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Abstract: The search for environmental preservation and conservation of natural resources gives
rise to new concepts and viable technical solutions on the path to sustainable development. In this
context, this study’s main objective is to analyse the influence of recycled concrete aggregates (RCAs)
on the development of pervious concrete, whose use as a floor covering represents an excellent device
to mitigate the urban soil sealing phenomena. For this, mechanical and hydraulic tests were carried
out, in addition to microstructural analyses and the assessment of its environmental performance.
The results obtained were compared to reference studies also involving the incorporation of recycled
aggregates. A pilot-scale case study was conducted, involving a parking space lined with pervious
concrete moulded “in situ”. In laboratory tests, permeability coefficients and mechanical strengths
compatible with the literature and above the normative limit for light traffic were found. The case
study demonstrated higher permeability than in the laboratory, but the flexural strength was lower,
being indicated only for pedestrian traffic. The environmental assessment showed that the RCA
represents a positive contribution to the environmental performance of pervious concrete. Still,
attention should be given to the recycled aggregate transport distance between the concrete plant
and the RCA treatment plant.

Keywords: pervious concrete; recycled concrete aggregate; construction and demolition waste;
permeability; mechanical properties; environmental assessment; microstructural analyses

1. Introduction

Nowadays, sustainability issues and the conservation of mineral deposits promote
new concepts and technical solutions aiming to follow a circular economy in their pro-
ductive system [1]. The increasing production and subsequent disposal of construction
and demolition waste (CDW) are currently major environmental and social problems [2].
These material wastes, usually non-degradable, are typically sent to landfills or dumped
illegally, raising questions about waste management [3,4]. In the European Union, the
annual production of construction waste is around 900 million tonnes, contributing to 25%
to 30% of all waste produced [5–7]. The recycling and reuse of CDW in the form of recycled
concrete aggregates (RCAs) is a sustainable alternative and has great potential to reduce the
volume of landfill disposal, the extraction of natural resources, and the associated pollution
from raw materials’ treatment [3,8–11].

Some studies demonstrate that the use of recycled aggregates is often associated
with the loss of physical and mechanical properties of concrete [12–14]. This is due to the
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lower density and higher porosity and water absorption of RCAs [15,16]. Several authors
correlate these characteristics with the inferior properties of the interfacial transition zone
between the recycled aggregate and the cement paste, which leads to a loss of adhesion
between the phases [4,17,18]. However, given the current rainwater management problems
faced by urban drainage systems, pervious concrete offers several environmental benefits,
including rainwater run-off control, groundwater replenishment, improvement of water
quality, and decreased need for holding tanks and other expensive rainwater collection
systems [3,10,19–21]. Additionally, pervious concrete also contributes to sound absorption,
regulation of heat and humidity, and increased skid resistance, as it prevents water from
remaining on the pavement surface [2,22–24].

Pervious concrete commonly presents a void index of 15% to 35%, with permeability
between 0.2 and 1.2 cm/s. Its density varies between 1600 and 2000 kg/m3 and its flexural
strength is between 1 and 3.8 MPa [10,25,26]. However, due to the high void index, the
compressive strength of pervious concrete is less than that of conventional concrete and
varies between 2.8 and 28 MPa [2,4,27,28]. Thus, pervious concrete can only be applied
in situations with fewer mechanical requirements, such as sidewalks, parking lots, stone
protection, drainage paving, prefabricated products, and rainwater retention facilities,
among others [3,8,21].

In this study, the main objective is to prepare an RCA-based pervious concrete, min-
imising production costs and maximising the environmental performance within the
technical parameters observed in the literature and respecting the normative requirements.
It is essential to analyse and compare the potential environmental impacts related to the
production of pervious concrete, and the impacts arising from RCAs or natural aggregates.
One of the best approaches to develop this type of study is to use the Life Cycle Analysis
(LCA) method [29,30]. This method allows quantifying the potential environmental im-
pacts of products or services. It quantifies both inflows (e.g., energy, water, and materials)
and outflows (e.g., CO2 emissions, solid waste, and liquid waste) to and from the system
under analysis [31,32]. Based on the context and methodological approach mentioned,
this study quantified the functional properties and potential environmental impacts of
producing RCA-based pervious concrete by comparing it to conventional concrete with
similar cement content, made available by a local concrete company.

Pervious concrete represents a favourable scope in the search to reduce urban surface
waterproofing through eco-friendly and economically viable methods. However, the great
challenge in developing this material is the difficulty of achieving the proper balance
between its mechanical and hydraulic properties [33]. In this context, the present work
aims to analyse the environmental and functional characteristics of pervious concrete with
RCAs and natural aggregates to explore solutions further to improve the sustainability of
the final product.

2. Materials and Methods
2.1. Raw Materials

Portland cement CP V-ARI was used in the production of the RCA-based pervious
concrete. Similar to American Society for Testing and Materials (ASTM) Type III cement,
it follows the specifications of Brazilian standard (Norma Brasileira) NBR 16697 [34]. This
binder was chosen because it belongs to a cement class that has a higher percentage of
clinker in its composition. Its unique proportion of limestone and clay, combined with a
more intense grinding process, allows the cement to achieve higher strengths in shorter
periods when reacting with water [35]. This shorter setting time is also important because
pervious concrete, due to its high surface area exposed to the air, tends to lose water from
the mixture more quickly. Its high reactivity in the first hours also helps to reduce the pores
filling during the conglomerate formation.

As the conventional concrete (reference), Portland cement type CP III 40 RS was used
according to the recommendations of NBR 16697 [34]. This designation refers to a hydraulic
binder obtained by the homogeneous mixture of clinker and blast furnace slag, with low
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hydration heat, stable in the presence of reactive aggregates and resistant to sulphates.
This type of cement was chosen because it is one of the most used in the study region. The
physical and chemical compositions of the cement types used in this research are presented
in Table 1.

Table 1. Chemical composition, physical properties, and mechanical performance of the types of
cements used.

Component Cement CP V-ARI Cement CP III 40 RS

MgO (%) 1.4 3.49
SO3 (%) 3.2 1.63

Na2O (%) 0.07 −
K2O (%) 0.89 0.70

Na2Oeq (%) 0.65 −
Insoluble Residue (IR) (%) 1.4 1.14

Properties
Blaine (cm2/g) 4617 4630
Initial Set (min) 157 200
Final Set (min) 212 −

Compressive Strength
1 Day (MPa) 30 12.7
3 Days (MPa) 41.7 25.4
7 Days (MPa) 46.4 34.9
28 Days (MPa) 55.4 47.8

Coarse aggregates are responsible for forming a resistant and stable mineral skeleton
in paving concretes. In this work, all the coarse aggregates used in the pervious concrete
composition consisted of concrete waste selected from CDW (Figure 1). This material was
extracted from different types of construction and demolition works carried out on the Fed-
eral University of Juiz de Fora (UFJF), having no specific origin or strength class. However,
only concretes that initially had a structural function were used as RCAs, without having
any physical or chemical treatment to remove the adhered mortar. Currently, Brazilian
standards limit the use of recycled aggregates to pavement sublayers and concretes with
no structural function.
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Figure 1. Crushed concrete waste.

The CDW was crushed with the aid of a jaw crusher, followed by granulometric
separation using an automatic vibrating sieve. For this research, only the particle size range
between 9.5 and 25 mm was used. However, as the aggregate is a CDW, its particles’ sizes
tend to vary, since the materials disintegrate more easily. It is important to note that three
RCA samples were characterised to guarantee the quality and representativeness of the
results. Table 2 presents the average of the results.
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The conventional concrete, on the other hand, consisted of two types of fine aggregate,
natural sand (NS) and artificial sand (AS), and two gravel grades, both of natural origin,
G0 and G1 (4.75 to 12.5 mm and 9.5 to 25 mm, respectively). All these materials were
sourced nearby. Figure 2 shows the particle size distribution of the aggregates used in the
study, following the methodology recommended by NBR NM 248 [36]. Table 2 presents
their physical properties, according to the respective Brazilian standards.
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Figure 2. Particle size distribution of the aggregates.

