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Abstract: A microwave characterization at UHF band of a ferroelectric hafnium zirconium oxide
metal-ferroelectric-metal (MFM) capacitors for varactor applications has been performed. By using
an impedance reflectivity method, a complex dielectric permittivity was obtained at frequencies up
to 500 MHz. Ferroelectric Hf0.5Zr0.5O2 of 10 nm thickness has demonstrated a stable permittivity
switching in the whole frequency range. A constant increase of the calculated dielectric loss is
observed, which is shown to be an effect of electric field distribution on highly resistive titanium
nitride (TiN) thin film electrodes. The C-V characteristics of a “butterfly” shape was also extracted,
where the varactors exhibited a reduction of capacitance tunability from 18.6% at 10 MHz to 15.4% at
500 MHz.

Keywords: HZO; tunability; ALD; C-V characterisitcs; loss tangent; dielectric relaxation; complex
permittivity

1. Introduction

CMOS compatible materials with extraordinary electrical properties (e.g., piezoelectric,
ferroelectric, or multiferroic) are becoming very attractive in the upcoming technology areas,
like neuromorphic computing, 5G, etc. An example of such CMOS compatible materials is
ferroelectric hafnium oxide (HfO2) discovered by Boescke et al. [1]. It is considered now
as a very prospective candidate for nonvolatile memory devices [2] and neuromorphic
computing [3–5]. It can be deposited by using atomic layer deposition (ALD), which
makes it feasible to be included into large-scale industrial production. Ferroelectricity in
such films occurs in an orthorhombic non-centrosymmetric polymorphic modification of
HfO2 (o-phase), with space group Pca21, upon the doping with Si or other elements [6],
including Zr [7]. Hf0.5Zr0.5O2 (HZO) shows a low temperature of formation of the o-phase
(400°) [8,9], which is a good characteristic for Back-End-of-Line (BEoL) integration [10]. The
ferroelectric phase is usually enhanced by capping of the HfO2 with a titanium nitride (TiN)
electrode, which increases the surface energy and stabilizes the orthorhombic phase [11].

Varactors, based on ferroelectric HZO interdigitated capacitors were first proposed
by Dragoman group [12–16]. We have also proposed the use of CMOS compatible de-
vices in the BEoL, based on HZO varactors in a parallel-plate MFM configuration [17,18],
but due to the lack of experimental data at high frequencies, the dielectric relaxation was
not considered. In fact, the results of studies of the high-frequency properties of HfO2
are controversial. Some authors report almost no deterioration of dielectric properties
at frequencies up to 5 GHz [19] or even up to 20 GHz [20], whereas others report the
drop of capacitance in a range of 1–10 MHz [21–24]. In [20], complicated methods were
used, which include 2-port measurements with a Vector Network Analyer (VNA) and
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a subsequent extraction of permittivity through a co-simulation, whereas in [21,22] the
permittivity characterization via LCR-meter is performed, which normally has limitations
in the MHz-range.

In this work, by using a simple reflectivity VNA technique, we were able to investigate
the complex permittivity and the C-V characteristics of HZO in a frequency range of 10 MHz
to 500 MHz.

2. Materials and Methods

Tetraethoxysilane (TEOS) isolating layer of 1 µm thickness was deposited on top
of a Si wafer using chemical vapour deposition (CVD) (Figure 1a). Afterwards, a MFM
stack was deposited in several steps. A bottom titanium electrode of titanium nitride
(TiN) with 20 nm thickness was deposited on top of TEOS using atomic layer deposition
(ALD). Hafnium oxide was deposited by ALD with HfCl4 and ZrCl4 precursors on top
of the bottom TiN layer. The Hf:Zr cycling ratio was set to 1:1. Finally, the HZO layer
was capped with a 10 nm TiN electrode, deposited by physical vapor deposition (PVD).
The obtained MFM stack was annealed by rapid thermal anneal (RTA) at 400 °C for 60 s.
High-resolution grazing incidence X-ray diffraction (GIXRD) (Figure 1b) was used to verify
the ferroelectric phase, where it can be seen that the HZO was crystallized completely into
the orthorhombic/tetragonal phase.

