prediction of phase diagram plays an important role in materials development
and alloy design. Phase diagram is a tool used to predict the equilibrium phase(s) and
phase(s) percentage at certain temperatures for specified alloys and simulate the phase
consistency and solidification process of individual alloys. Moreover, the percentage of the
predicted phase(s) that exist in the microstructure can be calculated. This will enable us to
track particular alloys during solidification and subsequent heat treatment by predicting
phase composition and distribution. Therefore, binary sub-systems of Mg-Zn-{Y, Ce}
including Mg-Zn, Mg-Y, Mg-Ce, Zn-Y, and Zn-Ce phase diagram have been critically
reviewed. In addition, ternary phase diagrams of Mg-Zn-Ce and Mg-Zn-Y have been
assessed. A comparison between mechanical properties of commercial Mg-based alloys
and Mg-Zn-{Ce,Y} alloys has been reported.

The CALPHAD approach is a well-known method to predict phase equilibria in a
multi-component system based on Gibbs free energy of the phases [89–91]. Solid solutions
were modeled using compound energy formalism with sublattice [92]. The modified
quasi-chemical (MQC) solution model precisely describes short-range ordering in the
liquid phase; therefore, liquid phase was optimized using MQC to treat configurational
entropy [93]. The main novelty of the current work is to critically review phase equilibria of
Mg-Zn-{Y, Zn} systems and mechanical properties based on the experimental investigations
reported in the literature.

2. Zinc-Yttrium Phase Diagram

Chiotti et al. [94] largely examined phase diagram and thermodynamic data of Zn-Y
phase diagram using DTA, metallographic, and XRD. Mason and Chiotti [95] subsequently
reviewed the work of [94] and measured phase relation and thermodynamic properties
of the intermetallic compounds using eight samples. In the work of [94,95], tantalum
containers were unsuccessful because of the penetration of Y-Zn liquid at high zinc contents.
Mason and Chiotti [95] reported three intermetallic compounds that melt congruently:
YZn, YZn2, and Y2Zn17 (YZn8.5) at 1105, 1080, and 890 ◦C, respectively. Thermodynamic
modeling of Y-Zn binary phase diagram in the work of [96–98] presented a polymorphic
transformation in the YZn2 at 750 ◦C, which is in accord with [95,99]. Mason and Chiotti [95]
found five intermetallic compounds that decompose peritectically: YZn3, Y3Zn11 (YZn3.67),
Y13Zn58 (YZn4.46), YZn6, and YZn12 at 905, 896, 882, 872, and 685 ◦C, respectively. Mason
and Chiotti [95] determined the thermodynamic properties of the intermetallic compounds
using dewpoint method. The large number of intermetallic compounds found in the RE-Zn
system was similar and related to RE-coordination number [100]. Crystal structure data
of Y-Zn compounds were determined by [100–103]. Gibbs energy of formation of the
intermediate compounds in the Y-Zn system was investigated by [104–108]. The most
accurate description of Y-Zn binary phase diagram was established by Zhu and Pelton [109]
based on experimental data [94,95] as shown in Figures 1 and 2. The optimized Y-Zn phase
diagram presented by Zhu and Pelton [109] presented some amendment to the work
of Spencer et al. [98]. The calculated enthalpy and Gibbs energies of formation of the
intermetallic compound presented in the work of [98] are in good agreement with the
experimental data of [95,104,105,108].
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3. Zinc–Cerium Phase Diagram

The first Zn-Ce phase diagram was published by Hansen and Anderko [110]. Subse-
quently, Veleckis et al. [111] reported eight intermediate phases; CeZn11, Ce2Zn17, CeZn,
CeZn8.8-6.2, CeZn2, CeZn7, Ce2Zn, and Ce4Zn. Okamoto and Hiroaki [112] suggested the
existence of nine intermediate phases, namely CeZn, CeZn2, CeZn3, CeZn3.67, CeZn4.5,
CeZn5.25, CeZn7, Ce2Zn17, and CeZn11. The discrepancies in the stoichiometry and phase
boundary reported by [110–112] were because of the delayed nucleation of these phases. In-
vestigating the phase boundary and similarity of the Zn-Ce system to another Zn-RE phase
diagram (such as Zn-Pr, Zn-Nd, Zn-Y, and Zn-Pm), nine intermetallic compounds were sug-
gested [101,112–114]: CeZn, CeZn2, CeZn3, Ce3Zn11, Ce13Zn58, CeZn5, Ce3Zn22, Ce2Zn17,
and CeZn11. A detailed investigation on the crystallographic data of intermetallic phases
was presented in [114]. These intermediate compounds were included in the thermody-
namic modeling of Zn-Ce phase diagram in the work of Wang et al. [115], Spencer et al. [98],
and Zhu and Pelton [109]. The work of Chiotti and Mason [116] was the only experimental
phase diagram data that could be found in the literature. Chiotti and Mason [116] inves-
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tigated Zn-Ce phase diagram using metallography, differential thermal analysis (DTA),
X-ray diffraction, and vapor pressure measurements. Johnson and Yonco [117] reported
the standard Gibbs free energy of formation of the CeZn11 phase, which was in accord
with [116]. Chiotti and Mason [116] used dewpoint method to derive standard Gibbs free
energy of formation for the intermetallic compounds. Johnson and Yonco [118] used the
equation of standard Gibbs free energy to derive enthalpy of formation of the intermediate
compounds.