Table 2. Physical properties of the aggregates.

Properties Standard RCA G0 G1 NS AS

Volumic Mass (cm3/g) NBR NM 53 [37] 2.68 2.76 2.85 2.60 2.73
Density (g/cm3) NBR NM 45 [38] 1.31 1.40 1.49 1.44 1.72

Pulverulent Materials Content (%) NBR NM 46 [39] 0.6 0.685 0.945 2.25 20.8
Water Absorption (%) NBR NM 53 [37] 3.8 − − − −

Abrasion Los Angeles (%) NBR NM 51 [40] 48.5 − − − −

For the conventional concrete, a polyfunctional plasticiser additive was used. With
a density of 1.18 ± 0.02 g/cm3, it was formulated for use in cement types with a high
content of additions without hindering the initial resistance or delaying the start of setting
time, even at low temperatures and with an increase in the final resistances. As for the
pervious concrete, no additives were used. In the same way, no RCA treatment was used
to reduce the negative environmental impact further. Moreover, studies carried out by [41]
demonstrated that the plasticiser is not necessary for designing this type of concrete.

2.2. Mixture Proportions and Procedures

The pervious concrete was prepared according to the American Concrete Institute
standard ACI 522R-10 [27]. This standard clarifies that the cement/aggregate ratio and
the compaction procedure used in the production of pervious concretes are factors of
fundamental importance to the mixture since they directly influence the mechanical charac-
teristics of the material. In this sense, a manual concrete compaction method was adopted
to reproduce the expected density in the field [42]. As suggested by Yap et al. [3], special
compaction methods were not employed due to increased energy consumption. This was
also to avoid segregation of the particles and excessive densification of the cement paste,
which would decrease the drainage capacity of the concrete samples.
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The density of the pervious concrete was established at 1600 kg/m3, which is the
minimum design limit according to ACI 522R [27]. A value of 0.35 was adopted for the
water/cement factor (w/c), considering the expected high water absorption content of
the RCA used in the concrete production. Higher w/c ratios are associated with better
formation of hydrated products, improving cohesion between aggregates and the develop-
ment of higher mechanical strength [43], without affecting the hydraulic properties of the
concrete [28]. Table 3 presents the mixtures of the pervious concrete and the conventional
concrete developed by a local concrete company, used as a reference.

Table 3. Mixture proportions of studied concretes.

Mix Desig-
nation

Cement
(kg/m3)

RCA
(kg/m3)

G0
(kg/m3)

G1
(kg/m3)

NS
(kg/m3)

AS
(kg/m3)

Water
(kg/m3)

Additive
(kg/m3)

PC-R100 312 1179 − − − − 109 −
CC-Ref-R0 320 − 311 725 672 224 176 2.08

For the mixing procedures, the methodology recommended by Schaefer et al. [44]
was followed, adapting it to the incorporation of RCA based on recent studies on the
subject [2–4,7,10,13]. According to the reference literature, this methodology allows for
optimising the hydraulic and mechanical properties of pervious concrete.

The recycled aggregates were pre-humidified until close to the saturated surface
dry (SSD) condition to avoid water absorption during the concrete mixing process. This
material was mixed with cement in a previously lubricated rotating concrete mixer with
cement paste removed from the mix. Water was then added gradually to the mixture
to ensure homogeneity. After 3 min, the mixer was turned off for 2 min for the ball-in-
hand consistency test, according to the international standard ASTM C 860-15 [45]. Since
pervious concrete does not produce significant abatement, this test was conducted to verify
that the fresh mixture was sufficiently moistened to form an appropriate aggregate–paste
bond [3,10]. The concrete was further mixed for 2 min, followed by the fresh density test,
according to NBR 9833 [46]. Finally, the fresh concrete was poured into the sample moulds
in two layers, compacted manually with the aid of metal sticks, and finished with a trowel.

All compacted specimens were subsequently covered with damp cloths and kept at
constant saturation to prevent evaporation of the water in the mixture. Due to pervious
concrete’s structure, exuded water, essential in the first hours after concreting, is scarce,
which requires extra attention during the curing process. The samples were demoulded
after 24 h and taken to the humid chamber, where they remained until they reached
testing age.

2.3. Experimental Procedures

The experimental program was based on the recommendations of the Brazilian stan-
dard NBR 16416 [42], which regulates the use of pervious concrete pavements in Brazil.
The tests were carried out to evaluate the influence of the considered parameters on the
developed pervious concrete’s mechanical and hydraulic properties. Hydraulic conduc-
tivity indices included density, voids index, and permeability coefficient. Mechanical
parameters involved compressive strength, flexural strength, and modulus of elasticity.
For the reference concrete case, the mechanical parameters of compressive strength and
modulus of elasticity were analysed. The considered tests, the standards that specify them,
the sample dimensions, the age of the test, and the number of samples are summarised in
Table 4.
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Table 4. Dimensions and specifications of the specimens considered.

Properties Standard Dimensions Age of Testing Number of Specimens

Fresh Density NBR 9833 [46] − After mixing 3 (laboratory tests); 3 (case study)

Hardened
Density and
Voids Index

ASTM C 1754 [47]
10 × 20 cm (cylinders);

10 × 20 × 6 cm;
10 × 20 × 8 cm

28 days 12 cylinders; 15 (6 cm thick);
15 (8 cm thick)

Compressive
Strength

NBR 5739 [48] and
NBR 9781 [49]

10 × 20 cm (cylinders);
10 × 20 × 6 cm;
10 × 20 × 8 cm

28 days

24 cylinders (12 of pervious
concrete; 12 of conventional

concrete); 15 (6 cm thick);
15 (8 cm thick)

Flexural
Strength NBR 12142 [50] 45 × 45 × 15 cm 28 days 3 (laboratory tests); 3 (case study)

Modulus of
Elasticity ASTM C 597 [51] 10 × 20 cm (cylinders) 28 days 12 (pervious concrete);

12 (conventional concrete)

Permeability
Coefficient NBR 16416 [42] 75 × 75 × 6 cm;

75 × 75 × 8 cm 28 days 3 (6 cm thick); 3 (8 cm thick)

Moreover, the pervious concrete developed in this work was compared with different
studies where there is a total substitution of natural aggregates with recycled aggregates.
These references and their respective features are presented in Table 5.

Table 5. Proportions of the mixes used to compare the analysed parameters.

Study Mix
Identification

Cement
(kg/m3)

Silica
Fume

(kg/m3)

Gravel (Natural
Aggregate)

(kg/m3)

Recycled
Aggregate

(kg/m3)

Water
(kg/m3)

Additive
(kg/m3)

Zaetang et al. [4] Z-R0 316 − 1435 − 76 2.4

Z-R100 316 − − 1435 76 2.4

Yap et al. [3] Y-R0 359 − 1300 − 125 −
Y-R100 359 − − 1484 125 −

El-Hassan et al. [10]
E-R0 580 − 1404 − 232 −

E-R100 500 − − 1325 200 −

Lu et al. [14]
L-R0 272 30 1510 − 97 −

L-R100 272 30 − 1510 136 −

Vieira et al. [52]
V-R0 516 − 2063 − 155 −

V-R100 448 − − 1790 134 −

Each study was selected for comparison due to a particular feature: Zaetang et al. [4]
added a superplasticiser Type F to their mixtures; Yap et al. [3] used a smaller particle
size of recycled aggregates in their compositions (4.5 to 9.5 mm); El-Hassan et al. [10]
established a design porosity of 10%, which increased the cement content of the composite;
Lu et al. [14] also studied the incorporation of silica fume in their pervious concrete,
intending to mitigate the reduction in its compressive strength; and finally, Vieira et al. [52],
despite not using RCA exclusively but recycled aggregates from CDW, used the same
cement from this study as a binder (CP V). For the other studies, ASTM type I ordinary
Portland cement was used. The comparison with these studies also extends to the analysis
of the concretes’ environmental performance to identify and contextualise the sustainable
potential of the product developed in this research.
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2.3.1. Fresh Density

The methodology used to perform the fresh density test is described in NBR 9833 [46].
This standard is based on the recommendations of ASTM C 1688 [53]. The test was
performed by moulding a container with a capacity of 5 dm3, whose characteristics are
specified by the reference standard. The concrete was distributed in two layers, applying
20 socket strokes per layer. Finally, the test was completed by dividing the mass of material
obtained by the container’s volume. According to Tennis et al. [26], pervious concrete
shows fresh density values 30% lower than those demonstrated by conventional concretes.

