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Abstract: Breath monitoring is significant in assessing human body conditions, such as cardiac and
pulmonary symptoms. Optical fiber-based sensors have attracted much attention since they are
immune to electromagnetic radiation, thus are safe for patients. Here, a microfiber (MF) humidity
sensor is fabricated by coating tin disulfide (SnS2) nanosheets onto the surface of MF. The small
diameter (~8 µm) and the long length (~5 mm) of the MF promise strong interaction between guiding
light and SnS2. Thus, a small variation in the relative humidity (RH) will lead to a large change
in optical transmitted power. A high RH sensitivity of 0.57 dB/%RH is therefore achieved. The
response and recovery times are estimated to be 0.08 and 0.28 s, respectively. The high sensitivity
and fast response speed enable our SnS2-MF sensor to monitor human breath in real time.

Keywords: two dimensional material; SnS2; humidity sensing; microfiber

1. Introduction

Relative humidity (RH) measurement and monitoring are important for industry,
food storage, human comfort, etc. [1–3]. In recent decades, various optical fiber devices
have been developed for this purpose [1]. The optical fiber sensors show advantages
over electronic ones, owing to their long lifetime, corrosion-free, light-weight, electromag-
netic immunity, and remote sensing ability [4,5]. Microfiber and side-polished optical
fiber are two kinds of optical fibers used frequently in the RH sensing [1]. To enhance
the RH sensing performance, certain sensitive materials are deposited on the surface of
microfiber/side-polished fiber [6,7]. In 2000, agarose gel was coated on a tapered fiber by
Baríain et al. [8]. A transmitted optical power variation of 6.5 dB was obtained with a rela-
tive RH changing between 30% and 80% [8]. Recently, two dimensional (2D) materials have
attracted increasing attention [9–11]. Luo et al. demonstrated an all-fiber-optic RH sensor
comprised of a Tungsten disulfide (WS2) film overlaid on a side polished fiber [11]. This
sensor has a linear correlation coefficient of 99.39% [10]. Lately, Huang et al. demonstrated
a high-sensitivity (0.145 nm/RH%) RH sensor by taking advantage of the swelling effect of
graphene oxide film [12]. Du et al. fabricated a MoS2-based all-fiber RH sensor with fast
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response and recovery [13]. Monitoring human breath is significant for assessing human
body conditions, such as cardiac and pulmonary symptoms [14,15]. Many fiber-optical RH
sensors have been successfully used for monitoring human breathing [12,13]. However,
ultrafast response and recovery times are required in some RH sensing application. As
illustrated by [15], the infant pulmonary function testing requires a sampling rate of more
than 200 Hz, which is still challenging for fiber-optical RH sensors.

Layered transition metal dichalcogenides (TMDs) have attracted much attention
recently [16,17]. Compared with MoS2 and WS2, Tin disulfide (SnS2) has a larger bandgap
of 2.18–2.44 eV and a higher carrier mobility of ~50 cm2·V−1·s−1 [18], which guarantee its
potential applications in field effect transistors [19], fast photodetectors [20], lithium-ion
batteries [21,22], and visible light sensitive photo-catalyst [23]. SnS2 has been widely used in
gas-sensing [24–26]. It was demonstrated that SnS2 nanostructures exhibit a good response
and reversibility to some organic gases, such as ethanol and n-butanol [25]. Moreover, the
2D SnS2 was shown to have a selective and reversible response for nitrogen dioxide (NO2)
with a detection limit down to 30 ppb [26]. In 2016, Bharatula fabricated an electric RH
sensor based on SnS2 [27]. However, the optical RH sensing property of SnS2 has still not
been exploited.

Here, a high-performance RH sensor is fabricated by coating SnS2 nanosheets onto the
surface of MF. The RH sensor based on SnS2 is demonstrated to have a high RH sensitivity
of 0.57 dB/%, and fast response and recovery times of 0.08 s and 0.28 s, respectively.

