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Abstract: Two new laterally di-substituted derivatives namely, (E)-4-(((2-Chlorophenyl)imino)methyl)-
3-methoxyphenyl 4-(alkoxy)benzoate, were designed and investigated for their mesomorphic prop-
erties. Elucidation of their molecular structures was carried out by elemental analyses, NMR and
FT-IR, spectroscopy. Phase transitions were examined by differential scanning calorimetry (DSC) and
polarized optical microscopy (POM). The optimized geometrical architectures of both compounds
were deduced theoretically using GAUSSIAN 09 program. In order to establish the most probable
conformation for each compound, four probable conformations were predicted for their positional
isomers which vary according to the orientations of the two lateral groups. The results were used
to correlate the experimental measurements with the predicted conformations. The study revealed
that the investigated derivatives are non-mesomorphic and the orientations, as well as positions
of the two-lateral groups, have a significant effect on the molecular packing of the molecules, their
geometrical and thermal parameters.

Keywords: Schiff base/ester; di-lateral groups; phase transition; computational calculations; DFT

1. Introduction

The molecular geometries relationship between mesogenic cores of compounds and
their mesomorphic behaviors are very important to understand. A number of Schiff
base/ester homologous sets of thermotropic liquid crystal (LC) derivatives have been
investigated and are often evaluated from the point of their interesting optical and compu-
tational characterizations [1–4]. From the geometrical investigations, we found that the
linkage spacer orientation in the rigid core, the location of linking groups, lateral substitu-
tions, the aspect ratio of the molecule, and the length of the attached terminal chain are
essential parameters for mesophase behavior [5–12].

Today, the optoelectronic properties of materials are shown to be strongly enhanced
by the introduction of lateral polar groups [13]. This enhancement is mainly dependent
on the spatial orientation and location of the lateral substituent. The combination of more
lateral groups enables the polar substituents to play an essential role in influencing the
geometrical, thermal, and physical properties of the resultant LC compound, such as
melting temperature, phase transition phenomena, morphology, polarizability, and dipole
moment [14–17]. In addition, the lateral and terminal polar groups induce a significant
impact on the mesomorphic properties of the imine/ester derivatives. The lateral group
increases the intermolecular separation that broadens the core part and leads to a decrement
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in the lateral interactions [18–20]. So, any increment in the molecular breadth will reduce
the thermal stability of both the nematic and smectic phases [21].

The size of the lateral group is an important factor, of which the introduction of small
size type into mesomorphic geometries causes no steric molecular disruption while the
LC mesophases could still be observed. Moreover, the lateral substituent in the mesogenic
core can disrupt the closed packing of molecules and reduce LC melting transition, thereby
improving the solubility of LC effectively. In addition, the melting temperature of meso-
morphic materials could be decreased to near room temperature by mixing two or more
components. However, the phase transitions and thermal properties of LCs mixtures differ
from their individual components. Thus, series of binary LC mixtures could be better
made for certain applications [22]. This practice makes the mesomorphic behavior of such
mixtures essential as it proffers the way to achieving lower melting points [23–25].

The polar lateral substituent changes the polarizability and the dipole-moment of
the whole molecule to a ratio depending on its location and orientation. This definitely
reflects on the mesomorphic behavior of the formed molecule. Moreover, as the length
of the terminals increases, the molecules tend to orientate in a parallel arrangement [26].
The steric effects of di- lateral fluorine atoms on the mesomorphic properties of four ring
compounds had been reported [27]. The study revealed that the derivatives exhibited high
stable SmC and N mesophases with a wide mesophase range. Furthermore, the kind and
thermal stability of the mesophase were reported to be dependent on the length of the
terminal alkoxy-chain as well as the position of the di-fluoro substituents. Interestingly,
the computational measurements have become an important approach in designing new
compounds as it reveals series of information ranging from thermal and geometrical
properties to molecular orbital energies as well as the molecular geometries of the LC
materials [28–30].