2.3.2. Hardened Density and Voids Index

The hardened density, defined as the relationship between each specimen’s mass
and its total volume, was determined using the methods described in ASTM C 1754 [47],
specified for pervious concretes. According to this international standard, the porosity
(voids index) of the samples was evaluated. For this, the dry mass and the submerged
mass of each specimen were obtained, with the aid of a hydrostatic scale. The void
index was calculated using Equation (1), which correlates each sample’s mass with the
respective volume.

Iv =

(
1 −

Mdry − Msub

γwVol

)
(1)

where Iv is the void index of the specimen; Mdry is the dry mass (kg); Msub is the sub-
merged mass (kg); γw is the apparent density of water (kg/m3); and Vol is the specimen
volume (m3).

2.3.3. Compressive Strength

The procedures performed on the cylindrical samples followed the recommendations
of NBR 5739 [48], which meets the methodology present in ASTM C39 [54]. Although this
test is not provided in NBR 16416 [42], its application aims to establish a parallel between
the pervious concrete developed and the other reference concretes. The tests were carried
out in a CONTENCO electro-hydraulic press, with a capacity of 100 T and a resolution of
10 kgf. The rupture strengths were calculated using Equation (2):

fc =
4F

πD2 (2)

where fc is compressive strength (MPa); F is the breaking load (N); and D is the diameter of
the specimen (mm).

The guidelines for carrying out this test are established in NBR 9781 [49]. The execution
of the laboratory procedure must simulate the stress borne by the piece during its use as
a floor. Therefore, the test consisted of applying a continuous load on the specimen until
its complete rupture, using the same press mentioned before. The compressive strength
of each piece (MPa) was obtained by dividing the breaking load (N) by the loading area
(mm2). The test result still involved multiplication by a correction factor (p) corresponding
to the piece’s nominal thickness. According to normative specifications, p is 0.95 for pieces
with a thickness equal to 6 cm, and 1.00 for those equal to 8 cm.

Finally, the standard recommends quantifying the estimated compressive strength
(fpk,est) using Student’s t-coefficient as a function of sampling, assuming that the com-
pressive strengths follow a normal distribution (Equation (3)). Student’s t-distribution
is a theoretical probability distribution similar to the standard normal curve, but with
wider tails. It is useful when estimating the mean of a normally distributed population
in situations where the sample size is small and the population’s standard deviation is
unknown [55].

fpk,est = fp − t × s (3)
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where fp is the average compressive strength of the pieces (MPa); fpk,est is the estimated
compressive strength (MPa); s is the standard deviation of the sampling (MPa); and t is
Student’s t-coefficient (with an 80% confidence interval).

2.3.4. Flexural Strength

The flexural strength test followed NBR 12142 [50], which is based on the recom-
mendations of ASTM C1161 [56]. This test also corresponds to a normative requirement,
specifically for pervious concrete moulded “in situ”. The press used in this procedure is the
same as the one described in the previous tests. Flexural strength was calculated according
to Equation (4).

fc, f =
Fl

bd2 (4)

where fc,f is the flexural strength (MPa); F is the breaking load (N); l is the distance between
the supports (mm); b is the average width of the specimen (mm); and d is the average
height of the specimen (mm).

2.3.5. Modulus of Elasticity

The analysis of the dynamic modulus of elasticity of the concrete presents as a criterion
the speed of propagation of ultrasonic waves in the composite. According to ASTM C
597 [51], its methodology is based on the basic concept of interdependence between the
speed of propagation of longitudinal waves in a homogeneous and isotropic material and
the elastic constants of this material. The propagation speed of each specimen was obtained
using the ultrasound device TICO, and the dynamic modulus of elasticity was calculated
using Equation (5).

Ed = γS2 (1 + ν)(1 − 2ν)

(1 − ν)
(5)

where Ed is the dynamic modulus of elasticity (MPa); γ is the specific mass of the material
(kg/m3); S is the wave propagation speed (km/s); and υ is Poisson’s ratio of pervious
concrete, which, according to Goede [57], is equal to 0.22.

2.3.6. Permeability Coefficient

Permeability is one of the most important properties for pervious concrete, as it is es-
sential for the management of rainwater in urban drainage systems [14]. NBR 16416 [42] ad-
mits two methods for assessing the permeability coefficient in the laboratory: the constant-
head method, described by NBR 13292 [58], and the test described in the standard, based
on ASTM C170 [59]. Due to its practicality, the test method presented in the standard was
used (Figure 3).

Crystals 2021, 11, x FOR PEER REVIEW 8 of 30 
 

 

same as the one described in the previous tests. Flexural strength was calculated according 

to Equation (4).  

,
²

c f

Fl
f

bd
  (4) 

where fc,f is the flexural strength (MPa); F is the breaking load (N); l is the distance between 

the supports (mm); b is the average width of the specimen (mm); and d is the average 

height of the specimen (mm). 

2.3.5. Modulus of Elasticity 

The analysis of the dynamic modulus of elasticity of the concrete presents as a crite-

rion the speed of propagation of ultrasonic waves in the composite. According to ASTM 

C 597 [51], its methodology is based on the basic concept of interdependence between the 

speed of propagation of longitudinal waves in a homogeneous and isotropic material and 

the elastic constants of this material. The propagation speed of each specimen was ob-

tained using the ultrasound device TICO, and the dynamic modulus of elasticity was cal-

culated using Equation (5).  

  

 

1 1 2
²

1
dE S

 




 



 (5) 

where Ed is the dynamic modulus of elasticity (MPa); γ is the specific mass of the material 

(kg/m³); S is the wave propagation speed (km/s); and υ is Poisson's ratio of pervious con-

crete, which, according to Goede [57], is equal to 0.22. 

2.3.6. Permeability Coefficient 

Permeability is one of the most important properties for pervious concrete, as it is 

essential for the management of rainwater in urban drainage systems [14]. NBR 16416 [42] 

admits two methods for assessing the permeability coefficient in the laboratory: the con-

stant-head method, described by NBR 13292 [58], and the test described in the standard, 

based on ASTM C170 [59]. Due to its practicality, the test method presented in the stand-

ard was used (Figure 3).  

 

Figure 3. Permeability coefficient test. 
Figure 3. Permeability coefficient test.



Crystals 2021, 11, 209 9 of 29

Besides, the standard limits the performance of permeability tests in the field to the
chosen technique. In this way, it is possible to perform the test on the samples in the
laboratory and directly in the implemented case study, comparing the obtained results
later. Measuring the infiltration time (T) and the infiltrated water mass (M) used in the test,
the permeability coefficient (K) was determined by Equation (6):

K =
CM
D2T

(6)

where K is the permeability coefficient, in mm/h; C is the international system unit con-
version factor (4,583,666,000); M is the infiltrated water mass, in kg; and D is the internal
diameter of the infiltration cylinder (300 mm), in the time (T) it takes the water mass to
infiltrate, in seconds.

2.3.7. Microstructural and Mineralogical Analysis

In cooperation with the Brazilian Portland Cement Association (ABCP), transmit-
ted light microscopy (TLM) and X-ray diffractometry (XRD) tests were carried out on a
fractured sample of pervious concrete to study how the incorporation of RCA affects its
structure. TLM was used to analyse the interaction between the paste and the recycled
aggregate. The microscope was adjusted at a magnification of up to 50× to obtain a clear
image of the transition zone between the phases. XRD aimed to extract the analysis of the
pervious concrete’s morphology and composition.

