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Abstract: This work presents the results from a study of the structure and transport properties of
Ca-doped La2NiO4+δ. La2−xCaxNiO4+δ (x = 0–0.4) materials that were synthesized via combus-
tion of organic-nitrate precursors and characterized by X-ray diffraction (XRD), in situ XRD using
synchrotron radiation, thermogravimetric analysis (TGA) and isotope exchange of oxygen with
C18O2. The structure was defined as orthorhombic (Fmmm) for x = 0 and tetragonal (I4/mmm) for
x = 0.1–0.4. Changes that occurred in the unit cell parameters and volume as the temperature changed
during heating were shown to be caused by the excess oxygen loss. Typical for Ruddlesden–Popper
phases, oxygen mobility and surface reactivity decreased as the Ca content was increased due to a
reduction in the over-stoichiometric oxygen content with the exception of x = 0.1. This composition
demonstrated its superior oxygen transport properties compared to La2NiO4+δ due to the enhanced
oxygen mobility caused by structural features. Electrochemical data obtained showed relatively low
polarization resistance for the electrodes with a low Ca content, which correlates well with oxygen
transport properties.

Keywords: La2NiO4+δ; Ca doping; isotope exchange; synchrotron radiation studies; oxygen mobility;
polarization resistance

1. Introduction

Oxides with a perovskite-related Ruddlesden–Popper (R–P) structure, particularly
Ln2NiO4+δ (Pr, Nd, La), have been reported to have high levels of mixed ionic and electronic
conductivity in addition to fast oxygen transport [1–5]. Such properties are among the
main requirements for oxygen separation membranes and air electrodes of intermediate
temperature electrochemical devices [6–11]. The layered structure of Ln2NiO4+δ consists of
LnNiO3 perovskite-type layers alternating with Ln2O2 rock salt layers. The characteristic
feature of Ln2NiO4+δ is its ability to accommodate interstitial oxygen anions, preferably
within the rock salt layers, resulting in an oxygen excess. According to the literature data,
at ambient temperatures, in La2NiO4+δ, the δ value can reach 0.13–0.18 [12–14], and for
Pr2NiO4+δ and Nd2NiO4+δ, the oxygen excess can be as high as 0.25–0.27 [15–17]. At higher
temperatures and with low oxygen partial pressure, the concentration of interstitial atoms
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decreases remarkably [18,19]. High values of the oxygen tracer [8,20,21] and chemical
diffusion coefficients [22] for Ln nickelates (~10−8–10−5 cm s−1 at 700 ◦C) are associated
with the migration of oxygen through a cooperative mechanism, involving both regular
and highly mobile interstitial oxygen positions [8,23,24].

Oxides such as Ln2NiO4+δ can be doped both in the Ln or Ni positions to give a
wide range of materials with advanced functional properties [6,9,25,26]. For instance,
substitution in the Ln position with alkaline earth elements significantly increases the
level of electronic conductivity of nickelates. This is a necessary requirement for both
the effective operation of the electrodes and for the application of these materials as
mixed ionic and electronic conductor (MIEC) membranes because it elevates the ambipolar
conductivity level—the crucial characteristic of the membranes. It has been reported for
La2−xSrxNiO4+δ that when the strontium content is increased, the electrical conductivity
significantly increases from 50 S cm−1 (at 1000 ◦C) for the undoped La2NiO4+δ and up to
200–250 S cm−1 (at 1000 ◦C) for Sr-rich samples (x = 0.75, 1) [14,27]. For La2−xCaxNiO4+δ,
an increase in calcium content similarly elevates the total conductivity from 80–95 S cm−1

for the undoped La2NiO4+δ and up to 90–165 S cm−1 (at 400 ◦C) for Ca-rich samples
(x ≥ 0.2) [9,22,28,29]. Due to the lower substitution level for Ca in the La2NiO4+δ compared
with Sr, the attainable enhancement in conductivity is also lower. However, at the same x
values, Ca-doped systems demonstrate higher conductivity values compared to those for
Sr- or Ba-doped systems [30].

It was shown for La2−xCaxNiO4+δ that its ionic conductivity had no direct correla-
tion with Ca content, attaining the maximum at x = 0.1 (3–10 mS cm−1 in the range of
600–700 ◦C [29]. The authors reported that the activation energy for oxygen ion conduc-
tivity decreased when increasing the calcium doping level. This is due to elongation of
the La–O2 bond length, which corresponds to the thickness of the La2O2 layer, provid-
ing a larger space for oxygen migration and thus enhancing the mobility of oxygen ions.
However, doping with Ca, as well as with other alkaline earth elements, results in the
interstitial oxygen content being reduced [21]. It is these two opposite trends that give the
maximum ionic conductivity for La1.9Ca0.1NiO4+δ. Similarly, the oxygen mobility in the
La2−xCaxNiO4+δ (x = 0–0.2) series under a chemical potential gradient was reported to
have a non-linear x dependence according to the electrical conductivity relaxation data,
with the best properties for x = 0.1 [22]. According to isotope exchange of oxygen and
ionic conductivity measurement data, a decrease in the oxygen tracer diffusion coefficient
with Ca content was demonstrated to be associated with a reduction in highly mobile
interstitial oxygen content as a charge-compensating mechanism while substituting La3+

with Ca2+ [19,28,29,31,32]. However, whether such a dependence is consistent or not still
remains unclear. According to [32], there was a consistent decrease both in oxygen tracer
diffusion coefficient and oxide ionic conductivity values when increasing the Ca content
for La2−xCaxNiO4+δ (x = 0–0.3). However, in [29] it was reported that oxygen tracer diffu-
sion coefficient concentration dependence had non-linear behavior, with a maximum for
La1.9Ca0.1NiO4+δ.

In the present paper, the structural and transport properties of La2−xCaxNiO4+δ
(x = 0–0.4) are investigated using various methods including in situ powder X-ray diffraction
(XRD), temperature-programmed isotope exchange (TPIE) of oxygen, electrical impedance
spectroscopy and thermogravimetric analysis (TGA) to elucidate how Ca content affects
the overall performance of the La2−xCaxNiO4+δ oxides and electrochemical characteristics
of the related electrodes.

2. Materials and Methods
2.1. Synthesis

Materials of the La2−xCaxNiO4+δ (x = 0–0.4) series were prepared via combustion
of organic-nitrate precursors. Ni(NO3)2·4H2O (>99% of purity), Ca(NO3)2·4H2O (99%)
and La(NO3)3·6H2O (99%) were selected as raw materials for the synthesis. The initial
reagents and organic fuels such as glycine and glycerol, taken in a ratio of 1.5:0.5:1 to the
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metals, were dissolved and mixed in distilled water. Excess water was evaporated from
the mixture by continuous heating at 100 ◦C; in a drying oven until a gel state was attained.
A 10% NH4OH solution was added to set the pH value in the gel precursor equal to 8–9,
and then it was further heated up to 300 ◦C to initiate a self-ignition process. The resulting
black cake was then ground into a powder and calcinated at 500 ◦C (5 h) and 1000 ◦C (5 h)
with intermediate grinding in a Pulverisette 6 planetary mill (Fritsch, Germany) (plastic
drums, stainless steel milling bodies). The final calcination of materials was performed
at 1150 ◦C for 5 h. The obtained materials were ball-milled to obtain electrode powders.
The powder’s specific surface area, measured by a Brunauer–Emmett–Teller (BET) method
using a META SORBI N 4.1 instrument, was in the range of 1.24–1.63 m2 g−1. The BET
data are presented in Table S1 (Supplementary Materials). The samples were designated as
LNO (La2NiO4+δ) and LCNO01–LCNO04 (La2−xCaxNiO4+δ), respectively.