The aim of the present study is to prepare a new di-laterally substituted Schiff
base/ester liquid crystal system, In, exhibiting two asymmetrical terminals. The first
terminal is an alkoxy chain connected to the phenyl benzoate moiety (Figure 1). The second
wing is the lateral Cl attached to the phenylimine component. The central ring has a
lateral methoxy group incorporated in the ortho position with respect to the imine linkage.
We intend to justify our experimental results theoretically using the density functional
theory (DFT) approach and explain the effect of insertion of two lateral substituents in
the mesogenic cores of the molecule. Moreover, binary phase diagrams will be briefly
discussed between mono and di- laterally systems.
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Figure 1. Molecular structures of investigated derivatives, In.

2. Experimental
Synthesis

Hydrazones and Schiff bases are valuable intermediates in the synthesis of many
heterocyclic systems that are used in various applications [31–40]. A series of new laterally
di-substituted Schiff base derivatives 3 and In were formed as shown in Scheme 1.
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Methods of preparations and the spectroscopic details of products I8 and I12 are
highlighted in Supplementary Data.

The isomerization of present Schiff base di-laterally compounds (In, Figure 2a) and
laterally neat derivatives (IIn, Figure 2b) have been investigated, the NMR spectra showed
the presence of only one isomer for each and this is affirmed by the singlet-proton reso-
nances of most of the aromatic protons of the designed compounds. Thus, the insertion of
lateral Cl and -OCH3 groups in ortho positions with respect to the imine-linkage may be
stabilizing the Z-isomer rather than E-isomer (Figure 2a). This is further corroborated in
the theoretical part.
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3. Results and Discussion
3.1. Mesophase and Optical Studies

The optical and mesomorphic behaviors for the designed di-laterally substituted
derivatives, In, were evaluated by DSC while the mesophase type was checked using
POM. Figure 3 shows the DSC thermograms of prepared compounds I8 and I12 through
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heating and cooling scans. It is clearly shown in the Figure 3, only one endotherm char-
acteristic peak of the Cr–to–I transitions was shown upon heating and reversed during
the cooling cycle. The POM investigations revealed no texture of any mesophase thereby
affirming the materials not to exhibit any mesomorphic properties either enantiotropically
or monotropically. Moreover, the transition temperatures together with their associated
enthalpy measured by DSC are listed in Table 1. The data revealed that the two prepared
di-laterally substituted materials are non-mesomorphic accompanied with high values of
enthalpy changes from solid to isotropic liquid. Since there are many factors affecting the
formation of liquid crystal phases and these factors are being shared with different ratios
to define the mesophase behavior [41–44]. First of them is the lateral adhesion of molecules
that increases with the increment in either terminal-chain length or the aspect ratio. The
terminal alkoxy chain length usually plays a key role in the stabilization of phases. The
second important factor is the geometrical structure of the molecule, which in many cases
is influenced by the steric hindrance of the attached lateral groups. Another one is the
end-end interactions which depend mainly on the polarity and the length of the terminal
wings and are attributed to the changes of polarizability. The linking spacers highly impact
the conjugation within the mesogenic portion of the investigated molecule. In addition, the
conjugated molecular structures of In derivatives (Figure 4) suggest that the insertion of
one more double bond stabilized the molecules and increased the lateral dipole moments
as well as the polarizability of the whole structure. It seems that the increase in length of
molecule contributes to these effects. The different mesomeric interactions between the
di-lateral groups and the imino linkage, which largely depend on their positions resulted
in enhancement in the lateral dipole moments that consequently disrupted the phase
transition phenomena.
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Table 1. Transition temperatures (◦C) and their enthalpies ∆H, kJmol−1, for compound, In.

Upon Heating Upon Cooling

Comp. TCr-I ∆HCr-I TI-Cr ∆HI-Cr

I8 109.8 73.5 64.4 39.6
I12 107.3 52.72 55.9 35.4

Cr-I: transition from solid–isotropic liquid phase; I-Cr: transition from isotropic liquid–solid phase.
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It is worth noting that the increase in the length of the alkoxy group brings about a
decrease in the molecular aggregation resulting from the terminal alkoxy chain oxygen, the
strong -COO- moiety end-to-end intermolecular interactions, and the side-side cohesive
forces between molecules. These interactions participate with different ratios and directly
affect the formation of mesophase [45]. A competitive effect usually results from both types
of interactions and this is affected by the change in the molecular conformation. Moreover,
the steric effect of the two lateral groups could disrupt the molecular arrangements of
molecules and eventually lead to non-mesomorphic behavior.