2.4. Pilot-Scale Case Study

For the “in situ” assessment of the studied material’s hydraulic properties, a case
study consisting of pervious concrete was implemented: a 2.5 × 5.0 m parking space,
located in the Infrastructure Office of UFJF (ProInfra) parking lot (Figure 4a). Following
the recommendations of NBR 16416 [42], the parking space had a pervious concrete lining
moulded in place with a thickness of 10 cm. For the lower layer, for which a thickness of
30 cm was adopted, open-grain stone materials were used, as specified in the standard
(Figure 4b). According to the subgrade characteristics, a partial drainage system was
adopted, where a small part of the precipitated water infiltrates through the soil itself and
the rest is removed by the installed drain, given a 2% drop, after being temporarily stored
in the porous structure.
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The mixing of the materials was carried out according to the parameters previously
defined in the laboratory. The concrete was launched directly with the wheelbarrow,
spread over the interior of the parking space, compacted manually with the aid of a trowel,
and levelled with a wooden batten to accommodate the particles in regular layers and to
regularise the surface (Figure 5).
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No expansion joints were created in the coating. According to the National Ready
Mixed Concrete Association (NRMCA) [60], concreting “in situ” allows the absence of joints
in plates less than 6 m in length due to the lower shrinkage presented by pervious concrete
over conventional. The curing of the material consisted of wetting of the concrete at
regular periods by ProInfra employees for 7 days. After this initial period, the permeability
coefficient tests were performed. In addition to the permeability coefficient test in the
case study, when concreting the parking space, the fresh density test was performed, and
3 prisms were moulded for the flexural strength test, as recommended by the standard
of reference.

2.5. Environmental Performance Assessment
2.5.1. Goal and Scope

The main goal was to evaluate the environmental performance of different concrete
mixes using recycled aggregates instead of natural ones, including those developed in this
work and those taken from the literature (Table 5). The method used in this study followed
the phases of a Life Cycle Assessment (LCA): objective and scope definition, inventory
analysis, and impact assessment. Comparative analysis and aggregation of indicators
were developed using the multi-criteria decision support Methodology for the Relative
Sustainability Assessment of Building Technologies (MARS-SC) [61–63]. The MARS-SC
methodology is based on assessing the impact of a construction solution on three groups
of sustainability dimensions: environmental, functional, and economic [62,63]. As this
research aims to assess the environmental performance of different concrete formulations,
only the environmental dimension of MARS-SC was considered.
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2.5.2. Declared Unit and System Boundaries

The declared unit was 1 m3 of concrete, which is the basis for comparison throughout
the study. The boundaries of this research include the embodied environmental impacts
(cradle-to-gate) of the different concrete compositions, comprising the extraction of raw
materials for concrete production and preparation processes (cement, recycled aggregate, ar-
tificial and natural sand, gravel, silica fume, and plasticiser) and the environmental impacts
that result from the transportation of materials to the concrete plant and their mixing. The
option to limit the study to the cradle-to-gate stage is justified because the use and disposal
of concrete will result in similar environmental impacts in the studied compositions.

2.5.3. Inventory Analysis

Inventory analysis was used to quantify the inputs (e.g., energy and materials) and
outputs (e.g., emissions and waste) of the product system [29,64]. As previously mentioned,
in this study, the production of raw material, its transport to the concrete plant, and concrete
production were included in the inventory.

The inventory of materials corresponds to the mix proportions presented in Tables 3 and 5.
The transportation inventory considered for the specific context of the Brazilian concrete
industry is shown in Table 6. The impacts were calculated using the Life Cycle Impact
Assessment (LCIA) methods, and the SimaPro 8.4.0.0 software was used to model the life
cycle of the different mixtures.

Table 6. Results of the transportation inventory for each concrete mix (figures per m3 of produced concrete).

Concrete Identification Cement Silica Fume Gravel
Recycled Aggregate

AS NS Additive Unity
Scenario 1 Scenario 2

CC-Ref-R0 57 0 17 0 0 4 11 0 tkm
PC-R100 56 0 0 208 20 0 0 0 tkm

Z-R0 57 0 24 0 0 0 0 0 tkm
Z-R100 57 0 0 253 24 0 0 0 tkm

Y-R0 64 0 22 0 0 0 0 0 tkm
Y-R100 64 0 0 261 25 0 0 0 tkm
E-R0 104 0 23 0 0 0 0 0 tkm

E-R100 90 0 0 233 22 0 0 0 tkm
L-R0 49 16 25 0 0 0 0 0 tkm

L-R100 49 16 0 266 25 0 0 0 tkm
V-R0 92 0 34 0 0 0 0 0 tkm

V-R100 80 0 0 315 30 0 0 0 tkm

For the CP III and CP V types of cement, the consumption of raw materials, energy,
and fuel and the emissions released during cement production of a Brazilian cement plant
were considered. The used source of information was the public Product Environmental
Declaration of the selected cement plant [65].

For recycled aggregates, two scenarios were analysed regarding their transport. The
first scenario considers the transport from a waste treatment plant located 176 km away
from the reference concrete plant. In the second scenario, the recycled aggregates are
transported for the same distance of the natural aggregates. In Brazil, CDWs are classified
as a waste product and, therefore, do not afford an economic value. Thus, according to
the allocation rules established by ISO 14040 [66], no flows from the demolition site were
attributed to the waste treatment plant and its production. Only the transportation from
the production site to the concrete plant was considered.

The other materials used in the mixtures (Type 1 cement, sand, gravel, silica fume,
and additives), transportation processes, and production processes and generic data from
the life cycle inventory database Ecoinvent report V3 [67] were used. This database covers
the average inventory data of the primary building materials and processes in different
regional contexts [62]. For each considered process from this database, a contextualisation
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was made for the Brazilian energy context. Therefore, all the processes used from the
Ecoinvent database were edited, and the electricity input flows were changed considering
the Brazilian energy mix.

2.5.4. Impact Assessment

In this stage, the classification, characterisation, and normalisation of the impact
categories were carried out [31]. Life cycle inventory data were converted into potential
environmental impacts, using different LCIA methods. In MARS-SC, the environmental
performance assessment is based on the following categories of environmental impact
(Table 7): global warming, ozone depletion, soil and water acidification, eutrophication,
photochemical ozone creation, and depletion of abiotic resources—fossils fuels. Compared
to the list of impact categories found in the EN 15804 standard [68], MARS-SC does not
consider the depletion of abiotic resources elements as an impact category.

Table 7. Indicators, units, and life cycle impact assessment (LCIA) methods.

Environmental Indicators Units LCIA Methods

Global Warming (GWP 100) (kg CO2 eq) CML-IA baseline V3.04
Ozone Layer Depletion (ODP) (kg CFC-11 eq) CML-IA baseline V3.04

Acidification Potential (AP) (kg SO2 eq) CML-IA baseline V3.04
Eutrophication Potential (EP) (kg PO4 eq) CML-IA baseline V3.04

Formation Potential of Tropospheric Ozone (POCP) (kg C2H4 eq) CML-IA baseline V3.04
Abiotic Depletion Potential of Fossil Resources (ADP_FF) (MJ eq) CML-IA baseline V3.04

2.5.5. Normalisation and Aggregation

To avoid scale effects in the aggregation of the parameters of the different indicators,
and because some of the parameters are of the type where “higher is better” and others
where “lower is better”, the indicators needed to be normalised [29]. The normalisation of
indicators was performed as described in [62,63].

The aggregation of each environmental indicator into a global indicator that describes
the overall environmental performance was done according to the procedure described in
previous research [63]. The results were presented in a “radar” or Amoeba diagram, also
known as a sustainable profile. In the diagram, the number of rays is equal to the number
of indicators that were analysed [29]. In each sustainable profile, the overall performance of
the different concretes is monitored and compared with the RCA-based pervious concrete
developed in the study (Table 3).