Spencer et al. [98] and Zhu and Pelton [109] used modified quasi-chemical model to
optimize liquid phase. Zn-Ce phase diagram published by [109] was an improvement to
the work of Zhu and Pelton [109]. Zn-Ce phase diagram presented by Zhu and Pelton [109]
is shown in Figure 3.
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4. Mg-Zn, Mg-Y, and Mg-Ce Phase Diagrams

Based on the literature, many researchers modeled liquid phase using a random
solution model. This model is only anticipated at a very high temperature when the
entropy term overwhelms any tendency for ordering or clustering of atoms. Therefore,
the configurational entropy of mixing should vary with temperature. The modified quasi-
chemical solution model has a better treatment of configurational entropy that accounts for
a non-random distribution of atoms. Therefore, no model based on the random mixing
can properly describe the influence of short-range ordering, because they do not solve
the problem of the configurational entropy. The description of short-range ordering can
be taken into account with bond energy models by considering the interactions between
atoms that extend beyond the nearest neighbor’s approximation. This problem has been
treated using the modified quasi-chemical model. Liquid phase in the work of [77] was
optimized using the modified quasi-chemical model (MQM). This model has been used to
describe the liquid phase as this is the only scientific model that accounts for the presence
of short-range ordering. Therefore, the reported phase diagrams in the work of [77]
adequately describe thermodynamic properties of these systems. Islam et al. [77] critically
reviewed and assessed thermodynamic data and phase diagrams of Mg-Zn, Mg-Y, and
Mg-Ce systems. Figures 4–6 presented the most accurate calculated binary phase diagrams
for these systems [77]. It is worth mentioning that the liquid phase was optimized using a
modified quasi-chemical model to accurately describe short range ordering in the liquid.
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5. Magnesium-Zinc-Yttrium Ternary Phase Diagram

Gröbner et al. [121] investigated the Mg-Zn-Y ternary system using ten ternary alloys
by DSC, SEM/EDXS, and TEM. Based on their experimental results and assessment to the
stoichiometric of ternary phases reported in the literature [96,122–140], Gröbner et al. [121]
calculated liquidus projections and isothermal sections at 400, 500, and 600 ◦C. In 2015,
Zhu and Pelton [140] calculated liquidus projection and isothermal sections at 400, 500,
and 600 ◦C. Zhu and Pelton [140] defined ternary phase diagrams of Mg-Zn-RE systems
using the Kohler model to estimate ternary properties of Mg-Zn-RE systems. It is worth
mentioning that liquidus projections of Zhu and Pelton [140] and Gröbner et al. [121] are
the only works that could be found in the literature. Gröbner et al. [121] modelled five
ternary compounds: 18R, 14H, W, I, and Z, and one ternary solid solution (H). However,
Zhu and Pelton [140] reported four ternary compounds (τ5, H, X, and I phases) and three
ternary solid solutions (Y(Mg,Zn), Y2(Mg,Zn)17, and τ3 (YMg(Mg,Zn)2).

