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Abstract: La2/3Cu3Ti4O12 (LCTO) powder has been synthesized by the mechanochemical milling
technique. The pelletized powder was conventionally sintered for 10 h at a temperature range of
975–1025 ◦C, which is a lower temperature process compared to the standard solid-state reaction.
X-ray diffraction analysis revealed a cubic phase for the current LCTO ceramics. The grain size of the
sintered ceramics was found to increase from 1.5 ± 0.5 to 2.3 ± 0.5 µm with an increase in sintering
temperature from 975 to 1025 ◦C. The impedance results show that the grain conductivity is more
than three orders of magnitude larger than the grain boundary conductivity for LCTO ceramics.
All the samples showed a giant dielectric constant (1.7 × 103–3.4 × 103) and dielectric loss (0.09–0.17)
at 300 K and 10 kHz. The giant dielectric constant of the current samples was attributed to the effect
of internal barrier layer capacitances due to their electrically inhomogeneous structure.

Keywords: giant dielectric constant; mechanosynthesis; impedance spectroscopy

1. Introduction

Electroceramics are materials whose properties and applications depend on a complex
mingling of structural, compositional, and processing variables. A giant dielectric constant
(GDC) is usually observed in relaxor and perovskite ferroelectric materials with values of
dielectric constant (ε′) that are larger than 1000 [1–7]. For ferroelectric materials such as
BaTiO3, the ε′ value at room temperature is ~1500–2000. Insulating materials with high di-
electric permittivity and good thermal stability and which are Pb-free are attractive because
of their potential practical applications in microelectronics such as capacitors and memory
devices. A giant dielectric response with weak temperature-dependent permittivity has
been observed in materials such non-ferroelectric CaCu3Ti4O12 (CCTO) [8–11]. CCTO is
the most studied material of the family [A]Cu3Ti4O12 [A = Ca, Na, Cd, Sr, Y2/3, Bi2/3,
and Ln2/3; Ln: La, Sm, Ce, Er, Gd, Pr, Nd, Ho, Tb, and Tm) [8–15]. For CCTO ceramics,
the value of the dielectric constant increases with increasing grain size, with a value of
ε′~2.8 × 105 being reported for 300 µm grained ceramics [10]. Even though the origins of
the GDC observed in CCTO and CCTO-like materials are still discussed controversially,
the internal barrier layer capacitance (IBLC) effect is still the most accepted model [10,16].
The dielectric properties of ceramics are generally sensitive to the compositional variations
and sintering conditions [17–19]. The best dielectric properties of CCTO-based ceramic
systems are usually obtained using a standard solid-state reaction process which includes
several mechanical milling and high temperature (1050–1110 ◦C) calcination and sintering
steps [20–23]. La2/3Cu3Ti4O12 (LCTO) is a member of the [A]Cu3Ti4O12 family, but is
much less studied than CCTO [23–26]. LCTO ceramics have been reported to exhibit GDC.
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Liu et al. reported on the preparation of LCTO powder by sol-gel technique [25]. A room
temperature GDC value of 0.9–1.6 × 104 at 102–105 Hz could be obtained. The fabrication
process included calcination of the powder at 750–950 ◦C for 10 h, followed by conventional
sintering at 1100–1110 ◦C for 10–20 h. In the current study, we investigate the possibility
of reducing the preparation process of LCTO ceramics by using a comparatively shorter
time and lower temperatures in the process. The process is based on the mechanochemical
synthesis of the LCTO powder followed by conventional sintering. Mechanochemical
milling is considered to be a versatile method of producing almost all forms of materials in
the nanosize scale [23–28]. The advantages of mechanochemical milling are that almost
every material is accessible and materials can be produced in large amounts. In the current
study, we prepared LCTO powder by mechanochemical milling and the calcination step
that is usually done in solid state reaction technique was skipped, leading to a simpler
process. Moreover, the sintering temperature in the current work was limited to 1025 ◦C,
which is lower than the sintering temperatures of 1100 ◦C that is usually reported in
the literature for LLCT ceramics [23,25,27]. The prepared ceramics were then studied
for the microstructure, dielectric, and relaxation behavior using field-emission scanning
electron microscope (FE-SEM), X-ray diffraction (XRD), and impedance spectroscopy (IS)
measurements in a wide range of frequencies and temperatures.