3. Results and Discussion
3.1. Transmitted Light Microscopy (TLM)

The performance of pervious concrete is dependent on the cement paste, the cement
content, the aggregates, the water/cement ratio, and, mainly, the pore structure [52,69].
When using the recycled aggregate, the concrete tends to present a more porous cement
paste and larger interconnected voids. In Figure 6a, from the photomicrograph with
uncrossed nicols (polarised filters) at 25× magnification, it is possible to observe the RCA
(G) involved with the paste of cement (P). In the lower portion of the image, a pore (poro)
is identified. In Figure 6b, which shows the cross nicol photomicrograph, also with a
25× magnification, there is an abrupt contact between the paste (P) and the recycled
aggregate (G).

Another important factor analysed involves the carbonation of the recycled concrete
used. The cross nicols photomicrograph with 50× magnification presented in Figure 7
allows for evaluating the contact between the RCA (G), which has its paste with a high
degree of carbonation (arrow), and the non-carbonated paste (P). In Figure 7a, it is possible
to notice, again, the abrupt contact between the paste and the recycled aggregate. Note
that to the left of Figure 7b, next to the pore (V), the paste (P) is already carbonated (arrow).
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The contact between the paste (P) and the recycled aggregate takes place gradually, giving
rise to a transition zone (Z).
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Figure 7. Cross nicol photomicrograph (a) and (b), transmitted light microscope, 50× magnification.

In another two points of the sample, a cross nicol photomicrograph with 50× mag-
nification (Figure 8) shows the contact between the carbonated RCA (G) and the low-
carbonated paste (P). The contact also occurs gradually, giving rise to a new transition
zone (Z).

According to Yang et al. [70], pervious concrete with recycled aggregates presents a
less dense paste, since the transition zone between the phases is more visible. Yap et al. [3]
point out that the strength of this aggregate–paste bond is lower in concretes with higher
replacement of natural aggregates by RCA, which has trapped and permeable pores. This
phenomenon is due to the absorption of the mixing water by the mortar adhered to the
RCA, which reduces the amount of cement paste [5].
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Figure 8. Cross nicol photomicrograph (a) and (b), transmitted light microscope, 50× magnification.

The presence of cracks also makes the structure weaker [71]. Wang, Yu, and Li [72]
clarify that this fragility in the transition zone is caused by the processing of RCA (crushing
and screening), which is also responsible for the increase in porosity. If, on the one hand,
RCA porosity in pervious concrete is beneficial considering the permeability and infiltration
criteria, on the other hand, its fragile microstructure, with a large number of micro-cracks
in the transition zone, has a significant impact on the physical–mechanical properties of
the composite.

3.2. X-ray Diffractometry (XRD)

Figure 9 presents the diffractogram of the fractured sample of pervious concrete. After
preparation of the recycled aggregate, XRD shows that the concrete produced comprises
minerals related to RCA: quartz, feldspar, mica, and pyroxene. In addition to these, it
is possible to identify portlandite (Ca(OH)2), calcite, and anhydrous cement minerals,
suggesting the presence of the adhered mortar phase.
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In general, the transition zones between the phases represent the most fragile places
in the concrete. The incidence of any variations such as the appearance of cracks or
increased porosity is capable of causing a loss of adhesion between the phases, affecting
the mechanical properties of the concrete [73]. The results of the microstructural and
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composition analyses suggested that the rupture of the RCA-based pervious concrete occurs
mainly at the interface between the recycled aggregate and the old, adhered cement paste.

3.3. Void Index and Fresh and Hardened Density

The fresh density tests performed in the laboratory showed an average of 1678.9 kg/m3,
with a standard deviation of 54.96 kg/m3 and a coefficient of variation of 3.27%. Accord-
ing to NBR 16416 [42], the value obtained must be equal to that specified in the project
(1600 kg/m3), with a tolerance of 80 kg/m3. As noted, the result obtained respects the
normative regulations. Table 8 presents the average, standard deviation, and the variation
coefficient of the results of the hardened density and void index related to each type of
pervious concrete specimen tested.

Table 8. Results of hardened density and voids index of RCA-based pervious concrete.

Data
Cylindrical Specimens Pieces 10 × 20 × 6 cm Pieces 10 × 20 × 8 cm

Hardened Density
(kg/m3)

Void Index
(%)

Hardened Density
(kg/m3)

Void Index
(%)

Hardened Density
(kg/m3)

Void Index
(%)

Average 1904.33 24.83 2006.57 16.94 1840.24 17.88

Standard
Deviation 96.30 3.16 104.28 2.31 98.65 2.40

Coefficient of
Variation (%) 5.06 12.74 5.20 13.63 5.36 13.40

Although the literature indicates values from 15% to 35% for the typical void index
of pervious concrete, the rates obtained are closer to the 20% defined by Tennis et al. [26]
as the optimal value between resistance and permeability. In general, the use of RCA
decreases the hardened density of pervious concrete. According to Kim et al. [74], higher
values of porosity and absorption are associated with an increase in recycled aggregate
index in concrete. This behaviour can be attributed to the lower density and the higher
void index of the recycled aggregate itself [2]. Due to its texture and more angular shape,
more trapped air is introduced into the concrete. However, it is also possible that this
behaviour is due to the lower adherence of the mortar on the RCA, resulting in a more
porous concrete structure [10].

The correlation between hardened density and void index can be seen in Figure 10. It
is noticeable that the void index represents a dominant factor over the hardening density
of pervious concrete.
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The cylindrical specimens and the 6 and 8 cm pieces for interlocking paving presented
an average hardened density 18%, 25%, and 16% higher than the design value, respectively.
This discrepancy between the different specimens is mainly due to the difference between
the volume of voids desired and that actually obtained. It is worth mentioning the de-
pendence of these properties on the RCA variability used in the mixture and the concrete
compaction procedures.

3.4. Compressive Strength

The compressive strength results obtained for concrete pieces of 6 and 8 cm thickness
are shown in Table 9.

Table 9. Results of compressive strength obtained for concrete pieces of 6 and 8 cm thickness.

Data 6 cm Thick 8 cm Thick

Average (MPa) 24.30 21.91
Standard Deviation (MPa) 3.00 1.90
Coefficient of Variation (%) 12.36 8.68

fpk,est (MPa) 21.64 20.21

It is possible to notice that the values obtained for both thicknesses meet the normative
requirements defined by NBR 16416 [42], limiting the compressive strength of permeable
pieces for interlocked paving at 20 MPa. Therefore, this material can be used as a floor cov-
ering for pedestrian traffic, with a minimum thickness of 6 cm, and light traffic, identified
as requesting the pavement to preferential traffic of light vehicles (minimum thickness of
8 cm).

However, even after applying the correction factor related to the sample thickness,
the 6 cm pieces showed higher resistance than the thicker pieces. This phenomenon can
be justified by analysing Figure 11, which demonstrates the proportionality relationship
between the compressive strength and the hardened density of the pieces for interlocking
paving: higher-density samples tend to have higher compressive strength indexes.

Crystals 2021, 11, x FOR PEER REVIEW 17 of 30 
 

 

 

Figure 11. Correlation between compressive strength and the hardened density of the pieces for 

interlocking paving. 

As seen, for both cases, the compressive strength tended to increase linearly with 

increasing density, which indicates that density plays a fundamental role in the mechani-

cal strength of pervious concrete. Therefore, the lower compressive strength associated 

with 8 cm thick pieces is related to the lower indices of hardened density presented by 

them. Besides, according to Silva, Brito, and Dhir [75], the existence of different construc-

tion methods naturally reflects in recycled aggregates diversified in quality and composi-

tion, representing the production of new construction materials of varying quality. 

The average values of compressive strength at 28 days obtained for cylindrical sam-

ples of pervious concrete and conventional concrete are shown in Table 10. 

Table 10. Results of compressive strength and modulus of elasticity obtained for the cylindrical specimens. 