Chemical compositions and notations of the ternary phases were confusing as de-
scribed in the literature [96,121–140]. Many of the ternary phases reported in the literature
were considered as metastable phases according to the work of Zhu and Pelton [140]. The
slow kinetics of transformation of ternary phase, long-period stacking ordered (LPSO), has
been described in the literature with different notations and chemical compositions [32–
36,39,40,52,67,69,70,112,126,127,138]. This ternary phase exists in many Mg-Zn-RE systems
which corresponds to Mg12ZnY2 [40,140] and was designated in the literature as X-phase
with simplified composition Mg12YZn [96,127,140]. Ternary phase with notation of I-phase
was reported by Tsai et al. [124] as Mg30Zn60Y10 and later simplified as Mg3Zn6Y [138]
and adopted in thermodynamic modeling in the work of [96,121,140]. Moreover, W-phase
was reported in the work of [96] with composition of Mg3Zn3Y2 and Mg25Zn60Y14 [128],
while Zhu and Pelton [140] and Gröbner et al. [121] described this phase as a ternary solid
solution of yttrium in (MgZn) binary phase where yttrium may substitute magnesium
and zinc element in the sublattice. Ternary phase designated as H-phase and composition
of Mg15Zn70Y15 [124] was accepted in the work of Zhu and Pelton [140]. Similarly to
other Mg-Zn-RE ternary systems, this phase has been modeled as stoichiometric ternary
compound. However, Gröbner et al. [121] describe this phase as ternary solid solubility of
Mg in (YZn5): Y(Mg, Zn)1.5Zn3.5 using the experimental data of [138]. Zhu and Pelton [140]
treated H-phase differently because the crystallographic data (lattice constants) signifi-
cantly differ from those of YZn5 phase. Ternary solid solubility of Mg in Zn17Y2 binary
phase, reported in the work of Zhu and Pelton- [140], was not observed in the liquidus
projections of Gröbner et al. [121]. Based on the above confusion of the chemistry of ternary
compounds, as well as ternary solid solutions in the Mg-Y-Zn system, further experimental
investigation is required to resolve the discrepancies in the literature. Liquidus projections
of the ternary Mg-Zn-Y phase diagram reported by Gröbner et al. [121] and Zhu and
Pelton [140] are shown in Figure 7a,b, respectively.
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6. Magnesium–Zinc–Cerium Ternary Phase Diagram

Experimental investigation and thermodynamic modeling of the Mg-Zn-Ce received
considerable attention by many researchers [141–153]. However, the reported ternary
phases and ternary solid solutions were confusing. Table 1 summarizes the reported
ternary phases in the Mg-Zn-Ce system [151].

Table 1. Reported ternary phases in the Mg-Zn-Ce system in comparison with literature.

Phase [149] [151] [150] [146] [145] [144]

Mg11Zn83Ce6 Ce(Mg1−xZnx)11 Ce(Mg1−yZny)11 Ce(Mg0.14Zn0.86)11 Ce(MgxZn1–x)10.1

(Mg,Zn)Ce (Mg,Zn)Ce MgZn4Ce Mg19Zn81 Ce20

(Mg,Zn150)3Ce (Mg,Zn)3Ce Mg2.3−xZn12.8+xCe
MgxZnyCe

1.2 x 2.3
12.8 y 13.9

(Mg,Zn)3Ce

Mg13Zn30Ce3 Mg7Zn12Ce Mg7Zn12Ce Mg7Zn12Ce Mg7Zn12Ce

Mg5Zn9Ce2 Mg3Zn5Ce Mg3Zn5Ce Mg2.5Zn4.5Ce Mg3Zn5Ce

Mg12Ce (Mg,Zn)12Ce Mg3Zn3Ce2 Mg1+xZn2−xCe
Ce6.21MgxZny

7.52 x 14.56
79.23 y 86.27

Ce(MgxZn1-x)9

Mg53Zn45Ce2 Mg53Zn45Ce2 Mg29Zn25Ce Mg29.2Zn24.8Ce Mg53.14Zn45.04Ce1.82

(Mg,Zn)2Zn9Ce3 MgZn2Ce Mg3Zn19Ce6 Mg13Zn30Ce3

Mg19Zn81Ce20

Mg3Ce (Mg,Zn)2Ce

Ternary solid solution designated by Mg3Ce was reported by [149,152] where zinc
atom substitutes magnesium atom in the binary Mg3Ce phase. The solubility of zinc in
Mg3Ce and crystallographic data are shown in Table 2. Recently, this phase was verified in
the work of Shi et al. [153].
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Table 2. Crystallographic data and Zn solubility in Mg3Ce.

Phase Name Pearson Symbol-Space Group Zinc Solubility Reference

Mg3Ce cF16 − Fm3m

28 at.% at 300 ◦C [149]

28.4 at.% at 300 ◦C [151]

30 at.% at 300 ◦C [144]

36 at.% at 350 ◦C [146]

40 at.% at 197 ◦C [150]

6.4 at.% at 350 ◦C [153]