2. Materials and Methods

The SnS2 suspension is purchased from Mukenano co., and is made by liquid phase
exfoliation method [28]. The Raman spectrum of the SnS2 film is excited by a 488 nm laser
and measured by LabRAM HR Evolution (HORIBA JY, France) at room temperature. The
measured result is shown in Figure 1a. The peak at 314 cm−1 is the characteristic peak of
SnS2 [18]. Figure 1b shows the absorption spectra measured by UV–visible spectroscopy.
There are two main peaks of 213 nm and 256 nm in the absorption spectra, as illustrated
in [29]. The absorption decreases gradually when the wavelength increases from 252 nm to
600 nm.
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step, and the result is shown by Figure 2c. The length of uniform waist region is measured 
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Figure 1. Raman (a) and UV–visible absorption spectra (b) of SnS2.

The MF shown in Figure 2a is manufactured with “flame-brushing” technique [30]
from a single-mode fiber (Corning SMF-28e), and has a core diameter of 8.2 µm and a
cladding diameter of 125 µm. With a drawing speed of 0.2 mm/s, a MF with a diameter
of ~8.18 µm in the uniform waist region is fabricated, as shown in Figure 2b, where an
image of the central MF region by optical microscope is given. The dimeter changing
along the MF is obtained by a series of microscopy images captured when moving the MF
step by step, and the result is shown by Figure 2c. The length of uniform waist region is
measured to be ~5 mm. The MF is then fixed on a glass slide by ultraviolet curing adhesive
(Loctite 352, Henkel Loctite Asia Pacific). In addition, a basin (15 mm × 5 mm × 1 mm) is
constituted by using the UV adhesive to contain SnS2 solution.
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Figure 2. (a) Schematic of the fabrication of MF with “flame-brushing” technique. (b) The microscopy
image of central MF region. (c) Morphological characteristic of MF by an optical microscopy.

For the RH sensing, we combine a MF with SnS2 nanosheets. This is because the
controllable diameter of MF can result in the strong interaction between light field and
SnS2 nanosheets. In addition, the large specific surface area of SnS2 nanosheets enhances
the absorption of water molecules. The method of depositing SnS2 nanosheets on the
MF is based on a self-assembly method. The concentration of SnS2 alcohol suspension
is 1 mg/mL. To avoid agglomeration, the SnS2 suspension is treated by ultrasonication
for 60 min. The MF is fixed in a basin, as shown by Figure 2a. As shown by Figure 3a, a
1550 nm distributed feedback (DFB) laser is launched into the MF, and the optical trans-
mitted power is monitored. The SnS2 alcohol suspension is dropped into the basin and
evaporated naturally in ambient surrounding. During the alcohol evaporation, the SnS2
nanosheets are self-assembling onto the MF owing to the physisorption effect, which results
in the change of transmitted power, as shown by Figure 3b. After ~115 min, the power
is stable at −35 dBm, indicating the complement of the self-assembly process. Recently,
Zhong et al. have developed a suspended self-assembling process [31], which can improve
the RH response time.
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Figure 3. (a) Schematic setup of the deposition of SnS2 on MF. (b) Variation of transmitted optical
power in MF during the deposition of SnS2 nanosheets onto the MF.

The fabricated MF coated with SnS2 is imaged by scanning electron microscopy (SEM).
As shown in Figure 4a, SnS2 is distributed non-uniformly on the MF. The diameter of MF
is 8.18 µm. The enlarged image of the SnS2 nanosheets on MF are shown by Figure 4b,
where the morphologic of SnS2-nanosheets are shown clearly, indicating the roughness of
the SnS2 layer is about 200 nm. Figure 4c shows the SEM image of the cross section of MF,
from which the thickness of the SnS2 film is estimated to be ~161 nm.

Crystals 2021, 11, x FOR PEER REVIEW 4 of 10 
 

 

 
Figure 3. (a) Schematic setup of the deposition of SnS2 on MF. (b) Variation of transmitted optical 
power in MF during the deposition of SnS2 nanosheets onto the MF. 