Data 

Pervious Concrete Conventional Concrete 

Compressive Strength 

(MPa) 

Modulus of Elasticity 

(GPa) 

Compressive Strength 

(MPa) 

Modulus of Elasticity 

(GPa) 

Average 17.65 13.41 28.75 29.01 

Standard Deviation 1.81 1.81 1.31 1.74 

Coefficient of  

Variation (%) 
10.28 13.52 4.57 6.00 

As can be seen, the value achieved by the developed RCA-based concrete fits within 

the range defined by the literature for pervious concretes. However, this value represents 

approximately 60% of the value obtained by conventional concrete, even with similar ce-

ment content. This fact is mainly related to the difference between the aggregates used 

and the different moulding and compaction techniques used that make the pervious con-

crete structure more porous, consequently decreasing its compressive strength. 

Even so, the value meets the range of 10–13 MPa for projected compressive strength 

that is preferred for parking lots, stone protection, drainage pavement, and porous con-

crete precast products [3,76]. In Figure 12, the results obtained in this study (darker) are 

compared to the ones found in the literature for pervious concretes with recycled aggre-

gates. 

y = 0.0601x - 94.852
R² = 0.8838

y = 0.0266x - 29.211
R² = 0.794

10

15

20

25

30

35

40

1700 1750 1800 1850 1900 1950 2000 2050 2100

C
o

m
p

re
ss

iv
e 

St
re

n
gt

h
 (

M
P

a)

Hardened Density (kg/m³)

Pieces (6 cm) Pieces (8 cm)

Figure 11. Correlation between compressive strength and the hardened density of the pieces for
interlocking paving.

As seen, for both cases, the compressive strength tended to increase linearly with
increasing density, which indicates that density plays a fundamental role in the mechanical
strength of pervious concrete. Therefore, the lower compressive strength associated with
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8 cm thick pieces is related to the lower indices of hardened density presented by them.
Besides, according to Silva, Brito, and Dhir [75], the existence of different construction
methods naturally reflects in recycled aggregates diversified in quality and composition,
representing the production of new construction materials of varying quality.

The average values of compressive strength at 28 days obtained for cylindrical samples
of pervious concrete and conventional concrete are shown in Table 10.

Table 10. Results of compressive strength and modulus of elasticity obtained for the cylindrical specimens.

Data
Pervious Concrete Conventional Concrete

Compressive
Strength (MPa)

Modulus of
Elasticity (GPa)

Compressive
Strength (MPa)

Modulus of
Elasticity (GPa)

Average 17.65 13.41 28.75 29.01

Standard
Deviation 1.81 1.81 1.31 1.74

Coefficient of
Variation (%) 10.28 13.52 4.57 6.00

As can be seen, the value achieved by the developed RCA-based concrete fits within
the range defined by the literature for pervious concretes. However, this value represents
approximately 60% of the value obtained by conventional concrete, even with similar
cement content. This fact is mainly related to the difference between the aggregates used
and the different moulding and compaction techniques used that make the pervious
concrete structure more porous, consequently decreasing its compressive strength.

Even so, the value meets the range of 10–13 MPa for projected compressive strength
that is preferred for parking lots, stone protection, drainage pavement, and porous concrete
precast products [3,76]. In Figure 12, the results obtained in this study (darker) are com-
pared to the ones found in the literature for pervious concretes with recycled aggregates.
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Figure 12. Comparison between the compressive strength values obtained in this study and in other research.

It is possible to identify that the RCA-based pervious concrete developed has a com-
pressive strength higher than the one of other studies that used 100% recycled aggregates,
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except for the pervious concrete with the addition of silica fume, produced by Lu et al. [14].
The lowest indexes presented are associated with CDW residues not exclusively from
concrete, which justifies the choice for RCAs in this study. As for pervious concrete with
natural aggregates, those that had a compressive strength closest to the conventional con-
crete presented in this study were that of El-Hassan et al. [10], designed with lower void
index and higher cement content, and, again, that of Lu et al. [14], which had silica fume in
the composition.

3.5. Modulus of Elasticity

Because it is a mechanical wave, ultrasound propagates better in a denser environment.
Therefore, the greater the concrete’s porosity, the lower its dynamic modulus of elasticity [9].
As presented in Table 10, the pervious concrete’s elasticity modulus is 54% lower than the
one obtained by the conventional concrete, which is close to the limit of 28 GPa defined
by Cook, Goodspeed, and Vanicar [77]. This is due to the porous composition of the
pervious concrete, which has a more significant volume of voids that is also enhanced by
incorporating RCAs.

The value obtained for pervious concrete is similar to the value obtained by Yap et al. [3]
(Figure 13), although they obtained a higher modulus of elasticity for the RCA-based pervi-
ous concrete compared to the one with natural aggregates. According to the authors, this
finding does not represent the expected result, because when RCA is incorporated into the
concrete, the composite bond between the cement paste and the aggregate is reduced.
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Figure 13. Comparison between the modulus of elasticity values obtained in this study and in the literature.

3.6. Flexural Strength

The Brazilian standard NBR 16416 [42] specifies a flexural strength in pervious concrete
slabs moulded “in situ” greater than 1 MPa for pedestrian traffic, while for light traffic, the
minimum is 2 MPa. All values obtained for the pervious concrete prisms studied exceed
these limits (average: 2.21 MPa; standard deviation: 0.05 MPa; variation coefficient: 2.40%),
indicating that it is an ideal material for both purposes.

Figure 14 presents the flexural strength values obtained together with the values found
by reference studies that performed the same test. As for the compressive strength, it is
possible to note that the values achieved by pervious concretes with recycled aggregates
are lower than those of concretes with natural aggregates. This is probably due to the lower
abrasion resistance and lower density of the recycled aggregates, which causes an increase
in the volume of internal voids in the composite, making it more fragile to mechanical
stresses [52]. The fact that can justify the higher flexural strength obtained in the study
of Zaetang et al. [4] is the use of plasticiser additive, which contributes to improving the
workability characteristics of concrete as it facilitates water dispersion considering the
hydration of the paste.
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3.7. Permeability Coefficient

The ability to allow water to seep through its pore structure makes pervious concrete
stand out among other concrete types [3]. Thus, water permeability is an important
property to evaluate its performance [78]. NBR 16416 [42] specifies the permeability value
of 0.1 cm/s as the minimum criterion that the pavement must present in the first days after
its execution. ACI 522R [27], in turn, establishes a minimum value of 0.14 cm/s for the
permeability coefficient in pervious concretes.

Figure 15 shows the permeability coefficients obtained for the 6 cm and 8 cm plates
compared to the values found in the reference studies. As can be seen, although they
present high coefficients of variation (20.77% and 20.10%), both samples investigated
showed permeability values above the minimum specified by normalisation and within
the range of values described in the literature (average of 1.20 cm/s for 6 cm thick plates
and an average of 1.76 cm/s for 8 cm plates).
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It is worth mentioning that El-Hassan et al. [10] reached permeability values much
lower than the ones of the other studies. This is due to the lower design porosity adopted by
the authors. Although above the normative requirements, the lower indexes are associated
with pervious concretes with higher mechanical strength values [14]. This indicates that
the same characteristics capable of affecting its resistance to stresses (porosity and structure
with interconnected voids) are responsible for making the concrete more permeable. In
general, it is difficult to simultaneously optimise mechanical and durability properties and
infiltration, since the good performance of pervious concrete is governed by porosity [33].
This fact sums up the most significant research challenge surrounding this material: to
develop pervious concretes without neglecting their mechanical capacity.

3.8. Pilot-Scale Case Study

The results of the tests of fresh density, flexural strength, and permeability coefficient
performed for the parking space lined with pervious concrete are shown in Table 11.

Table 11. Results of fresh density, flexural strength, and permeability coefficient obtained in the
pilot-scale case study.