2.2. Structural Characterization

The X-ray diffraction (XRD) analysis of the powdered materials taken after the fi-
nal synthesis step was performed using an XRD-7000 diffractometer (Shimadzu, Kyoto,
Japan) configurated with a graphite monochromator with CuKα radiation (angle range
of 23◦ ≤ 2θ ≤ 81◦, scan step of 0.02◦, exposure time of 5 s). The refinement of the crystal
structure in the La2−xCaxNiO4+δ series was performed on the basis of the XRD data ob-
tained by the Rietveld method using a FullProf Suite software package [33]. To elucidate
some structural peculiarities of as-prepared samples as well as the samples after in situ
X-ray diffraction experiments, additional XRD patterns were collected using an anomalous
scattering station located at the Siberian Synchrotron and Terahertz Radiation Centre (Bud-
ker Institute of Nuclear Physics SB RAS, Novosibirsk [34]). The radiation wavelength of
0.15402 nm during measurements was set by a Si (111) double-crystal monochromator.

In situ X-ray diffraction experiments were carried out at a precision diffractometry-2
station located at the Siberian Synchrotron and Terahertz Radiation Centre (Budker Institute
of Nuclear Physics SB RAS, Novosibirsk [34]). The station is equipped with an OD-3M
single-coordinate, position-sensitive detector (Institute of Nuclear Physics SB RAS [35]),
an XRK 900 high-temperature X-ray chamber-reactor (Anton Paar, Graz, Austria) and a
gas mixture feed system controlled by SEC-Z500 digital mass flow meters (Horiba Ltd.,
Kyoto, Japan). The radiation wavelength of 0.101 nm during measurements was set by
single reflection of the incoming white synchrotron radiation (SR) beam from a Si (220)
single crystal. The oxygen partial pressure during measurements was monitored using
a UGA-100 quadrupole-type gas analyzer (Stanford Research System Inc., Sunnyvale,
CA, USA) connected to the reactor outlet through a PEEK capillary. High temperature
in situ XRD measurements in a He+O2 gas mixture (pO2 = 0.2 atm) were carried out on
the powdered La2−xCaxNiO4+δ (x = 0–0.4) samples initially pretreated in He (700 ◦C). The
data were collected upon the samples being heated from 30 to 700 ◦C and cooling down to
30 ◦C at a rate of 10 ◦C min−1.

2.3. Oxygen Over-Stoichiometry Studies

Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) stud-
ies were conducted using a NETZSCH STA 409 PC Luxx machine (Netzsch, Germany).
The following cycles were carried out:

(1) pretreatment in synthetic air (21 vol.% of oxygen in Ar), flow rate of 50 mL min−1,
from 30 to 1000 ◦C and back, heating/cooling ramp of 10 ◦C min−1;

(2) treatment in synthetic air, flow rate of 50 mL min−1, from 30 to 1000 ◦C and back,
heating/cooling ramp of 10 ◦C min−1;

(3) treatment in H2-containing atmosphere (10 vol.% of H2 in Ar), flow rate of 50 mL min−1,
from 30 to 1000 ◦C and back, heating/cooling ramp of 10 ◦C min−1.
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The absolute oxygen content in the materials of the La2−xCaxNiO4+δ series was
calculated based on the following reduction reaction:

La2−xCax NiO4+δ + gH2 → 0.5(2− x)La2O3 + xCaO + Ni + gH2O (1)

where g = 1 + 0.5x + δ. As an example, temperature dependences of mass loss and DSC
curves for the LNO and LCNO01 samples collected upon reduction in the H2-containing
atmosphere are shown in Figure S1 (Supplementary Materials).

2.4. Oxygen Mobility and Surface Reactivity Studies

In order to study oxygen transport properties, experiments regarding oxygen isotope
exchange in temperature-programmed mode (TPIE) were carried out in a flow reactor.
Ground samples (fraction 0.25–0.5 mm, weight 50 mg) were loaded into a tubular quartz
reactor with an inner diameter of 3 mm. Pretreatment was carried out at 700 ◦C for 30 min
in a flow of He + 1% O2 (flowrate of 25 mL min−1). Treatment was conducted in the
temperature range of 50–800 ◦C with a temperature ramp of 5 ◦C min−1 in a flow of
He + 1% C18O2 + 1% Ar (flow rate of 25 mL min−1). The transient changes in the gas
isotopic composition (C16O2, C16O18O and C18O2 concentrations) at the reactor outlet were
monitored by an SRS 200 (Stanford Research Systems, USA) mass spectrometer using UGA
software. An atomic fraction of 18O (α) in CO2 was calculated based on the following
mass-spectrometric data: α = (0.5 × I46 + I48)/(I44 + I46 + I48), where I44, I46 and I48 were
parent peaks at m/e 44, 46, 48.

The analysis of the temperature dependences of α was carried out by a mathematical
model including the exchange of oxygen in the oxide surface (O(surf)) with CO2 molecules
in the gas phase with a rate R (heteroexchange rate), oxygen diffusion within the oxide bulk
via fast channel with a coefficient D* and exchange between the most mobile oxide anions
and neighboring strongly bound oxide anions with a weighted average rate of β [36]. The
oxygen surface exchange constant was calculated as follows: k* = R/(ρNO), where ρ and
NO were sample true density and amount of oxygen per unit mass, respectively. The error
of calculating R, D*, β and their effective activation energies did not exceed ±15%.

2.5. Electrochemical Characterization of the La2−xCaxNiO4+δ Electrodes

Electrochemical characterization of electrodes based on the materials of the La2−xCaxNiO4+δ
series was performed by an electrochemical impedance spectroscopy (EIS) method on
Ce0.8Sm0.2O1.9 (SDC) electrolyte substrates. For the substrates’ fabrication, SDC material
was synthesized via a solid-state reaction method from CeO2 (CeO-L grade, of 99.99%
purity) and Sm2O3 (SmO-L grade, of 99.99% purity). The starting reagents were mixed
in the planetary mill, dried and calcined at 1050 ◦C, 2 h. Next, the obtained powder was
ball milled and dry pressed into disks at 150 MPa with following sintering at 1550 ◦C,
3 h. According to the XRD analysis performed on the SDC powder obtained by grind-
ing the sintered disk-shape samples, it was single phase with a fluorite type structure
(Fm3m sp. gr.) and a unit cell parameter of a = 5.5453 (6) Å, which correlated well with
the value presented in the literature [37]. The relative density of the substrates calculated
from their geometrical sizes and weight was 95%. Additionally, a LaNi0.6Fe0.4O3 (LNF)
powder for the formation of the electrode collectors was synthesized by a Pechini method;
details of the synthesis procedure are given elsewhere [28,30]. The LNF powder possessed
a rhombohedral structure (R3c sp. gr.) with unit cell parameters of a = 5.5036 (2) Å and
c = 13.2602 (5) Å.

The La2−xCaxNiO4+δ slurries for the electrode formation were prepared by mixing
the ball-milled powders with ethyl alcohol and a polyvinyl butyral binder. The electrode
layers were painted symmetrically on the SDC electrolyte substrates with an effective area
of 0.25–0.36 cm2 and a deposition density of 8–10 mg/cm2. The thickness of the electrode
layers evaluated after the sintering at 1250 ◦C for 1 h was 25 ± 3 µm. The LNF collector of
the same thickness was deposited onto the pre-sintered LCNO electrode layers and sintered
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at 1200 ◦C for 1 h. The morphology of the electrodes was characterized by a JSM-5900LV
(JEOL USA, Inc., Peabody, MA, USA) scanning electron microscope.