2. Materials and Methods

High-purity CuO (99.9%), TiO2 (99.95%), and La2O3 (99.95%) raw powders were
weighed according to the chemical formula La2/3Cu3Ti4O12 and mixed with isopropyl
alcohol for 30 h at room temperature with a rotation speed of 500 rpm in Fritsch P-7
premium line machine. Tungsten carbide pot and tungsten carbide balls were used, with a
powder to balls mass ratio of 1:8. The synthesized powder was then dried for 1 hour
at 300 ◦C. Afterwards, a suitable amount of the powder was pressed into pellet disks
of ~1.5 mm thickness and 10 mm diameter under static pressure of 32 MPa. Pellets
were conventionally sintered at 975, 1000, and 1025 ◦C in air for 10 h using a heating
rate of 5 ◦C/min. After the sintering process, the ceramics were allowed to naturally
cool down in the furnace. For simplicity, these ceramics are denoted as CS-975, CS-1000,
and CS-1025, respectively. Materials characterization was performed by XRD and FE-
SEM. XRD measurements were performed by using a Bruker D8 Advance X-ray powder
diffractometer (CuKα radiation, Karlsruhe, Germany) in the 10◦ ≤ 2θ ≤ 90◦ range with a
step of 0.02◦. The graphs of the microstructure were obtained by FE-SEM (Joel SM7600F,
Tokyo, Japan) without prior sputtering of the samples. For impedance measurements,
the studied ceramics were gold sputtered. Impedance spectroscopy measurements were
conducted for the prepared ceramics in the 120–460 K temperature range over the 1 Hz
to 10 MHz frequency range using Novocontrol concept 50 system with an applied ac
voltage of 0.1 V. The IS measurements were performed in dry nitrogen atmosphere where
the temperature was controlled by the Quatro Cryosystem (Novocontrol Technologies,
Montabaur, Germany).

3. Results

Figure 1 shows the XRD pattern of mechanosynthesized LCTO powder. This figure
suggests the formation of CCTO-like structure, with the major peaks indexed in the figure,
which confirms the synthesis of LCTO material by the mechanochemical synthesis tech-
nique. Figure 2 represents the X-ray diffraction profiles of the CS-975, CS-1000, and CS-1025
LCTO samples analyzed using the Rietveld refinement process with the Im3 space group
by FullProf software [29]. The experimental data in Figure 2 are represented with black
points, whereas the calculated spectra are shown by the red line. The difference curves
between the experimental and fitted spectrum are highlighted by the blue line. The pink
vertical lines represent the exact location of Bragg’s position.
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Figure 1. XRD pattern of mechanosynthesized La2/3Cu3Ti4O12 (LCTO) powder. 

 
Figure 2. Rietveld refinement of XRD profiles of the LCTO CS-975, CS-1000, and CS-1025 ceramics. 
The reflections marked by # at 27.78°, ~36.2°, and 54.62° are corresponding to the impurity phase 
of tetragonal rutile TiO2 phase (P42/mnm). 

All diffraction peaks at diffraction angles—34.30°, 38.37°, 42.20°, 45.76°, 48.08°, 
61.06°, 72.04°, and 82.26°—correspond to the (220), (310), (222), (321), (422), (440), and (620) 
planes, respectively, and are perfectly indexed based on the body-centered cubic structure 
with space group Im3. The diffraction peaks of CS-975, CS-1000, and CS-1025 LCTO ce-
ramics are well-matched with the JCPDS card No. 75-2188. The various structural param-
eters such as lattice parameters and unit cell volume obtained from the Rietveld 
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Figure 1. XRD pattern of mechanosynthesized La2/3Cu3Ti4O12 (LCTO) powder.
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Figure 2. Rietveld refinement of XRD profiles of the LCTO CS-975, CS-1000, and CS-1025 ceramics.
The reflections marked by # at 27.78◦, ~36.2◦, and 54.62◦ are corresponding to the impurity phase of
tetragonal rutile TiO2 phase (P42/mnm).