Data Fresh Density
(kg/m3)

Flexural Strength
(MPa)

Permeability
Coefficient (cm/s)

Average 1675.9 1.85 2.74
Standard Deviation 27.78 0.23 0.46

Coefficient of Variation (%) 1.66 12.15 16.64

As in the laboratory tests, the fresh density results found for the case study are within
the normative limits. It can also be noted that the permeability coefficient tests performed in
the parking space demonstrated the draining potential of the pervious concrete developed:
the results obtained were even higher than the values found in the laboratory.

However, it is noted that the case study presented a mechanical resistance lower than
the values obtained in the laboratory. This can be justified by the RCAs’ natural variability;
their strength may vary according to the condition and function of the original concrete.
Although the value is slightly below the limit for light traffic, this material is acceptable for
pedestrian trails and walkways since the Brazilian standard limits the flexural strength for
pedestrian traffic with pervious concrete coating moulded “in situ” to 1.00 MPa.

Considering the hydraulic capacity well above the limit of the developed material, an
alternative to increasing the mechanical performance of pervious concrete is presented by
Ibrahim et al. [28]. It consists in incorporating recycled fine aggregates into the concrete
mixture, which, due to the packaging phenomenon, would improve the thickness of the
paste and the interlock between the aggregate and the concrete, thus reducing the variation
in the porosity of the material. This would result in increased flexural and compressive
strength but would produce a less porous mesh, reducing the permeability coefficient.

3.9. Environmental Performance Assessment

Tables 12 and 13 present the values obtained from the quantification of the environmental
impact categories for the different concrete formulations in scenarios 1 and 2, respectively.

Analysing the results, in both scenarios, it is possible to verify that the concretes that
use a more considerable amount of cement in their composition have the highest values of
environmental impact. Additionally, the mixtures that use Type I cement present higher
values for ADP_FF and GWP 100 because they have a greater amount of clinker in their
composition. The higher greenhouse gas emissions (GWP) are related to the amount of
cement, resulting from clinker production [79,80].
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Table 12. Values obtained for the different environmental impact indicators for each concrete
formulation in scenario 1.

Concrete GWP 100 ODP AP EP POCP ADP_FF

CC-Ref-R0 2.39 × 102 5.70 × 10−6 7.37 × 10−1 1.37 × 10−1 4.78 × 10−2 1.30 × 103

PC-R100 3.30 × 102 8.64 × 10−6 8.45 × 10−1 1.58 × 10−1 4.10 × 10−2 1.33 × 103

Z-R0 3.07 × 102 1.12 × 10−5 7.02 × 10−1 1.68 × 10−1 2.96 × 10−2 1.42 × 103

Z-R100 3.41 × 102 1.78 × 10−5 8.74 × 10−1 2.07 × 10−1 3.48 × 10−2 1.98 × 103

Y-R0 3.42 × 102 1.18 × 10−5 7.59 × 10−1 1.81 × 10−1 3.13 × 10−2 1.49 × 103

Y-R100 3.79 × 102 1.88 × 10−5 9.43 × 10−1 2.23 × 10−1 3.70 × 10−2 2.09 × 103

E-R0 5.47 × 102 1.82 × 10−5 1.19 2.80 × 10−1 4.83 × 10−2 2.34 × 103

E-R100 5.05 × 102 2.19 × 10−5 1.19 2.80 × 10−1 4.68 × 10−2 2.55 × 103

L-R0 2.66 × 102 1.00 × 10−5 6.13 × 10−1 1.48 × 10−1 2.56 × 10−2 1.23 × 103

L-R100 3.02 × 102 1.70 × 10−5 7.93 × 10−1 1.89 × 10−1 3.11 × 10−2 1.82 × 103

V-R0 4.98 × 102 5.13 × 10−6 1.15 2.02 × 10−1 6.00 × 10−2 1.42 × 103

V-R100 4.75 × 102 1.27 × 10−5 1.22 2.25 × 10−1 5.87 × 10−2 1.94 × 103

Table 13. Values obtained for the different environmental impact indicators for each concrete
formulation in scenario 2.

Concrete GWP 100 ODP AP EP POCP ADP_FF

CC-Ref-R0 2.39 × 102 5.70 × 10−6 7.37 × 10−1 1.37 × 10−1 4.78 × 10−2 1.30 × 103

PC-R100 2.99 × 102 2.80 × 10−6 6.83 × 10−1 1.20 × 10−1 3.51 × 10−2 8.28 × 102

Z-R0 3.07 × 102 1.12 × 10−5 7.02 × 10−1 1.68 × 10−1 2.96 × 10−2 1.42 × 103

Z-R100 3.03 × 102 1.07 × 10−5 6.76 × 10−1 1.61 × 10−1 2.76 × 10−2 1.37 × 103

Y-R0 3.42 × 102 1.18 × 10−5 7.59 × 10−1 1.81 × 10−1 3.13 × 10−2 1.49 × 103

Y-R100 3.39 × 102 1.14 × 10−5 7.38 × 10−1 1.75 × 10−1 2.96 × 10−2 1.46 × 103

E-R0 5.47 × 102 1.82 × 10−5 1.19 2.80 × 10−1 4.83 × 10−2 2.34 × 103

E-R100 4.69 × 102 1.54 × 10−5 1.01 2.37 × 10−1 4.02 × 10−2 1.98 × 103

L-R0 2.66 × 102 1.00 × 10−5 6.13 × 10−1 1.48 × 10−1 2.56 × 10−2 1.23 × 103

L-R100 2.62 × 102 9.49 × 10−6 5.86 × 10−1 1.40 × 10−1 2.35 × 10−2 1.17 × 103

V-R0 4.98 × 102 5.13 × 10−6 1.15 2.02 × 10−1 6.00 × 10−2 1.42 × 103

V-R100 4.28 × 102 3.87 × 10−6 9.71 × 10−1 1.68 × 10−1 4.98 × 10−2 1.18 × 103

The higher cement consumption observed in the work of Yap et al. [3] compared to
the pervious concrete developed in this study may be associated with the use of aggregates
with lower granulometry. The larger specific surface of smaller aggregates may require
a higher binder content needed to surround the aggregated particles. This ends up in a
material with a higher potential environmental impact.

Table 14 presents the normalisation of the values obtained for each environmental
impact category in scenarios 1 and 2. The normalisation of the values allows a better
understanding of the environmental performance of each concrete comparatively.

Table 14. Normalised values of the studied environmental impact categories.

Concrete Scenario 1 Scenario 2

GWP ODP AP EP POCP ADP_FF GWP ODP AP EP POCP ADP_FF

CC-Ref-R0 1.00 0.97 0.79 1.00 0.35 0.95 1.00 0.81 0.75 0.90 0.33 0.69
PC-R100 0.70 0.79 0.62 0.85 0.55 0.92 0.81 1.00 0.84 1.00 0.68 1.00

Z-R0 0.78 0.64 0.85 0.78 0.88 0.85 0.78 0.45 0.81 0.70 0.83 0.61
Z-R100 0.67 0.24 0.57 0.51 0.73 0.43 0.79 0.49 0.85 0.75 0.89 0.64

Y-R0 0.66 0.60 0.76 0.69 0.84 0.80 0.66 0.42 0.71 0.62 0.79 0.56
Y-R100 0.55 0.19 0.45 0.40 0.67 0.35 0.67 0.44 0.75 0.66 0.83 0.58
E-R0 0.00 0.22 0.05 0.00 0.34 0.16 0.00 0.00 0.00 0.00 0.32 0.00

E-R100 0.14 0.00 0.04 0.00 0.38 0.00 0.25 0.18 0.30 0.27 0.54 0.23
L-R0 0.91 0.71 1.00 0.92 1.00 1.00 0.91 0.53 0.96 0.83 0.94 0.74

L-R100 0.79 0.29 0.70 0.64 0.84 0.55 0.92 0.56 1.00 0.88 1.00 0.77
V-R0 0.16 1.00 0.11 0.54 0.00 0.85 0.16 0.85 0.06 0.49 0.00 0.61

V-R100 0.23 0.55 0.00 0.38 0.04 0.46 0.39 0.93 0.36 0.70 0.28 0.77
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In general, in scenario 1, where the recycled aggregate transportation between the
waste treatment plant and the concrete company is considered, concretes with recycled
aggregates from each study show a worse environmental performance compared to those
with natural aggregates. In scenario 2, this situation is reversed. This reflects the relevant
contribution of transport to the embodied environmental impact of construction materials.