The fabricated MF coated with SnS2 is imaged by scanning electron microscopy 
(SEM). As shown in Figure 4a, SnS2 is distributed non-uniformly on the MF. The diameter 
of MF is 8.18 μm. The enlarged image of the SnS2 nanosheets on MF are shown by Figure 
4b, where the morphologic of SnS2-nanosheets are shown clearly, indicating the roughness 
of the SnS2 layer is about 200 nm. Figure 4c shows the SEM image of the cross section of 
MF, from which the thickness of the SnS2 film is estimated to be ~161 nm. 

 

 
Figure 4. (a) SEM image of the MF coated with SnS2. (b) Enlarged image of the SnS2 nanosheets on 
MF. (c) SEM image of the cross section of MF coated with SnS2. The inset enlarges the region 
marked by a dotted square. 

Figure 4. (a) SEM image of the MF coated with SnS2. (b) Enlarged image of the SnS2 nanosheets on
MF. (c) SEM image of the cross section of MF coated with SnS2. The inset enlarges the region marked
by a dotted square.



Crystals 2021, 11, 648 5 of 10

3. Results

The RH sensing schematic is shown in Figure 5. A light from 1550 nm DFB laser source
(SOF-155-D DFB LASER) is sent into MF coated with SnS2, which is placed in a temperature-
humidity chamber (BPS-100CL). The MF transmitted light is measured by optical power
meter. The RH in the chamber is monitored by a commercial humidity sensor (Testo 175H1)
in real time. During the RH sensing experiments, the chamber temperature is fixed at
27 ◦C, while the RH in the chamber ranges from ~55 %RH to ~100 %RH. Both the optical
transmitted power and the RH were recorded during the whole experimental process.
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Figure 5. Experimental setup of the SnS2-coated MF device for humidity sensing.

To test the RH sensing property, the RH in the chamber is increased and then decreased
with by a step of 13 %RH in the RH range of 55% to 95%. With the change of the chamber
RH, the transmitted optical power of MF coated with SnS2 varies accordingly, as shown
by Figure 6a. The variation is ~22.5 dB, ranging from ~−35 dBm to ~−13 dBm. The
relationship between the transmitted power and the humidity is depicted in Figure 6b. The
transmitted power in humidity ascending and descending processes are well overlapped.
The transmitted power changes linearly with the chamber humidity. The sensitivity is
~0.57 dB/%RH with the R-square of ~0.98. The high sensitivity and good linearity of the
SnS2 nanosheets is appealing in the humidity sensing.
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Figure 7 shows the repeatability of the RH sensing of SnS2-based sensor, where the
chamber was switched between two RH of 45% and 100%. From the three cycles of the RH
switching in Figure 7, one finds that the optical transmitted power holds the same variation
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as the RH, which confirms the good repeatability and reversibility of the SnS2-based
RH sensor.
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coated with SnS2.

The transmitted spectrum responses of SnS2-based sensor for the humidity were
further investigated. A tunable laser (TLS, AQ4321D, ANDO) and an optical spectrum
analyzer (OSA, AQ6370D, Yokogawa) were used in the experiment. Figure 8a,b show
the variations of the transmitted spectrum (1520–1620 nm) for the RH ascending (a) and
descending (b) processes, respectively. The transmitted spectrum of the MF with SnS2
undergoes a relative change when the RH changes in the range of 50% to 95%.
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As shown by Figures 6 and 8, the transmitted power increases with the relative
RH, which should be a result of the increase of the real part of the refractive index of
SnS2. In contrast to the RH sensor-based graphene oxide [12,31], the swelling effect
of TMDs is not obvious [32]. When water molecules are absorbed by SnS2 film, some
air is replaced by the water molecules. Thus, the average refractive index should be
n = f SnS2 nSnS2 +f airnair+f waternwater, where nx and fx (x = SnS2, air, water) are the refractive
index and filling factor, respectively. As fSnS2 +fair+fwater = 1 and nwater > nair, the absorption
of water molecules increases the average refractive index.