The electrochemical study was carried out by means of a SL-1260 impedance/gain-
phase analyzer and a SL-1287 potentiostat/galvanostat electrochemical interface (Solartron
Analytical, Farnborough, UK). The spectra collected in air in the temperature range of
550–850 ◦C were fitted using ZView 2 software.

3. Results and Discussion
3.1. Structural Features of the La2−xCaxNiO4+δ Materials in Air at Room Temperature

On the basis of the XRD data, profile and structural parameters for the La2−xCaxNiO4+δ
materials (denoted as LNO at x = 0.0 and LCNO01-LCNO04 at x = 0.1–0.4, see Table S1,
Supplementary Materials) were refined by a full-profile Rietveld refinement method. Ex-
perimental and calculated profiles of the LNO and LCNO01-LCNO04 powders’ XRD
patterns acquired using a model of La and Ca cations’ uniform distribution are given in
Figures S2–S6 (Supplementary Materials). The structure refinement results are provided in
Table 1.

Table 1. Profile features, structural parameters and interatomic distances for La2−xCaxNiO4+δ samples according to the
X-ray diffraction (XRD) and thermogravimetric analysis (TGA) data.

x x = 0.0 x = 0.1 x = 0.2 x = 0.3 x = 0.4

t, including δ 0.898 0.897 0.899 0.899 0.898
structure O T T T T

a, [Å] 5.4628(4) 3.8557(1) 3.8429(1) 3.8303(1) 3.8173(1)
b, [Å] 5.4664(4) 3.8557(1) 3.8429(1) 3.8303(1) 3.8173(1)
c, [Å] 12.6827(4) 12.6596(3) 12.6277(3) 12.6032(2) 12.5831(3)

V, [Å3] 378.74(4) 188.21(1) 186.49(1) 184.90(1) 183.36(1)
ρ, [g cm−3] 7.02 6.89 6.78 6.66 6.54
z(La/Ca) 0.3605(1) 0.3608(1) 0.3613(1) 0.3618(1) 0.3618(1)

z(O2) 0.173(1) 0.173(1) 0.175(1) 0.176(1) 0.176(1)
Bov 0.52(4) 0.59(3) 0.42(4) 0.49(4) 0.64(3)

L, [Å]

La/Ca-La/Ca 3.538(1) 3.525(1) 3.504(2) 3.483(1) 3.477(1)
Ni-La/Ca 3.254(1) 3.247(1) 3.233(1) 3.220(1) 3.211(1)

Ni-Ni 3.8641(1) 3.8557(1) 3.8429(1) 3.8303(1) 3.8173(1)
Ni-O1x4 1.9320(1) 1.9279(1) 1.9215(1) 1.9151(1) 1.9086(1)
Ni-O2x2 2.20(1) 2.19(1) 2.21(1) 2.21(1) 2.21(1)

La/Ca-O1x4 2.620(1) 2.612(1) 2.600(1) 2.589(1) 2.582(1)
La/Ca-O2x4 2.765(1) 2.759(1) 2.756(1) 2.749(1) 2.741(1)
La/Ca-O2x1 2.38(1) 2.38(1) 2.35(1) 2.35(1) 2.34(1)

Rexp 4.40 4.52 4.25 4.31 4.24
Rp 7.94 7.15 9.12 7.90 7.74

Rwp 10.0 9.47 11.8 10.3 9.88
RBr 3.75 3.21 3.13 2.86 3.34
Rf 2.21 2.15 2.14 2.31 2.30
χ2 5.21 4.38 7.70 5.87 5.33
δ 0.17(1) 0.11(1) 0.09(1) 0.05(1) 0.00(1)

Tc, ◦C 300 340 280 270 n/a
−∂δ/∂T × 105, K−1 12.7 11.8 10.1 4.1 1

According to the profile analysis data, the LNO sample was determined to have
an orthorhombic crystal unit cell (Fmmm sp. gr.). This conclusion can be illustrated by
the fragments of the XRD patterns obtained using the synchrotron data for the LNO
and LCNO01 samples and taken in the range of high diffraction angles demonstrated in
Figure 1. Orthorhombic splitting of the XRD peaks with Miller indices of (2 0 10), (0 2 10);
(4 0 6), (0 4 6); (4 2 4), (2 4 4) was clearly observed for the LNO sample (Figure 1a), while
the peaks with these indices were indistinguishable for the LCNO01 sample (Figure 1b),
which was determined to possess a tetragonal crystal structure (I4/mmm sp.gr.). It is
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known that embedding the interstitial oxygen in a K2NiF4-type structure weakens lattice
micro-strains that appear as a consequence of mismatch between the perovskite and
rock salt layers in the ab plane. To estimate the micro-strains’ level in such perovskite-
like structures, the Goldschmidt tolerance factor (t) is typically used [38]. Calculated
t values for the LCNO series are given in Table 1. Doping with Ca is characterized by
strain relief in the LNO structure, which, in turn, results in the structure stabilizing in a
tetragonal syngony and the over-stoichiometric oxygen content decreasing. The t value
changes in the series due to the following contributions: (1) the Ca ionic radius is lower
compared to that of La (rCa2+

IX = 1.18 Å, rLa3+
IX = 1.216 Å [39]); (2) the radius of Ni3+

cations forming due to Ca doping is lower compared to that of Ni2+ (rNi3+
VI = 0.56LS Å;

0.60HS Å, rNi2+
VI = 0.69 Å) [39]). The Ni3+ content is controlled both by the Ca content and

the oxygen stoichiometry, which provide opposite contributions, respectively. Calculated
using the experimental oxygen over-stoichiometry data, the tolerance factor values show
no trends in the series (Table 1).
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Figure 1. Experimental XRD patterns of the La2NiO4+δ (a) and La1.9Ca0.1NiO4+δ (b) samples illustrating the phase transition
from an orthorhombic to a tetragonal structure with Ca doping. XRD data were obtained at the Anomalous Scattering
station (SSRTC, Novosibirsk) at a wavelength of 0.15402 nm.

Structural phase transitions from an orthorhombic to a tetragonal syngony while
substituting lanthanide cations with alkaline earth metals in Ln2−xMxNiO4+δ, governed
by a reduction in the over-stoichiometric oxygen content, had been observed earlier in a
number of studies for La2−xCaxNiO4+δ [28], La2−xSrxNiO4+δ [27], Nd2−xCaxNiO4+δ [40]
and Pr2−xCaxNiO4+δ [41]. Contrarily, the La2−xMxNiO4+δ materials (where M is an alka-
line earth metal) possessing a tetragonal structure across the entire range of the dopant
content were obtained in [13,29,32,42–45]. The Ln2NiO4+δ crystal structure is known to
depend on synthesis conditions determining the oxygen over-stoichiometry (δ) value [1].
Formation of the orthorhombic structure for the undoped LNO sample obtained in the
current work by combustion of organic-nitrate precursors with a relatively low synthesis
temperature reveals the presence of a high content of over-stoichiometric (interstitial) oxy-
gen in its structure. This was determined, according to the TGA data shown in Figure S1,
to be equal to 0.17, is higher compared to the δ value given in the works marked above
(e.g., δ = 0.14 in [43,44]) and is in agreement with the phase diagram for LNO plotted
in [20]. According to the conclusions of Tamura H. et al. [13], the LNO samples with an
oxygen over-stoichiometry value in the range of 0.15 < δ ≤ 0.18 possess an orthorhombic
structure (Fmmm sp. gr.), while those whose range is 0.10 ≤ δ ≤ 0.15 have a tetragonal
structure (I4/mmm sp. gr.), with the existence of a two-phase region between them. It is the
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presence of a possible phase separation that can explain the formation of the orthorhom-
bic (Fmmm sp. gr.) structure for LNO with δ = 0.11–0.15 in [20] and the formation of the
tetragonal structure for LNO with δ = 0.16 [46].