Figure 16 compares the GWP of the gravel with that of the RCA, considering the
cradle-to-gate plus transportation GWP emissions. The method used is the one proposed
by Zulcão et al. [81], focused on the GWP impact category. The gravel’s transport distance
is kept constant (16.6 km) in this study for the various concrete compositions. Therefore,
the emissions related to transportation from the quarry to the concrete plant do not vary
(3.02 × 102 kgCO2eq). The RCA production process has a lower potential environmental
impact than the one resulting from the production of natural aggregates. However, if RCAs’
transportation distance is higher than that of gravel, the cradle-to-gate plus transportation
potential environmental impacts can also be worse. In that case, using RCAs instead
of natural aggregates could be worse from the environmental point of view. Then, in
this context, RCA has lower potential environmental impacts than gravel for transport
distances below 33 km. This conclusion is analogous to the one of similar studies, such as
Zaetang et al. [4] and Lu et al. [14], which maintain the same amount of aggregates in their
compositions with only recycled or natural aggregates.
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Figure 16. Correlation between global warming (GWP) emissions and the transport distance of the
recycled aggregates.

When bringing in the context of the materials developed in this work, it is observed
that conventional concrete achieves better environmental performance in all indicators in
scenario 1. In scenario 2, due to the shortening of the recycled aggregate transport distance,
the RCA-based pervious concrete obtains better results for all indicators, except for GWP.
This exception probably results from the fact that the amount of CO2 (0.906 g/kg) emitted
from the production of 1 kg of CP V cement is almost double the CO2 emissions associated
with the production of CP III cement (587 g/kg) [65].

Tables 15 and 16 show the sustainable profiles and the overall environmental per-
formance of each concrete formulation for scenarios 1 and 2, respectively. In the profiles,
the shaded area represents the performance of each studied concrete. At the level of each
impact category, the best concrete has a value closer to one.
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Table 15. Normalised values that describe the sustainability profile of scenario 1.

Concrete Sustainability
Profile

Environmental
Performance IA Concrete Sustainability

Profile
Environmental
Performance IA

CC-Ref-R0
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Table 16. Normalised values that describe the sustainability profile of scenario 2.

Concrete Sustainability
Profile

Environmental
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It is a fact that the pervious concrete developed in this study (PC-R100) and the RCA-
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Comparing the environmental performances, it is observed that the PC-R100 obtains better
results in most indicators. This difference may be explained by the use of a different type
of cement and plasticiser additives in the reference study. The increase in the amount of
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superplasticiser leads to an increase in the potential environmental impacts [29]. According
to Heede and Belie [82], the amount of CO2 emitted from the production of 1 kg of
superplasticiser is close to that from the cement production.

Finally, it is worth analysing the performance of the RCA-based pervious concrete
from Lu et al. [14], in which silica fume was incorporated. In scenario 1, its performance
was lower than that of the pervious concrete in the present study, even with lower cement
content. Since it has a greater amount of RCAs, the influence of the transport distance of
the recycled aggregate increases proportionally. As for scenario 2, where the environmental
impact of the recycled aggregate is less relevant, the smaller amount of cement made
possible by incorporating silica fume makes it more eco-friendly.

This fact is corroborated by comparing the two concretes with silica fume: even
presenting the same amount of aggregate in scenario 1, the L-0R, made up of natural
aggregates, is better at the environmental level; for scenario 2, where the transport distances
are the same, the L-100R, with 100% RCA, had the lower environmental impact.

In general, identifying the factors that influence environmental performance and the
possibility of producing a functional and environmentally optimised material represents a
solution for the sustainability of the concrete industry.

4. Conclusions

This study investigated the effect of replacing 100% of natural aggregates with recycled
concrete aggregates (RCAs) in the production of pervious concrete. For this, the mechanical
and hydraulic properties and environmental performance of the product developed were
studied. Based on the results achieved, it is possible to draw some relevant conclusions:

• The results obtained in the permeability coefficient test demonstrated the excellent
draining potential of the elaborated composite. All the plates tested had coefficients
above the normative limit, equivalent to 0.1 cm/s.

• The high levels of hydraulic conductivity are associated with the greater void index of
the pervious concrete, which is inversely proportional to its hardened density. How-
ever, these characteristics negatively affect the mechanical strength of the material.

• The RCA-based pervious concrete developed has great functional potential. The
mechanical tests performed in the laboratory obtained values compatible with the
literature and above the minimum functional requirements. However, as the me-
chanical strength of concrete is intrinsically dependent on the aggregate used, it is
recommended to use RCA from concretes that had a structural function in the previous
life cycle.

• Due to the inherent variability of recycled aggregates, it is crucial to develop clas-
sification procedures based on some physical characteristics, such as density, water
absorption, or abrasion resistance, to avoid further dispersion of performance proper-
ties. In general, it should be considered that the greater the strength of the concrete is
that gave rise to the recycled aggregate, the greater the resistance will be of the final
product.

• Regarding the case study, it was found that the permeability of the pavement is similar
to the one measured in the laboratory. Although the flexural strength in the parking
space did not meet the limits of the parameter for vehicle traffic, the results were
favourable for pedestrian traffic. This discrepancy between the laboratory results
and “in situ” results can be attributed to the different strengths and conditions of the
concrete that gave rise to the recycled aggregate.

• Therefore, it is important to establish a way to increase the mechanical strength of
pervious concrete developed with RCAs. In this scenario, it is possible to consider
incorporating a certain amount of fine aggregates to the pervious concrete mixture
to increase its mechanical resistance, without neglecting its hydraulic capacity and
environmental performance.

• With respect to the microstructure of RCA-based pervious concrete, it was possible
to identify that the interface between the recycled aggregate and the old mortar
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becomes the most vulnerable phase of the concrete. The bonded mortar’s carbonation
demonstrates poor aggregate–paste adhesion, and the TLM and XRD tests suggested
that the material rupture occurs in the aggregate itself.

• RCA represents a positive contribution to the environmental performance of pervious
concrete when compared to conventional concrete and pervious concrete with natural
aggregates from other studies. However, one must pay attention to the transport
distance of the recycled aggregate between the concrete plant and the waste treatment
plant where the aggregate will be received.

• It is worth mentioning the sustainability potential of incorporating silica fume. On
analysing the mixtures taken from the literature, those that presented the best func-
tional and environmental performances are the ones composed of this material.

• Although this study focuses on characterising materials produced in Brazil using
national standards, the used approach is based on commonly accepted international
standards such as ACI and ASTM standards. Therefore, it is expected that using
the same experimental procedures in other regions will result in similar conclusions.
Nevertheless, regarding the LCA analysis, it is strongly recommended to use regional
life cycle inventory data. Additionally, it is essential to notice that the characteristics of
pervious concretes with recycled aggregates could be different in other regions, since
it is known that the characteristics of RCAs are strongly dependent on the materials
used for the construction from which they come.

In general, the present study showed the great potential of using recycled concrete
aggregates to produce pervious concrete. The economic and environmental benefits as-
sociated with the application of pervious concrete coatings on urban pavements can be
enhanced using RCAs in their composition. Several aspects are challenging the path for
more sustainable construction, such as reducing CDW and the consumption of natural
resources. Therefore, it is natural to consider new studies on materials of this kind, in-
cluding a more in-depth analysis of their performance and their relationship with the
reduction in urban run-off. Besides, it is important to evaluate how it can contribute to
other sustainability dimensions (social and economy) to obtain a more comprehensive
picture of the sustainability potential of RCA-based pervious concrete.
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