Ternary solid solution, denoted as τ3 in the work of [152,153], was reported by [144,150]
with a prototype of AlMnCu2. The percentage of zinc in this phase was 38 to 50 at.% [150],
whereas Kevorkov and Pekguleryuz [148] reported this percentage as 45 to 50 at.%. More-
over, Mel’nik et al. [144] and Chiu et al. [149] reported that this phase contained 35 to 45,
and 0 to 48 at.% Zn, respectively. It is worth noting that Chiu et al. [149] reported Mg3Ce
solid solution with two different prototypes, namely BiF3 and AlMnCu2. Whereas Shi
et al. [153] verified the existence of τ3 and indicated the difficulty to distinguish between τ3
and Mg3Ce because of the structural similarity. The authors of [153] declared the difficulty
of detecting the difference using XRD. According to the BSE image in the work of [153],
Mg3Ce showed diamond shape whereas τ3 exhibited irregular shape. Meanwhile, τ3 exists
in equilibrium with Mg3Ce in accord with [152,153]. Reported comparisons between the
crystallographic data and solid solubility for other ternary phases were summarized in the
work of Chiu et al. [149] and Zhu et al. [152].

Liquidus projections of the Mg-Zn-Ce ternary phase diagram were calculated by [148–153].
The calculated ternary phase diagram by Chiu et al. [149] proposed that τ3 and Mg3Ce
were similar phase, which contradicts the findings in [152,153]. Moreover, ternary phase
diagram presented by Zhu et al. [152] was an amendment to the work of Mostafa and
Medraj [151]. Primary crystallization regions of ternary phases could not be found in the
liquidus projection of Shi et al. [153]. Liquidus projections of Mg-Zn-Ce calculated by Zhu
et al. [152] and Shi et al. [153] are shown in Figure 8a,b, respectively.
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7. Mechanical Properties of Mg-Zn-{Ce, Y} Alloys

Alloying Mg-Zn with rare earth elements is promising in modifying magnesium
texture. Among rare-earth element, many researchers reported that micro-alloying Mg-Zn
with yttrium or cerium exhibited a comparable ductility and formability with commercial
magnesium alloys. Tables 3 and 4 summarize the mechanical properties of the published
alloys in Mg-Zn-Y [154–157] and Mg-Zn-Ce [48,71,81,85,156–158], respectively.

Table 3. Mechanical properties of Mg-Zn-Y alloys.

Nominal Composition
(wt.%)

Yield Strength
(MPa)

Ultimate Tensile Strength
(MPa) Ductility Process Conditions

Mg-2Zn+0.4Y 160 240 30%
Samples were cast at

690 ◦C and then extruded
at 310 ◦C [154]

Mg-14.4Zn-3.3Y 365 ± 3.5 380 8%

Samples were cast and
solutionized at 480 ◦C for

24 h followed by extrusion
at 430 ◦C, then aged at

150 ◦C [155]

Mg-14.4Zn-3.3Y 171 320 12

Samples were cast and
solutionized at 480 ◦C for

24 h followed by extrusion
at 430 ◦C [155]

Mg-1.5Zn-0.2Y 135 238 17%

The ingots
were homogenized at

450 ◦C for 12 h, then rolled
at 400 ◦C, and after that
sheet annealed at 350 ◦C

for 1 h [156]

Mg-6.0Zn-1.0Y 268.3 12.9%
Alloys were solutionized at
480 ◦C and then extruded

at 390 ◦C [157]

Mg-6.0Zn-1.0Y 288.7 17.3%

Alloys were solutionized at
480 ◦C and then extruded

at 390 ◦C and aged at
150 ◦C for 48h [157]

Mg-3.0Zn-0.5Y 262 18.3%
Alloys were solutionized at
480 ◦C and then extruded

at 350 ◦C [157]

Table 4. Mechanical properties of Mg-Zn-Ce alloys.

Nominal Composition
(wt.%)

Yield Strength
(MPa)

Ultimate Tensile Strength
(MPa) Ductility Process Conditions

Mg-2Zn+0.4Ce 190 255 18%
Samples were cast at

690 ◦C and then extruded
at 310 ◦C [48]

Mg-2Zn-0.2Ce
(ZE20) 69 170 31%

Samples were cast at
700 ◦C and then extruded

at 400 ◦C [48]

Mg-5Zn-0.2Ce
(ZE50) 135 247 15%

Mg-8Zn-0.2Ce
(ZE80) 136 289 16%
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Table 4. Cont.