Concentration dependences of the unit cell parameters and volume for the LCNO
series are provided in Figure 2 (for the sake of comparison, the orthorhombic unit cell
parameters for the LNO sample were refitted to tetragonal). The observed linear decrease
in the unit cell parameters and volume along with an increase in the Ca content, governed
by the size factors, concurs closely with Vegard’s law and is evidence of the formation of a
true solid-state solution. The shape of the dependences obtained for the LCNO series in
the current work is in good agreement with the data provided in the studies [29,32,42–45].
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samples according to the Rietveld refinement of the XRD data.

The marked tendency for the unit cell parameters to decrease as the substitution level
in the LCNO series increases can be illustrated by the data on the calculations of the bonds’
lengths (Figure 3a,b). The unit cell parameter a in the tetragonal structure is determined
by the Ni–O1 bond length, which decreases as the Ca content increases, as follows from
Figure 3a. The unit cell parameter c is equal to the sum of the doubled Ni–O2 distance
(Figure 3a), the La/Ca–La/Ca distance along the c axis (Figure 3a) and the doubled La/Ca–
O2x1 distance (Figure 3b). As follows from Figure 3a, while increasing the Ca content,
the La/Ca–La/Ca bond length decreases, the La/Ca–O2x1 decreases at x ≥ 0.2 and the
Ni–O2 bond length remains relatively constant. This results in the c parameter steadily and
consistently decreasing (Figure 2).

Another parameter used to analyze the stability of the LCNO structure is a global
instability index (GII) [42]. High GII values for heavily doped samples indicate instability
of crystal structure (Table S2). The La/Ca–O2x1 bond length corresponds to the rock salt
layer thickness, and when analyzing its concentration dependence, one can conclude that
doping with calcium leads to a reduction in the rock salt layer thickness at x ≥ 0.2, which
will destabilize the LCNO structure at high x values as a result. This is supported by the
high values of the global instability index (GII) for the LCNO series with high calcium
content (x > 0.3) (Table S2), which agrees with [42] and explains the lower level of the
Ca substitution limit for the La position in the LNO structure compared to that of Sr [43].
Taking into account both the variation of the tolerance factor and GII with increasing Ca
content, it can be concluded that the Ca doping makes the structure more unstable in
the series.
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3.2. Oxygen Over-Stoichiometry Studies

As follows from the TGA data, there was a sharp decrease in the δ values even at
a low Ca doping level. For example, for the LCNO01 sample, the δ value was equal to
0.11 as compared to 0.17 for the LNO sample, while for the LNCO04 sample, it was as
low as 0.00 (all values are presented in Table 1). This is due to La3+ substitution with
Ca2+, leading to a decrease in the interstitial oxygen content by a charge compensation
mechanism [19,21,28,29,31,32]:

2La×La + O×O + 2CaO � 2Ca′La + V••O + La2O3, (2)

O×O + V×i � O′′i + V••O , (3)

where O×O is an oxygen ion in the regular lattice site, O′′i is an interstitial oxygen ion in the
rock salt layer, V×i is an interstitial vacancy, V••O is an oxygen vacancy in the perovskite-type
layer. Thus, the observed tendency for the oxygen over-stoichiometry to decrease with Ca
doping and the level of the δ-values for the Ca-doped samples obtained in this study are in
good agreement with those stated in the literature.

The analysis of the temperature dependences of oxygen over-stoichiometry calculated
from the TGA data obtained in air (Figure 4a) showed that with Ca doping, there was not
only a decrease in δ values, but also a gradual reduction in the rate of oxygen release upon
heating. This was calculated as −∂δ/∂T in the temperature range above Tc (Tc values are
related to the end of a low-temperature “plateau” on the curves when the oxygen exchange
of the samples with the ambient air starts) was observed (Table 1). This is in agreement with
temperature-programmed desorption of oxygen and TGA data for La2NiO4+δ and other
R–P phase samples, including the ones doped with alkaline earth metals [47–51]. The Tc
values did not show direct concentration dependence and were in the range of 270–340 ◦C,
with the highest Tc of 340 ◦C for LCNO01. The analysis of the concentration dependence of
oxygen over-stoichiometry (inset in Figure 4a) shows that the LNCO01 sample exhibits
unexpectedly more relaxed structure (lesser δ values than could be assumed from linear
approximation). This may explain the higher Tc temperature observed for LCNO01.
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Figure 4b shows the average formal Ni cation oxidation state calculated from the
oxygen over-stoichiometry data, assuming that oxygen ions are in an O2– state as following:

z+(Ni) = 2(4 + δ)− 3(2− x)− 2x. (4)

Comparison of the dependences presented in Figure 4b in the temperature range
below Tc shows that the Ca doping results in the Ni average oxidation state increase
(except for the LCNO01 sample).

This fact can be explained by considering both the defect structure features for lay-
ered nickelates and the anti-Frenkel disordering (Equation (3)) and also by taking into
account oxidation reactions [52,53]. When considering the formation of both localized and
delocalized electron holes, the oxidation reactions for this case can be written as follows:

1
2

O2 + V×i + 2Ni×Ni ↔ O′′i + 2Ni•Ni, (5)

1
2

O2 + V×i ↔ O′′i + 2h•, (6)

where Ni×Ni is a Ni2+ cation in the regular lattice site, Ni•Ni is an electron hole localized on
nickel cations (Ni3+) and h• is a delocalized electron hole, respectively.

At temperatures below Tc the oxygen non-stoichiometry values are almost constant,
which can be explained by the establishment of dynamic equilibrium according to Equa-
tion (3). For calcium as an acceptor dopant, the oxidation reaction can be written with the
following electroneutrality conditions:

2
[
O′′i ] + [Ca′La]↔ [Ni•Ni]+2[V••O

]
. (7)

Thus, replacement with Ca2+ cations in the Ln3+ sites in the LCNO series, except
for LCNO01, leads to an increase in concentration of compensating electron holes and
the Ni average oxidation state. For the LCNO01 sample, the tendency for decreasing
compensating electron holes due to a lesser δ value in comparison with that for the LNO
sample dominates over the trend for the holes’ concentration to increase due to Ca doping.

Release of the interstitial oxygen at temperatures above Tc leads to a partial annihi-
lation of electron holes due to the reduction of Ni3+ to Ni2+ (Figure 4b). However, such a
decrease is not significant for the heavily doped samples.
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3.3. Structural Changes in La2−xCaxNiO4+δ under Heating in Air

Figure 5 demonstrates Ca content dependences of the unit cell parameters and volume
for the LCNO series after the treatment in He (pO2 = 0.02) and in He+O2 (pO2 = 0.2). The
unit cell parameters’ mismatch after the treatment is greater for the samples with lower Ca
content and gradually decreases with an increase in Ca content. The mismatch is almost
negligible for the LCNO04 sample. Provided that the change in the values is caused by the
excess interstitial oxygen loss, this data agrees well with the above-mentioned decrease in
the oxygen over-stoichiometry (δ) with the Ca content being increased.

Crystals 2021, 11, x FOR PEER REVIEW 10 of 21 
 

 

Thus, replacement with Ca2+ cations in the Ln3+ sites in the LCNO series, except for 

LCNO01, leads to an increase in concentration of compensating electron holes and the Ni 

average oxidation state. For the LCNO01 sample, the tendency for decreasing compensat-

ing electron holes due to a lesser δ value in comparison with that for the LNO sample 

dominates over the trend for the holes’ concentration to increase due to Ca doping. 

Release of the interstitial oxygen at temperatures above Tc leads to a partial annihila-

tion of electron holes due to the reduction of Ni3+ to Ni2+ (Figure 4b). However, such a 

decrease is not significant for the heavily doped samples. 