In another report, N-[4-(4-n-alkoxybenzoyloxy)-2-hydroxybenzylidenel-chloroanilines,
IIn (Scheme 2), were mesomorphically investigated via Raman spectroscopic measure-
ments [46]. The compounds were found to exhibit nematic-phase. Their behaviors were
influenced by the molecular conformations with changeable twist angles of the mesogenic
part of the molecules. The difference in conformation affected the vibrational modes
associated with the azomethine linkage, especially the CH out-of-plane vibration of the
phenyl ring.
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3.2. Effect of the Insertion of Di-Lateral Substituents on the Mesophase Properties of Laterally-Neat Molecules

In order to investigate the effect of insertion of the di-lateral groups within the meso-
genic part of the conformation, on the mesophase behavior of non-lateral derivatives [47]
(IIIn, Figure 5), the thermal properties of the present system (In) were compared with the
previous laterally-neat system, IIIn [47]. Both compounds of homologous series IIIn are di-
morphic having smectic A (SmA) and nematic (N) mesophases with high thermal stability.
The comparison revealed that the formation of mesophase influenced the dipole-moment
of the molecular mesogenic core which is mainly dependent on the number, type, and
location of the attached polar groups. So, the addition of the lateral Cl and MeO groups
disrupted the mesomorphic molecular packing and led to non-mesomorphic molecules.
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3.3. Calculated Geometrical Structures

The geometry of a material is an inherent property that dictates other properties
showcased by the compound. Based on this, a potential energy scan (PES) was conducted
on I8 to establish the most stable geometry for the C=O of the –COO moiety, and the
result is presented in Figure 6. All the density functional theory (DFT) estimations were
conducted using the B3LYP method [41–43] with the basic set of 6-31g(d,p). Two stable
configurations were predicted with the cis conformer (Figure S1) being more stable than
the trans (Figure S1) counterpart by 0.1 kcal/mol. With respect to the direction of the two-
lateral groups (–OCH3 and –Cl), four possible conformations were predicted as depicted in
Figure 7 while their relative energies are listed in Table 2. Conformer A with –OCH3 in
upward but –Cl in a downward direction with respect to the C=O was predicted to be most
stable whereas the conformer D with both lateral groups in downward direction was found
to be least stable. The higher stability of conformer A could be attributed to the least steric
hindrance as compared to the others [48]. Having established the most stable conformation
for the I8, the structure for the I12 derivative was developed from it. The theoretical study
revealed that the di-lateral groups at the ortho position with respect to the imine linkage
have significant effects on the planarity and geometrical parameters of the molecule.
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Table 2. Relative stability of possible configurations for I8 derivative.

Conformer Relative Energy (kcal/mol)

A 0
B 0.57
C 1.60
D 2.03
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3.4. Reactivity Parameters