All diffraction peaks at diffraction angles—34.30◦, 38.37◦, 42.20◦, 45.76◦, 48.08◦, 61.06◦,
72.04◦, and 82.26◦—correspond to the (220), (310), (222), (321), (422), (440), and (620) planes,
respectively, and are perfectly indexed based on the body-centered cubic structure with
space group Im3. The diffraction peaks of CS-975, CS-1000, and CS-1025 LCTO ceramics
are well-matched with the JCPDS card No. 75-2188. The various structural parameters such
as lattice parameters and unit cell volume obtained from the Rietveld refinement are shown
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in Table 1. It is found that lattice parameters and unit cell volume increase slightly with
the increase in the sintering temperature. The goodness factor (χ2) values of fitting were
obtained in between 1.17 to 1.22, which clearly convince a very good agreement between
calculated and experimental spectra as shown in Table 1. Besides the main CCTO-like phase,
the minor reflections marked by # at 27.78◦, ~36.2◦, and 54.62◦ correspond to the impurity
phase of rutile TiO2 [JCPDS card No. 89–4920 with tetragonal structure, space group
P42/mnm]. Figure 3 shows FE-SEM images of LCTO powder and the fractured surfaces
of the corresponding ceramics. Mechanosynthesized LCTO powder exhibits particle size
in the 50–150 nm range (Figure 3a). After conventional sintering, all the studied ceramics
showed uniformly distributed microstructure with the average grain size of 1.5 ± 0.5,
1.8 ± 0.4, and 2.3 ± 0.5 µm for CS-975, CS-1000, and CS-1025 ceramics, respectively, as can
be seen from Figure 3b–d.

Table 1. Structural parameters obtained from Rietveld refinement of the XRD data of LCTO ceramics.

Sample CS-975 CS-1000 CS-1025

Space group Im3 Im3 Im3

a = b = c (Å) 7.416(3) 7.417(1) 7.422(1)

V (Å3) 407.858(2) 408.023(1) 408.848(9)

χ2 1.17 1.19 1.22
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Figure 3. FE-SEM micrographs of (a) LCTO powder and (b) CS-975, (c) CS-1000 and (d) CS-1025 LCTO ceramics. Figure 3. FE-SEM micrographs of (a) LCTO powder and (b) CS-975, (c) CS-1000 and (d) CS-1025 LCTO ceramics.



Crystals 2021, 11, 313 5 of 11

The complex impedance plots for CS-975, CS-1000, and CS-1025 LCTO ceramics are
given in Figure 4. The complex impedance plane plot at a given temperature is composed
of two semicircular arcs. The semicircle at high frequency is related to the grain response
while the grain boundary response is correlated with the low frequency semicircle. This is
supported by the capacitance values associated with these semicircles. The capacitance could
be estimated from the impedance data by the relation; RC = 1/2πfmax, where fmax is the
frequency at the top of the semicircles. The estimated values of the capacitance at different
temperatures are in the range of 1.4–4 nF for the low frequency semicircles, and 55–85 pF for
the high frequency semicircles. These values of the capacitance confirm that the high- and
low-frequency semicircles are related to grain and grain boundary contributions, respectively.

Crystals 2021, 11, x FOR PEER REVIEW 5 of 11 
 

 

The complex impedance plots for CS-975, CS-1000, and CS-1025 LCTO ceramics are 
given in Figure 4. The complex impedance plane plot at a given temperature is composed 
of two semicircular arcs. The semicircle at high frequency is related to the grain response 
while the grain boundary response is correlated with the low frequency semicircle. This 
is supported by the capacitance values associated with these semicircles. The capacitance 
could be estimated from the impedance data by the relation; RC = 1/2πf୫ୟ୶, where fmax is 
the frequency at the top of the semicircles. The estimated values of the capacitance at dif-
ferent temperatures are in the range of 1.4–4 nF for the low frequency semicircles, and 55–
85 pF for the high frequency semicircles. These values of the capacitance confirm that the 
high- and low-frequency semicircles are related to grain and grain boundary contribu-
tions, respectively. 

(a) (b) 

 

 

(c)  

Figure 4. Complex impedance diagrams at selected temperatures for (a) CS-975, (b) CS-1000, and (c) CS-1025 LCTO ce-
ramic. The insets show the high-frequency semicircles that correspond to grain response, whereas the large semicircles in 
the main graph represent the grain boundary contribution. 