3.3. Structural Changes in La2−xCaxNiO4+δ under Heating in Air 

Figure 5 demonstrates Ca content dependences of the unit cell parameters and vol-

ume for the LCNO series after the treatment in He (pO2 = 0.02) and in He+O2 (pO2 = 0.2). 

The unit cell parameters’ mismatch after the treatment is greater for the samples with 

lower Ca content and gradually decreases with an increase in Ca content. The mismatch 

is almost negligible for the LCNO04 sample. Provided that the change in the values is 

caused by the excess interstitial oxygen loss, this data agrees well with the above-men-

tioned decrease in the oxygen over-stoichiometry (δ) with the Ca content being increased. 

0.0 0.1 0.2 0.3 0.4
3.80

3.82

3.84

3.86

12.57

12.60

12.63

12.66

a
, 
c 

[Å
]

 a (He)

 c (He)

 a (He+O
2
)

 c (He+O
2
)

x (Ca)

182

184

186

188

190

V
 [
Å

3
]

 V (He)

 V (He+O
2
)

 

Figure 5. Concentration dependences of the unit cell parameters and volumes for the La2−xCaxNiO4+δ 

samples after sequential treatment under atmospheres with high and low pO2. XRD data obtained 

at the anomalous scattering station (SSRTC, Novosibirsk) at a wavelength of 0.15402 nm. 

Temperature dependences of the unit cell parameters and the volume obtained in the 

He+O2 gas mixture (at pO2 equal to 0.2) for the LNO and LCNO01-04 samples pretreated 

in He are displayed in Figure 6a–e. All the doped samples demonstrate anisotropic, high-

temperature behavior for a and c parameters, similar to that of the parent LNO structure. 

At temperatures higher than 330 °C, opposite deviations from the linear behavior were 

observed for unit cell parameters a and c, both for cooling and heating stages. This pattern 

we assume to be caused by the over-stoichiometric oxygen loss/uptake. The reason for 

this anisotropic behavior is the removal of interstitial oxygen and the reduction of Ni ions. 

While this causes shortening of average La/Ca-O distance and thickness of the rock salt 

layer, it also extends the average Ni-O bond length, thus expanding the structure [54]. It 

is also worth mentioning that this chemical contribution to the thermal expansion has a 

compensating effect, and the unit cell volumes exhibit a nearly linear behavior over the 

entire temperature range. The most pronounced effect was observed for the LNO, 

Figure 5. Concentration dependences of the unit cell parameters and volumes for the
La2−xCaxNiO4+δ samples after sequential treatment under atmospheres with high and low pO2.

XRD data obtained at the anomalous scattering station (SSRTC, Novosibirsk) at a wavelength of
0.15402 nm.

Temperature dependences of the unit cell parameters and the volume obtained in the
He+O2 gas mixture (at pO2 equal to 0.2) for the LNO and LCNO01-04 samples pretreated
in He are displayed in Figure 6a–e. All the doped samples demonstrate anisotropic, high-
temperature behavior for a and c parameters, similar to that of the parent LNO structure.
At temperatures higher than 330 ◦C, opposite deviations from the linear behavior were
observed for unit cell parameters a and c, both for cooling and heating stages. This pattern
we assume to be caused by the over-stoichiometric oxygen loss/uptake. The reason for
this anisotropic behavior is the removal of interstitial oxygen and the reduction of Ni ions.
While this causes shortening of average La/Ca-O distance and thickness of the rock salt
layer, it also extends the average Ni-O bond length, thus expanding the structure [54]. It
is also worth mentioning that this chemical contribution to the thermal expansion has a
compensating effect, and the unit cell volumes exhibit a nearly linear behavior over the
entire temperature range. The most pronounced effect was observed for the LNO, LNCO01
and LNCO02 samples, while that for the LNCO04 sample was almost negligible, and this
agrees well with the oxygen stoichiometry change (Figure 4). TcXRD values are also close to
those obtained from the TGA data (in the case of the XRD data, TcXRD values are related to
the intersection points of the linear interpolation at low-temperature and high-temperature
regions on the curves). There were no phase transitions near the TcXRD temperatures for
all the samples. The phase transition from an orthorhombic to a tetragonal structure for
LNO was not observed up to 700 ◦C (Figure S7). The hysteresis for the cell parameters
before/after heating correlates with the amount of oxygen lost during pretreatment in He.
Ca2+ has a slightly smaller ionic radius of 1.18 Å compared to 1.22 Å of La3+ [39], thus
having a minor steric effect on the RP lattice.
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Figure 6. Temperature dependences of the unit cell parameters and volumes for the samples: La2NiO4+δ (a),
La1.9Ca0.1NiO4+δ (b) La1.8Ca0.2NiO4+δ (c), La1.7Ca0.3NiO4+δ (d) and La1.6Ca0.4NiO4+δ (e) collected in synthetic air. Black
lines are the linear approximations for the c parameter (cooling mode) in the temperature ranges of 50–250 ◦C and
500–700 ◦C. Red and blue symbols represent the heating and cooling modes, respectively. In Situ XRD data were obtained
at the precision diffractometry-2 station (SSRTC, Novosibirsk) at a wavelength of 0.101 nm.

3.4. Oxygen Mobility and Surface Reactivity

According to the TPIE data for the LNO and LCNO01-04 samples (Figure S8, Supple-
mentary Materials), the oxygen exchange process is initiated at ~200–400 ◦C depending
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on the Ca content: Increasing the Ca content results in the TPIE curves shifting towards
higher temperatures. For the LNO and LCNO01-03 samples, almost all the bulk oxygen
was involved in the exchange during the TPIE run, while its fraction (extent of exchange)
was only 70% for the LCNO04 sample (Figure S9, Supplementary Materials). Such a
tendency for the extent of the exchange to decrease while the Ca content is increased
qualitatively demonstrates a reduction in oxygen mobility that is typical for Ca-doped Ln
nickelates [8,21,41,55]. The presence of two or more peaks on the TPIE curves reveals the
non-uniformity of oxygen diffusivity.

According to the TPIE data modeling, oxygen diffusivity in the LNO sample obtained
by the organic-nitrate combustion method in the current study with the final synthesis
temperature of 1100 ◦C was significantly higher compared to that for the LNO sample
obtained by the solid-state reaction method at 1250 ◦C in [21]. Data being equal for
both samples obtained under experimental conditions are shown in Figure S10 in the
Supplementary Materials. Oxygen tracer diffusion coefficient and surface heteroexchange
rate values are given in Table 2 and plotted in Figure 7.
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As follows from Table 2 and Figure 7a, D* values are high for the LNO and LCNO01-
03 samples (6.5 × 10−10–2.8 × 10−9 cm2 s−1 at 700 ◦C, Table 2). This is related to the
cooperative mechanism of oxygen migration with the participation of both regular and
highly mobile interstitial oxygen [8,23,24]. However, they are slightly lower than those
for Pr and Nd nickelates: For comparison, D* = 7.0 × 10−8 cm2 s−1, 7.6 × 10−10 cm2 s−1,
4.5 × 10−8 cm2 s−1 and 6.3 × 10−10 cm2 s−1 at 700 ◦C for Pr2NiO4+δ, Pr1.7Ca0.3NiO4+δ,
Nd2NiO4+δ and Nd1.7Ca0.3NiO4+δ, respectively [21,41,55], which can be associated with
the larger ionic radius of La3+ compared to those for Pr3+ and Nd3+ [8,39]. It is interesting
that, differing from oxygen diffusivity data reported in [32,56], the oxygen mobility and
surface reactivity for LCNO01 obtained in this study were higher compared to those for
LNO, which differs from tendencies for Ca-doped Pr and Nd nickelates [41,55]. However,
such an increase in the oxygen mobility for low x values concurs with the data presented
in [29]. In [29], it is attributed to an increase in mobility caused by a change in activation
energy that is connected with the expansion of the La–O2 bond length, providing a larger
space for the oxygen anions’ migration and thus improving their mobility. In this work,
the La/Ca–O2x1 bond length was insignificantly higher for the LCNO01 sample compared
to that for the LNO sample (Figure 3b). Next, a shortening of this bond length was
observed as the Ca content was increased, which would imply a correlation between the
La/Ca–O2x1 bond length and oxygen diffusivity. However, the activation energy was the
same for all samples (Table 2). Hence, the increase of oxygen mobility for low x values
is probably generally associated with the smaller Ca2+ cation radius compared to that
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of the host cation (as well as higher La/Ca–O2x1 bond length) [39]. It is interesting that
such a tendency correlates with that demonstrated for the chemical diffusion coefficient
for La2−xCaxNiO4+δ (x = 0–0.2), with a maximum for x = 0.1 [22]. However, it is to be
noted that direct comparison of the values of the oxygen tracer diffusion coefficient and
the chemical diffusion coefficient may not be valid.