The parameters that showcase the reactivity of compounds (In) are the energy gap
(∆E) between HOMO and LUMO levels, ionization potential (I.P), and electron affinity
(EA) [49]. However, the reactivity indicators listed in Table 3 affirm similar chemical reac-
tivity for the I8 and the I12 as the same value was predicted for each of the corresponding
parameters. Similar results were also obtained for their parent compounds. This shows
that the reactivity of the derivatives is less sensitive to the increasing length of the terminal
alkoxy chain. However, the effect of substitution could be noticed in the HOMO and LUMO
energy levels and consequently on their HOMO–LUMO energy gap. The HOMO energies
of I8 and I12 were pushed up while those of LUMO were reduced by the substitution.
Furthermore, the resultant HOMO–LUMO energy gaps of the derivatives suggest better
reactivity than their corresponding parent on the basis of a lower energy gap. On the part
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of the dipole moment (Table 3), the derivatives were predicted to be more polar than their
parents while the I12 showed greater polarity over the I8 counterpart. The higher polarity
of I12 is further corroborated by its higher dipole moment vectors obtained in all directions
as depicted in Figure S2. On the other hand, the frontier molecular orbital presented in
Figure 8 for both compounds (I8 and I12) shows similar HOMO and LUMO distributions.
For the HOMO, the electron clouds were evenly distributed over the carbon atoms and
the π-electron of the two phenyl rings bearing the two-lateral groups as well as the –Cl
substituent while the third phenyl ring and its alkoxy chain were highly electron deficient.
However, for the LUMO, the distribution of electron clouds extended to the third phenyl
ring bearing the alkoxy chain. Regarding the molecular electrostatic potential (MEP) shown
in Figure 9, the shadowing of carbonyl oxygen and the lateral chlorine substituent by red
cloud suggests a low electrostatic potential but high electron density for these regions. On
the other hand, the blue cloud over the first alkoxy methylene and the neighboring phenyl
hydrogen indicates low electron density but high electrostatic potential. In the same vein,
an appreciable high electrostatic potential could be noticed for the methyl of lateral –OCH3
substituent. Moreover, as the chain length increases from n = 8 to n = 12 the polarizability
of the molecule increases. This observation could be explained in the term of the ordering
(packing) of molecules.

Table 3. Reactivity parameters, dipole moment, and polarizability of compound, In, calculated at the B3LYP/6-31g
(d,p) level.

Compound EHOMO, eV ELUMO, eV ∆E, eV Dipole Moment,
Debye I.P, eV E.A, eV Polarizability,

Bohr**3

Parent I8 −5.7884 −1.5706 4.2178 4.7234 5.7884 1.5706 361.0800
I8 −5.6638 −1.6376 4.0262 6.2805 5.6638 1.6376 394.3400

Parent I12 −5.7870 −1.5704 4.2167 4.7650 5.7870 1.5704 407.2600
I12 −5.6632 −1.6370 4.0262 6.3210 5.6632 1.6370 440.4900

3.5. Energy

Energy is an extensive property that depends on the size of a system. This assertion
is affirmed by the calculated zero-point energy, thermal energy, and thermodynamic
parameters highlighted in Table 4, as higher values were predicted for the I12 with a bigger
size than the I8 counterpart. A similar trend was also found for their parents.

Table 4. Zero-point energy, thermal energy, and the thermodynamic parameters calculated at
B3LYP/6-31g (d,p).

Compound ZPE Thermal Enthalpy Gibbs Entropy

Parent I8 332.6148 351.9779 352.5703 289.1309 212.7770
I8 347.3236 369.0807 369.6730 301.0824 230.0540

Parent I12 404.0518 426.8706 427.4629 355.0759 242.7870
I12 418.9163 444.0788 444.6718 367.5357 258.7160
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4. Conclusions

New asymmetric di-laterally substituted liquid crystal derivatives, (E)4-(((2-Chlorophenyl)
imino)methyl)-3-methoxyphenyl 4-(alkoxy)benzoate were designed and mesomorphically
investigated. The lateral Cl and MeO groups introduced into the terminal and central
rings respectively, influenced the lateral dipole moment and disrupted the molecular
symmetry, and consequently resulted in non-mesomorphic materials. Four conformations
were predicted for the homolog I8 by the DFT calculations. The deduced conformations
were found to vary according to the relative location and orientation of the two lateral
groups (Cl and MeO) attached to the terminal and central benzene rings. Moreover, a good
agreement was found between the predicted conformations and the experimental data.
Results revealed that the different mesomeric interactions between the di-lateral groups
and the imino linkage, which largely depends on their positions, influenced the lateral
dipole moments, geometrical parameters and consequently disrupted the phase transition
properties of the molecules.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cryst11080870/s1, Figure S1: The geometry of C=O established from the potential energy of
C-C-C=O dihedral angle of I8 derivative. Figure S2. Atomic charges and dipole moment vectors,
calculated at B3LYP/6-31G(d,p) level for the I8 and I12 derivatives. Figure S3. 1H-NMR spectra of
compound I8. Figure S4. 13C-NMR spectra of compound I8. Figure S5. IR spectra of compound I8.
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