It can be seen from Figures 4 and 5 that the overall resistivity of LCTO ceramic de-
creases with an increase in the measuring temperature, which is typical semiconductor 
behavior. Figure 5 shows the complex impedance diagram at 300 K for all three samples. 
As the sintering temperature increases, the overall resistivity of LCTO ceramics decreases. 
Moreover, the ratio of resistivity of grain-boundary to the grain in LCTO ceramics is found 
to be four (CS-975) to three (CS-1000 and CS-1025) orders of magnitude, which indicates 
the electrical heterogeneity of the ceramics. The temperature dependency of the grain and 
grain boundary conductivity extracted from the complex impedance plots of the current 
LCTO ceramics is shown in Figure 6. The solid lines in this figure represent the linear fit 
according to the Arrhenius relationship: 

0 10 20 30 40 50 60
0

10

20

30

40

50

60

1000 2000 3000

0

1000

2000

3000

4000

5000

18 MHz
 

 

Z' (Ω.cm)

-Z
'' 

(Ω
.c

m
)

9.85 Hz

      CS-975
 260 K  280 K
 300 K  320 K
 340 K

Z' (ΜΩ.cm)

-Z
'' 

(Μ
Ω

.c
m

)

0 10 20 30 40 50
0

10

20

30

40

0 400 800 1200 1600
0

500

1000

1500

2.9 MHz

 

 

Z'  (Ω.cm)

-Z
'' 

(Ω
.c

m
)

4.5 Hz

      CS-1000
 260 K  280 K
 300 K  320 K
 340 K

Z' (ΜΩ.cm)

-Z
'' 

(Μ
Ω

.c
m

)

0 5 10 15 20
0

5

10

15

20

200 400 600 800
0

600

1200

1800

2400

2.9 MHz

 

 

Z' (Ω.cm)

-Z
'' 

(Ω
.c

m
)

12.8 Hz

      CS-1025
 260 K  280 K
 300 K  320 K
 340 K  

Z' (ΜΩ.cm)

-Z
'' 

(Μ
Ω

.c
m

)

Figure 4. Complex impedance diagrams at selected temperatures for (a) CS-975, (b) CS-1000, and (c) CS-1025 LCTO ceramic.
The insets show the high-frequency semicircles that correspond to grain response, whereas the large semicircles in the main
graph represent the grain boundary contribution.

It can be seen from Figures 4 and 5 that the overall resistivity of LCTO ceramic
decreases with an increase in the measuring temperature, which is typical semiconductor
behavior. Figure 5 shows the complex impedance diagram at 300 K for all three samples.
As the sintering temperature increases, the overall resistivity of LCTO ceramics decreases.
Moreover, the ratio of resistivity of grain-boundary to the grain in LCTO ceramics is found
to be four (CS-975) to three (CS-1000 and CS-1025) orders of magnitude, which indicates
the electrical heterogeneity of the ceramics. The temperature dependency of the grain and
grain boundary conductivity extracted from the complex impedance plots of the current
LCTO ceramics is shown in Figure 6. The solid lines in this figure represent the linear fit
according to the Arrhenius relationship:
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σ = σ0exp(
−Ea

kBT
) (1)

where σ0 is the pre-exponential factor, kB is Boltzmann constant, and Ea is the activation
energy for conduction. Table 2 lists out the conductivity values at 300 K and the associated
values of the activation energy of the grain and grain boundaries of the CS-975, CS-1000,
and CS-1025 ceramics. The values of the activation energy of the conduction processes are
0.141 and 0.129 eV in the grains and 0.628 and 0.552 eV in the grain-boundary of CS-975
and CS-1025 ceramics, respectively.
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Figure 5. Impedance complex plane plot of LCTO ceramics at 300 K where the inset shows the
magnification at high frequencies.
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Figure 6. The temperature dependence of the grains and grain-boundary conductivity of LCTO ceramics.

The frequency dependence, at selected temperatures, of the dielectric constant ε′

of each LCTO sample is shown in Figure 7, whereas Figure 8 represents the frequency
dependence of ε′ and tanδ at 300 K for all LCTO ceramics. As seen in these figures, all the ce-
ramics showed the same behavior where at low temperature a first dielectric plateau exists
followed by a large drop in the ε′ value to the bulk dielectric constant value of about 100 at
high frequency. This behavior is commonly reported in CCTO-like materials and attributed
to the Debye-like relaxation in the grain [27]. With increasing temperature, this plateau
shifts towards higher frequency and a second plateau with higher dielectric value appears
at low frequency. This second plateau is thought to be due to the Maxwell–Wagner polar-
ization (M-W) effect which manifests in electrically inhomogeneous materials [23,28,30].
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As approved by impedance measurements, the current LCTO ceramics have the structure
of semi-conductive grains surrounded by resistive grain-boundary. Therefore, at high
temperatures and suitable frequencies, the moving charge carriers are piled up at the
resistive grain-boundary, which creates internal barrier layer capacitance (IBLC).
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Figure 7. Frequency dependence of ε′ at selected temperatures for LCTO ceramics; (a) CS-975, (b) CS-1000, and (c) CS-1025.