Table 2. Oxygen heteroexchange reaction with a rate R, oxygen diffusion (normalized on particle size) via fast channel with
a coefficient D* and their effective activation energies (ER, ED) for La2−xCaxNiO4+δ.

x R|700 K,
[min−1]

ER,
[kJ mole−1]

(D*|700 K)/L2,
[min−1]

D*|700 ◦C,
[cm2 s−1]

ED,
[kJ mole−1] Method Ref.

0 2.4 × 103 130 0.8 (100%) * 2.0 × 10−9 100 TPIE C18O2 This work
0 3.38 × 10−8 82 IEDP/SIMS [20,57]
0 5.5 × 10−10 100 TPIE C18O2 [21]
0 1.0 × 10−8 130 IIE 18O2 [28,32]

0.1 5 × 103 130 1.2 (100%) * 2.8 × 10−9 100 TPIE C18O2 This work
0.1 1.8 × 10−10 160 IIE 18O2 [32]
0.2 8 × 102 130 0.6 (85%) * 1.3 × 10−9 100 TPIE C18O2 This work
0.3 8 × 101 130 0.4 (60%) * 6.5 × 10−10 100 TPIE C18O2 This work
0.3 1.5 × 10−9 100 TPIE C18O2 [21]
0.4 Not det ** 0.06 (5%) * 1.1 × 10−10 100 TPIE C18O2 This work

* θfast, fraction of oxygen involved in fast diffusion channel (in [%]). ** diffusion is limiting.

For the LCNO02-04 samples, the D* values decrease as the Ca content increases. However,
the effective activation energy values for both the diffusion coefficient and the exchange rate
do not depend on the Ca content (Table 2). This may be related to a reduction in highly mobile
interstitial oxygen content as a charge compensation mechanism [8,19,21,28,32,41,55–57]
as was demonstrated by the XRD and TGA data (Sections 3.1–3.3). This implies that the
dominating mechanism of oxygen transport is maintained for LNO and LCNO01-03.
Irrespective of this, D* and Ea,D values are comparable to those given in other works for Ca-
doped La nickelates (Table 2) [20,21,28,32,57]. For the LCNO04 sample, a “slow diffusion”
mechanism predominates. Such a mechanism is probably associated with a slow exchange
between the most mobile oxide anions and neighboring oxide anions [36], most likely in
the perovskite layers (as will be indicated below). This is implied by significant difference
in the TPIE curves for the LCNO04 sample (generally, high-temperature exchange during
the TPIE run) and the other samples (low–intermediate temperature-activated diffusion)
(Figure S8) as well as a small fraction of oxygen involved in “fast” diffusion (Table 2).

A similar tendency was demonstrated for the oxygen heteroexchange rate and surface
exchange constant (Table 2, Figure 7b). This could be caused by the overall oxygen mobility
increasing due to both the reduction of the interstitial oxygen concentration and an increase
in the La2O2 layer thickness (the space for the oxygen movement) at x = 0.1. For the
LCNO02-04 samples, the decrease in k* and D* kinetic parameters that occurs when the Ca
content is increased may be associated with difficulties in the surface exchange process,
which are possibly due to steric factors as well as a lower coverage caused by the formation
of carbonates on the active sites of the surface enriched with excess calcium [41]. The other
probable reason is Ca segregation on the surface blocking La–O centers [32].

For the LCNO02-04 samples, a certain non-uniformity of oxygen diffusivity was
revealed. To describe such a non-uniformity, the mathematical model presented in [36]
was used (schematically shown in Figure S11). Such non-uniformity as was observed
during the TPIE run can be defined by the relatively fast diffusion via a cooperative
mechanism in the low and intermediate temperature range with a subsequent slower
exchange of the most mobile oxide anions with more strongly bound adjacent anions of
the O sublattice in the high temperature range. The other reason may be associated with
the features of the synthesis technique, as for example, the solid-state route can lead to
inhomogeneity in the powders obtained [28]. In this study, the powders were obtained
using the solution-assisted technique, which allowed a more homogeneous distribution



Crystals 2021, 11, 297 14 of 21

of elements in the materials that were obtained. The phenomenon of non-uniformity
of oxygen diffusivity was not observed in the considered dopant’s concentration range
(x = 0.1–0.4) for Ca-doped Nd and Pr nickelates synthesized using various solution-assisted
techniques [21,41,55]. The slow exchange can be described by a coefficient β with values
of 0.06, 0.01 and 0.0006 min−1 for the LCNO02-04 samples, respectively, and the effective
activation energy of 80 kJ mole−1. It is interesting that non-uniformity of oxygen bulk
diffusivity was observed for the La2−xCaxNiO4+δ samples at a lower Ca content compared
to that for Pr2−xCaxNiO4+δ and Nd2−xCaxNiO4+δ. In the Pr2−xCaxNiO4+δ series, non-
uniformity was observed at x ≥ 0.4, while in the Nd2−xCaxNiO4+δ series, it was not
observed in the range of 0.0 ≤ x ≤ 0.4. These facts can be related to both the cation size
effect and the interstitial oxygen content as well as other probable reasons such as the
ability to form oxygen vacancies in perovskite layers, Ln/Ca–O and Ni–O bonds’ length,
the facility of oxide anions to jumps through Ln3−xCax triangles, configuration of rock salt
and perovskite layers, etc. [8,19,21,41,55].

Nevertheless, with Ca doping, the oxygen tracer diffusion coefficient and surface het-
eroexchange rate values remain sufficiently high for the LCNO01-03 samples, with the best
performance coming from LCNO01, to make these materials attractive for their application
in solid oxide fuel cell air electrodes and MIEC membranes for oxygen separation and
syngas production [8,58,59].

3.5. Electrochemical Study of the La2−xCaxNiO4+δ Electrodes

Figure 8a,b shows the results of studies of the electrochemical activity of the LNO and
LCNO01-04 based electrodes in symmetric cells. Examples of the electrode microstruc-
ture are shown in Figure S12. The specific surface area of the electrode powders showed
the tendency to increase with Ca doping (Table S1). This agrees well with the data pre-
sented in [29], wherein the negative influence of Ca doping on the sintering properties of
La2−xCaxNiO4+δ ceramics was demonstrated. In the functional layers, after the sintering,
an increase in the average size of particles was observed (Table S3). Despite some difference
in the powder’s dispersity and materials’ sinterability, all the electrodes showed excellent
adhesion to the SDC substrate.
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electrodes in air.