To investigate the influence of the SnS2 refractive index on the absorption of SnS2-
coated MF, we perform a simulation with COMSOL Multiphysics. The simulated structure
is shown by Figure 9a, which is the same as the experimental one. The refractive index
of MF and SnS2 are 1.46 and 2.29 + 0.3i [33], respectively. The intensity distributions of
fundamental modes with and without SnS2 are shown by Figure 9b. The light field is
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enhanced and absorbed by the SnS2 film, as shown by Figure 9c. With the increase of
the real part of the refractive index of SnS2 film, the imaginary part of effective index of
SnS2-coated MF decreases gradually, resulting in the increase of the transmitted power as
observed experimentally.
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Figure 9. (a) The structure of the SnS2-coated MF. (b) Intensity patterns of fundamental modes with
and without SnS2 film. (c) Normalized intensity along the dotted lines in (b). (d) Imaginary part of
effective index of SnS2-coated MF changing with refractive index of SnS2.

It is interesting to apply the SnS2-based MF sensor for monitoring human breath. The
experimental setup to monitor human breath is shown in Figure 10a. A light from 1550 nm
DFB laser is launched into SnS2-coated MF. The transmitted optical light is detected by
a photodetector (1811, New Focus), and the transformed electric signal is analyzed by
an oscilloscope (DS1052E, Rigol). Figure 10b shows the five cycles of human breathing.
The photodetector voltage varies in accordance with the evolution of the exhale/inhale
cycles with a maximum voltage variation of ~0.2 V. According to the enlarged view of the
response from the fourth cycle, the best response and recovery times are 0.08 s and 0.28 s,
respectively. The average response and recovery times over five human breathing cycles
are 0.10 s and 0.31 s, respectively.
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Table 1 shows the main performances of our proposed device and other types of
recently developed fiber-optical humidity sensors in literature. Compared to the other
fiber-optical RH sensors, the SnS2-based MF device possesses a much higher sensitivity
with a high linearity in the RH range of 55 %RH–95 %RH. Moreover, the sum of response
and recovery time (total time) of our sensor is the smallest (0.36 s), which is at least more
than 4.7 times smaller than other fiber RH sensors activated with layered TMDs. Compared
to the MoS2-coated etched single-mode fiber, our sensor possesses a little slower response
time of 0.08 s, but a faster recovery time of 0.28 s [13]. Therefore, the SnS2-based MF device
is more suitable for the human breath monitoring.

Table 1. Comparison of the main performance between the proposed SnS2-coated MF sensor and other recently developed fiber-optic
sensing devices in the literature.

Device Structure Response Time (s) Recovery Time (s) Total Time(s) Dynamic Range of Response

MoS2 nanosheets based SPF [9] 0.85 0.85 1.70 0.33 dB/%RH (40 %RH–85 %RH)
MoS2-coated etched single-mode

fiber [13] 0.066 2.395 2.461 0.008 dB/%RH (20 %RH–80 %RH)

MoSe2-coated fiber-optic sensor [34] 1 4 5 0.26 dB/%RH (32 %RH–73 %RH)
Tungsten disulphide (WS2)-coated 1 4 5 0.17 dB/%RH (37 %RH–90 %RH)

Graphene oxide (GO)-coated
fiber-optic sensor [11] 2.73 7.27 10.0 0.427 dB/%RH (59 %RH–93 %RH)

Agarose gel with tapered fiber [7] 5 55 60 0.13 dB/%RH (30 %RH–80 %RH)
SnS2-coated MF (this paper) 0.08 0.28 0.36 0.57 dB/%RH (55 %RH–95 %RH)

4. Conclusions

A high-performance RH sensor has been proposed by coating SnS2 nanosheets onto
the surface of an MF. Due to the strong interaction between evanescent wave of MF and
SnS2 nanosheets, the SnS2-based sensor possesses a high sensitivity of 0.57 dB/%RH in the
RH range of 55 %RH–95 %RH. The response and recovery times respectively are 0.08 s and
0.28 s, allowing us to monitor human breath in real time. This optical RH sensor may find
applications in medical diagnosis.
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