The frequency dependence of ε′ and tanδ for LCTO samples is shown in Figure 8.
One relaxation peak is observed in the spectra of tanδ at high frequency, which is related to
the grain relaxation process. The peak related to the grain-boundary relaxation is not well
resolved due to the high conductivity of the sample at room temperature. The dielectric
loss for the samples at room temperature and 104 Hz is summarized in Table 2. The sample
CS-975 showed the lowest dielectric loss of ~0.09, which increases to 0.17 for CS-1025
sample. These values of tanδ are higher than the values reported previously for LCTO
ceramics as in Ref. [25].

The frequency dependence of the electric modulus (M* = M′ + jM” = 1/ε* where
ε* is the complex permittivity) is commonly used to study the relaxation properties of
the materials. The spectra of the imaginary part of the electric modulus M” at selected
temperatures for CS-975, CS-1000, and CS-1025 ceramics are shown in Figure 9. For all the
samples, two relaxation peaks could be detected in the studied temperature and frequency
range. A first peak is observed in the temperature range (120–300 K) and high frequency
(>105 Hz). A second peak is seen at a higher temperature range (~240–450 K) and lower
frequency. The peak maximum of M” is inversely proportional to the capacitance [31,32].
Thus, considering the higher resistivity and capacitance of the grain-boundary compared
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to the grain, the low and high frequency relaxation peaks are attributed to the response of
grain-boundary and grain contributions, respectively.
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Figure 9. Modulus spectra of LCTO ceramics at selected temperatures: (a) CS-975, (b) CS-1000, and (c) CS-1025.
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Table 2. Room temperature resistivity (R), dielectric constant (ε′), dielectric loss (tanδ), and the value of activation energy
(E) for conduction in the grain and grain boundary of CS-975, CS-1000, and CS-1025 LCTO ceramics.

Sample Rg
(Ω·cm)

Rgb
(Ω·cm)

ε′

(at 10 kHz)
tanδ

(at 10 kHz)
Eg

(eV)
Egb
(eV)

ER(g)
(eV)

ER(g.b)
(eV)

CS-975 945 9.6 × 106 1.7 × 103 0.09 0.141 0.628 0.099 0.608

CS-1000 452 1.7 × 106 3 × 103 0.16 0.141 0.585 0.121 0.535

CS-1025 400 1.1 × 106 3.4 × 103 0.17 0.129 0.552 0.099 0.528

The relaxation time τ is determined from the peak frequency fmax as τ = 1/(2πfmax).
Figure 10 shows the inverse temperature dependence of the relaxation time determined
from the modulus spectra for the grains and grain boundaries. The activation energy of the
relaxation processes was therefore calculated according to the Arrhenius relationship:

τ = τ0exp(
ER

kBT
) (2)

where τ0 is the pre-exponential factor and ER is the activation energy for the relaxation
process. The values of the relaxation energy in the grain and grain-boundary for the LCTO
ceramics are given in Table 2. These values of the activation energies are similar to the
reported values for the LCTO ceramics prepared by other techniques [24,25].
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4. Conclusions

La2/3Cu3Ti4O12 (LCTO) ceramics were synthesized by mechanosynthesis and con-
ventional sintering (CS) at a comparatively low temperature range (975–1025 ◦C) without
calcination step. All the sintered LCTO ceramics showed CCTO-like body-centered cubic
structure with space group Im3. The grain size of the LCTO ceramics is found to increase
from 1.5 ± 0.5 to 2.3 ± 0.5 µm with increasing CS temperature from 975 to 1025 ◦C. The gi-
ant dielectric constant was obtained for the LCTO ceramics with the dielectric constant
(1.7 × 103–3.4 × 103) and dielectric loss (0.09–0.17) at 300 K and 10 kHz. The sintered sam-
ple at 1025 ◦C showed the highest dielectric constant, while the sintered sample at 975 ◦C
exhibited the lowest dielectric loss. The giant dielectric response of the current samples is
believed to be related to the Maxwell–Wagner polarization effect of the ceramic samples.
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