Ca doping had no significant effect on the serial resistance value (Rhf) (Figure 8a),
which was determined from the high-frequency intercept of the spectra with the real axis in
the Nyquist coordinates. It is commonly accepted that the serial resistance, in addition to
the electrolyte substrate ohmic resistance, may include a parasitic resistance in the cell due
to metallic contacts and interface components of the electrode/electrolyte interaction [9].
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Across the entire series, the Rhf and activation energy Ea were approximately equal and
close in value to the ohmic resistance and Ea of the SDC electrolyte. This means that the
resistance of the electrolyte provides the main contribution to the Rhf values.

The dependences of the reciprocal polarization resistance Rη (polarization conductivity
of the electrodes) clearly demonstrate a decrease in the electrochemical activity of the
electrodes with an increase in Ca content. Thus, the values of the Rη of the electrodes
measured at 700 ◦C increased in the series 0.57 (LNO) < 1.56 (LCNO01) < 2.30 (LCNO02) <
4.01 (LCNO03) < 17.94 (LCNO04) Ω·cm2. However, the values of the activation energy of
the polarization conductivity changed insignificantly for LNO-LCNO03, and only for the
LCNO04 sample was a visible Ea increase observed along with the highest Rη in the series,
exceeding other values by a factor of 4–9.

To elucidate the reasons for such behavior from the electrodes, the impedance spectra
for the LNO-LCNO03 electrodes were analyzed using ZView software. Figure 9 presents the
normalized impedance spectra measured at 700 ◦C in air. The Rhf resistance was subtracted
from the data set. All the spectra have the shape of asymmetric deformed semicircles,
similar to the Gerischer impedance, and are well described by the Gerischer element
connected in series with the (RQ) element, i.e., a parallel combination of a resistance and a
CPE (constant phase element or Q-element: YQ(w) = (Q(jw)n)−1), which correlates well
with [60,61]. When using this equivalent circuit, the calculation error did not exceed 3–5%.
The characteristic capacitance of the high-frequency (RQ) process is C1 ~ 10−2 F·cm−2, and
the frequency power dependence (n) of this CPE is approximately 0.5, which indicates
that it is most likely related to a diffusion process. The Gerischer resistance makes a larger
contribution to the polarization resistance; therefore, it can be assumed that the behavior of
the electrodes is due to the diffusion impedance.
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The Gerischer impedance [62,63] or in other words, the chemical impedance [64,65],
is often used for fitting the spectra of the electrodes based on mixed ionic and electronic
conductors (MIEC):

YG = Y0
√

KG + jw =

√
KG + jw

RG
√

KG
(8)

where Y0 is the Gerischer admittance being proportional to
√

D, KG is the Gerischer
time constant being proportional to

√
K, which corresponds to the rate of reaction of

transforming mobile particles into immobile/inactive species or forming electrochemically
inactive complexes, and w is the angular frequency, w = 2π f .

According to the Adler–Lane–Steele model, the polarization resistance of the elec-
trodes is influenced by many factors such as the electrode microstructure and transport
properties of the electrode material [63–70]. According to mathematical transformations



Crystals 2021, 11, 297 16 of 21

presented in [63,66], the equation for the Gerischer impedance can be written in the follow-
ing form:

Rchem =
RT
4F2

√
τ

(1− ε)4ac2
0D∗k∗

; KG =
4aA0k∗

(1− ε)x0
v

(9)

where R is the universal gas constant; F is the Faraday constant; ε is the electrode porosity;
τ is the solid phase tortuosity; a is specific surface area; c0 is molar concentration of
the structural oxygen; xO

ν is the oxygen vacancies (in this case, interstitial oxygen) mole
fraction; A0 is the thermodynamical factor, which is described as a function of oxygen
nonstoichiometry on pO2; and k* and D* are the oxygen surface exchange constant and
tracer diffusion coefficient.

Thus, for other conditions of the electrode preparation being equal, considering the
electrodes’ morphological characteristics as being similar across the entire series and
assuming that the other parameters (A0, c0, xO

ν ) do not contribute significantly to the
dependence qualitative behavior, a qualitative correlation of the polarization resistance (Rη)
and kinetic parameters (k*, Deff

*) can be estimated as an inverse proportion of
√

k∗D∗e f f . A

similar approach was successfully applied in [21,41,63,69] to establish a correlation between
the transport properties of Pr and Nd nickelates and the electrochemical characteristics of
the related electrodes.

The effective oxygen tracer diffusion coefficient Deff
* can be estimated as θfastD*, where

θfast is the fraction of oxygen involved in a fast diffusion channel with the coefficient D*

(Table 2). The oxygen surface exchange constant k* can be evaluated from the oxygen
isotope exchange data using the oxygen heteroexchange rate R values as follows:

k∗ = R
Vsample

Nbulk
, (10)

where Vsample and Nbulk are the sample volume and the number of oxide anions in the
sample bulk [69,71]. To compare the electrochemical data obtained in the air atmosphere
and the TPIE data obtained in the 1 vol.% CO2-containing atmosphere, the k* values should
be recalculated. It has been shown for the Pr nickelate perovskites that the k* values for
the exchange with C18O2 were 2 orders of magnitude higher compared to the k* values
for the exchange with 18O2, with the effective activation energy values for these processes
differing insignificantly [72]. The effective order with respect to the oxygen containing gas
may vary within the range of ~0.5–1 for both dioxygen [73,74] and carbon dioxide [73,75].
The pseudo-first order was used in this study.

The correlation of Rη and k*Deff
* is linear. This fact demonstrates the important role of

the oxygen transport characteristics of the MIEC material in determining the performance
of the related MIEC electrodes. It was established in several studies that Ca doping
results in the total conductivity in the La2−xCaxNiO4+δ series [9,22,28] increasing. Heavily
doped samples (x = 0.2–0.5) have a conductivity level of 120–165 S cm−1 compared to
60–70 S cm−1 for the undoped LNO (at 700 ◦C), which is expected to have a positive
effect on the performance of the electrodes. However, the ionic conductivity decreases
at x ≥ 0.2 [29] and, as has been revealed in the current study, the coefficient D* values
gradually reduce at x≥ 0.2, showing a sharp fall at x = 0.4. The last-mentioned factors seem
to have the determining influence on the performance of the electrodes being considered
in this study with the application of a highly conductive collector (LNF conductivity
reaches 200–700 S cm−1 depending on the porosity [65]). In the case of the electrodes not
having a collecting layer, it is probable that all factors will have a competing effect on the
electrode activity.

As seen from Figure 10, the following dependences Rq,G ∼
(√

k∗D∗e f f

)−1
, KG ∼ R,

Yo ∼
√

D∗e f f can be observed between the parameters obtained by different research

methods—electrochemical impedance spectroscopy and isotope exchange study. The
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general tendency (except for La1.9Ca0.1NiO4+δ) of increasing impedance characteristics
and decreasing isotope exchange parameters with increasing Ca content can be observed.
This concurs with the dependences derived from Equation (9) and allows us to conclude
that the diffusion impedance of the electrodes based on La2−xCaxNiO4+δ depends on the
kinetic parameters of k* and Deff

*. An exception to this is the electrode with x = 0.1, which
shows slightly higher polarization resistance compared to the LNO electrode despite its
superior oxygen transport properties. The probable reason for this contradiction is the non-
optimized microstructure of the electrode. It was shown that a parameter such as tortuosity
of the electrode layer along with its porosity may have had an influence on the electrode
performance [76,77]. Moreover, while the powders used in isotope exchange studies were
sintered at 1150 ◦C with subsequent ball milling, which could generate extended defects
providing fast oxygen migration channels in these complex oxides [50,72], their layers
supported on electrolytes were additionally sintered at 1250–1200 ◦C, thus apparently
annealing defects and leading to some segregation of Ca cations on the surface of pores
and decreasing oxygen mobility and surface reactivity. Such phenomena could not be
substantial for more heavily doped samples with inherently worse transport properties
while being detectable for the sample with the lowest amount of dopant.