Nominal Composition
(wt.%)

Yield Strength
(MPa)

Ultimate Tensile Strength
(MPa) Ductility Process Conditions

Mg-1.5Zn-0.2Ce 140 240 19%

The ingots
were homogenized at

450 ◦C for 12h, then rolled
at 400 ◦C and after that

sheet annealed at 350◦ C
for 1 h [156]

Mg-6Zn-0.2Ce 225 270 30%

Alloys were cast at 750 ◦C
and homogenized at
350 ◦C for 12 h. After

extrusion, alloys aged at
175 ◦C from 0.5 to 80 h

[157]

Mg-2%Zn-0.5%Ce
(ZE20) 199.2 ~245 6%

Samples were prepared by
continuous casting, then

homogenized at 823 K for
8 h. Sheets were rolled by

conventional rolling at
673 K [158]

Mg-2%Zn-0.5%Ce
(ZE20) 125 ~235 13.8%

Samples were prepared by
continuous casting, then

homogenized at 823 K for
8 h. Sheets were rolled by

conventional rolling at
673 K. Sheets were

annealed at 673 K [158]

Mg-2%Zn-0.5%Ce
(ZE20) ~170 ~240 28.23

Samples were prepared by
continuous casting, then

homogenized at 823 K for
8 h. Sheets were rolled by

packed rolling at 673 K.
Sheets were annealed at

673 K [158]

Mg-2%Zn-0.5%Ce
(ZE20) ~165 ~236 33.4%

Samples were prepared by
continuous casting, then

homogenized at 823 K for
8 h. Sheets were rolled by

packed rolling at 723 K.
Sheets were annealed at

723 K [158]

Mg-0.5Zn-0.2Ce 133 213 25% Samples were heated at
723 K for 20 min and sheets

were rolled by
unidirectional rolling at
353 K. Then, sheets were

annealed at 623 K for
90 min [81]

Mg-1.0Zn-0.2Ce 110 202 23%

Mg-1.5Zn-0.2Ce 116 206 29%

Mg-2.0Zn-0.2Ce 118 222 25%

Mg-2.5Zn-0.2Ce 131 228 16%

Mg-1.5Zn-0.2Ce 153 231 26%
Samples were extruded at
703 K and then annealed at

623K for 90 min [85]
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Table 4. Cont.

Nominal Composition
(wt.%)

Yield Strength
(MPa)

Ultimate Tensile Strength
(MPa) Ductility Process Conditions

Mg-1.5Zn-0.2Ce 194 248 20%
Samples were extruded at
573K and then annealed at

623K for 90 min [85]

Mg-1.0Zn-1.0Ce 95 191 22%
Samples were annealed at
350 ◦C and then annealed

at 450 ◦C for 1 h [71]

Mg-2.0Zn-1.0Ce 101 197 26.2%

Mg-4Zn-1.0Ce 109 220 18%

Mg-1.0Zn-0.5Ce 95 191 30%

The addition of yttrium to Mg-Zn alloys enhances the formation of magnesium
solid solution in ternary systems due to high solid solubility of yttrium in magnesium.
Meanwhile, precipitation of nano-scale ternary phases as a result enhances mechanical
properties. It is worth noting that the ratio of Zn/Y and heat treatment conditions play
a significant role in mechanical properties as can be seen in Table 3. Unlike yttrium, the
micro-addition of cerium to Mg-Zn reduces magnesium solid solution and precipitates
a binary Mg12Ce phase as well as ternary nano-scale phases. Maximum solid solubility
of cerium in magnesium is 0.5 wt.% at 590 ◦C and Mg12Ce precipitate up to 32.4 wt.%
Ce. The existence of cerium and zinc in magnesium resulted in weakening structure and
therefore enhanced ductility of magnesium alloys. Meanwhile, the percentage of cerium
magnesium alloys must be in small amounts to hinder precipitation of high intensity of
Mg12Ce phase; besides, heat treatment conditions and weight fraction of cerium play a
remarkable role in mechanical properties of Mg-Zn alloys as shown in Table 4.

8. Conclusions

To reduce oil consumption in the automobile industry, designers are interested in
lightweight alternative materials. Among lightweight materials is magnesium, and prod-
ucts of Mg-Zn alloys used in the automobile industry include transmission housings,
heads, and engine blocks. In the current work, thermodynamic modeling of yttrium-zinc
and yttrium-cerium phase diagrams were critically assessed, and the most appropriate
phase diagrams were presented. Crystallographic data and solid solubilities of ternary
phases in Mg-Zn-Y and Mg-Zn-Ce systems were evaluated. Lack of experimental data
on ternary Mg-Zn-Y required further experimental investigations. Based on the recent
findings, liquidus projections of the Mg-Zn-Y and Mg-Zn-Ce ternary phase diagrams were
given. Ternary intermetallic phases and ternary solid solution reported in the literature
were confusing, and additional key experiments are needed to resolve the discrepancies on
the existence and chemical compositions of these phases. Mechanical properties reported
in the literature of the two ternary systems were summarized.
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