Crystals 2021, 11, x FOR PEER REVIEW 17 of 21 
 

 

samples (x = 0.2–0.5) have a conductivity level of 120–165 S cm−1 compared to 60–70 S cm−1 

for the undoped LNO (at 700 °C), which is expected to have a positive effect on the per-

formance of the electrodes. However, the ionic conductivity decreases at x ≥ 0.2 [29] and, 

as has been revealed in the current study, the coefficient D* values gradually reduce at x ≥ 

0.2, showing a sharp fall at x = 0.4. The last-mentioned factors seem to have the determin-

ing influence on the performance of the electrodes being considered in this study with the 

application of a highly conductive collector (LNF conductivity reaches 200–700 S cm−1 de-

pending on the porosity [65]). In the case of the electrodes not having a collecting layer, it 

is probable that all factors will have a competing effect on the electrode activity. 

As seen from Figure 10, the following dependences 𝑅𝑞,𝐺~ (√𝑘∗𝐷𝑒𝑓𝑓
∗ )

−1

, 𝐾𝐺~𝑅 , 

𝑌𝑜~√𝐷𝑒𝑓𝑓
∗  can be observed between the parameters obtained by different research meth-

ods—electrochemical impedance spectroscopy and isotope exchange study. The general 

tendency (except for La1.9Ca0.1NiO4+δ) of increasing impedance characteristics and decreas-

ing isotope exchange parameters with increasing Ca content can be observed. This con-

curs with the dependences derived from Equation (9) and allows us to conclude that the 

diffusion impedance of the electrodes based on La2−xCaxNiO4+δ depends on the kinetic pa-

rameters of k* and Deff*. An exception to this is the electrode with x = 0.1, which shows 

slightly higher polarization resistance compared to the LNO electrode despite its superior 

oxygen transport properties. The probable reason for this contradiction is the non-opti-

mized microstructure of the electrode. It was shown that a parameter such as tortuosity 

of the electrode layer along with its porosity may have had an influence on the electrode 

performance [76,77]. Moreover, while the powders used in isotope exchange studies were 

sintered at 1150 °C with subsequent ball milling, which could generate extended defects 

providing fast oxygen migration channels in these complex oxides [50,72], their layers 

supported on electrolytes were additionally sintered at 1250–1200 °C, thus apparently an-

nealing defects and leading to some segregation of Ca cations on the surface of pores and 

decreasing oxygen mobility and surface reactivity. Such phenomena could not be substan-

tial for more heavily doped samples with inherently worse transport properties while be-

ing detectable for the sample with the lowest amount of dopant. 

0.0 0.1 0.2 0.3

0

2

4

6

R


, 
ch

em
 [


·c
m

2
]

Y
0
 [


 -1
·c

m
-1

·s
-0

.5
];

 K
G
 [

m
in

-1
]

x(Ca)

 R


 R
 chem

 Y
0

 K
G

0

2

4

6

8

10 (k
*
·D

*

eff
)

0.5
·10

7

 R·10
-6

 D
*

eff

0.5
·10

5

(k
*
·D

* ef
f)

0
.5
·1

0
7
 [

(c
m

3
·s

-2
)0

.5
]

R
·1

0
-6

 [
m

in
-1

];
 D

* ef
f0

.5
·1

0
5
 [

cm
·s

-0
.5
]

 

Figure 10. Correlation between the EIS data such as polarization Rη, Gerischer RG resistance, Ger-

ischer admittance Y0, Gerischer time constant KG and the isotopic exchange kinetic parameters 

k*Deff*, oxygen heteroexchange rate R, tracer diffusion coefficient Deff*.for the La2−xCaxNiO4+δ series at 

700 °C in air. 

Summarizing, it should be noted that in a recent study performed on a button cell 

with a proton-conducting BaZr0.3Ce0.5Y0.2O3 electrolyte [22], it was shown that the use of 

an optimized LCNO01 electrode resulted in 30.5% higher performance compared to that 

Figure 10. Correlation between the EIS data such as polarization Rη , Gerischer RG resistance,
Gerischer admittance Y0, Gerischer time constant KG and the isotopic exchange kinetic parameters
k*Deff

*, oxygen heteroexchange rate R, tracer diffusion coefficient Deff
*.for the La2−xCaxNiO4+δ series

at 700 ◦C in air.

Summarizing, it should be noted that in a recent study performed on a button cell
with a proton-conducting BaZr0.3Ce0.5Y0.2O3 electrolyte [22], it was shown that the use of
an optimized LCNO01 electrode resulted in 30.5% higher performance compared to that of
an LNO electrode and allowed a very low polarization resistance (0.102 Ω cm2 at 700 ◦C)
to be obtained. Hence, to implement the potentiality of the LCNO01 material possessing
superior oxygen transport properties, future study should be directed to optimization of
the electrode layers’ features and investigation of their performance and stability both in
symmetrical and button cells.

4. Conclusions

In this work, the La2−xCaxNiO4+δ oxides (x = 0–0.4) were studied from the perspective
of their use as materials for oxygen separation membranes and for intermediate temper-
ature Solid oxide fuel cell/Solid oxide electrolysis cell’s air electrodes. The materials
were synthesized via a nitrate combustion method and characterized by XRD studies at
room temperature as well as at high temperatures, TGA, DSC and also by temperature-
programmed isotope exchange of oxygen with C18O2 in a flow reactor. La2−xCaxNiO4+δ
samples were single-phase oxides with Fmmm space group for x = 0 and I4/mmm for
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x = 0.1–0.4. Changes in the unit cell parameters and volume during heating and cooling
were shown to have been caused by the excess oxygen loss. A high oxygen mobility and
surface reactivity was demonstrated for La2−xCaxNiO4+δ samples for x = 0.1–0.3 due to
the cooperative mechanism of oxygen migration involving both regular and highly-mobile
interstitial oxygen, while poor oxygen kinetic properties for the sample with x = 0.4 could
be characterized by the predominance of slow exchange between the oxide anions in closest
proximity to each other. Typically for Ruddlesden–Popper phases, oxygen mobility and
surface reactivity decrease with increasing Ca content due to a decrease in the highly
mobile interstitial oxygen content as a charge compensation mechanism. The exception
for x = 0.1 is probably related to the smaller Ca2+ cation radius compared to that of host
La3+, as well as other features such as an insignificant increase in La/Ca–O2x1 bond length
and improving the transport of interstitial oxide anions with a small reduction in the over-
stoichiometric oxygen content due to the increasing mobility of interstitial oxide anions at
a low Ca-doping level. For the samples with x ≥ 0.2, a certain non-uniformity of oxygen
diffusivity was revealed: fast diffusion via cooperative mechanisms and slow diffusion
via exchange of the most mobile oxide anions with more strongly bound neighboring
anions. The electrochemical performance of symmetric cells with electrodes based on
La2−xCaxNiO4+δ was studied by an electrochemical impedance spectroscopy method. The
performances of the LCNO01-03 electrodes were lower than that of the LNO electrode,
which correlated with the oxygen transport properties (oxygen tracer diffusion coefficient
and surface exchange constant) specified in the Adler–Lane–Steele model. Further modifi-
cation in the electrode microstructure is necessary, as well as a comprehensive investigation
of its correlation with electrochemical properties in order to clarify the achievable maxi-
mum performance of electrodes based on doped materials, especially for LCNO01, which
possesses superior oxygen transport properties compared to undoped LNO.
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