10 nm TiN

20 nm TiN

10 nm HZO 1 µm SiO2 (TEOS)

Si

1 µm SiO2(TEOS)

(a)

(1
1

1
)

{2
0

0
}

(b)

Figure 1. Transmission electron microscopy (TEM) (a) and Grazing Incidence X-ray diffraction
(GIXRD) (b) of the HZO MFM stack.

For the further RF characterization where a triple-contact ground-signal-ground (GSG)
probe is used for S-parameter measurement, concentric Au electrodes were deposited by a
lift-off lithography (Figure 2a,c). This method for measuring the permittivity of the thin
films with a triple contact, also called an annular ring method, is described in [25–28].
The structure represents a series combination of two capacitors (Figure 2b). Its main
advantage is that only one lithography step is needed for the fabrication, yet the main
drawback is the unavailability of a proper de-embedding (due to one-port measurement)
and therefore a high sensitivity to parasitics [25,28].
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Figure 2. Schematic of the sample and measurement configuration (a), equivalent cirquit (b), and op-
tical microscope image (c) of the deposited ring structure.

3. RF Characterization

High-frequency electric measurements were performed on a Keysight N5247B PNA-
X vector network analyzer in the frequency range between 10 MHz and 500 MHz by
applying a -15 dBm signal. The 50 µm pitch Ground-Signal-Ground Infinity probes were
used to contact the ring structure. An SMU B2902A was used for the DC bias application.
The DC bias was applied upon RF signal using the bias tee. Additionally, a co-simulation
was performed in Ansys HFSS to analyze the distribution of the electric field between
the electrodes.

3.1. Complex Permittivity

The complex permittivity was measured by utilizing a procedure described by [25,27],
where two ring structures with different inner dot radii are measured (see Appendix A).

In Figure 3a the real and imaginary permittivity values in frequency domain are
plotted. With an increase of bias from V = −3 V towards the coercive voltage Vc = 1 V, both
values are changing, indicating a stable varactor tuning. In Figure 3b the loss tangent is
plotted with frequency. Sweeping the bias voltage also shifts the loss tangent, so that the
maximum value lies at Vc, which can be explained by the increase of intrinsic losses due to
the distortion of the crystal lattice, as well as the extrinsic losses due to the motion of the
domain walls [28]. As the frequency increases, the loss tangent at−3 V increases by an order
of magnitude from 0.02 to 0.2. The data was exported to Table 1 for comparison with other
state-of-the-art HfO2 capacitors, whose characteristics were measured at high frequency.

At first glance it might seem that a dielectric relaxation is taking place. However
when implementing an Ansys HFSS simulation with the permittivity set constant over
the entire frequency range and loss tangent set to 0 (Simulation 1), it is found that the
simulation results fit the experimental results much better (Figure 4a) than when using the
data obtained from experiment (Simulation 2). Also, when implementing the permittivity
extraction used in Appendix A towards the results of Simulation 1, the same effect of
reduction in permittivity is observed Figure 4b, which fits well with the experiment, while
Simulation 2 does not. This means that the observed strong dielectric relaxation is an
artifact in this frequency range upon application of this method, and an increase in the
dielectric loss is due to other parasitic effects. This was also explained in [25], where the
increase in the loss tangent was attributed to the contact resistance and to the distribution
of electric fields on the lower thin film electrode. Since a highly conductive Pt electrode
was used in [25], the effect of field distribution played a minor role, but in our case a
moderately metallic 20 nm TiN electrode is used, so an effect of field distribution causes
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larger distortions in the permittivity values. Indeed, a simulation has demonstrated a high
decrease in the homogeneity of field distribution on the bottom electrode Figure 4c,d.
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Figure 3. Frequency dependence of the real (ε′) and complex (ε′′) permittivity values (a) and of the
effective loss tangent (b) at different bias voltages.
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Figure 4. Ansys HFSS simulation of the measured Smith chart (a) of HZO varactor and the complex
permittivity (b) extracted both from the simulation and the measurement using Equations (A4) and
(A5). The homogeneous electric field distribution on the bottom TiN electrode at 10 MHz (c) is getting
more confined towards the inner radius of the outer electrode at 500 MHz (d), leading to a decrease
in effective permittivity.
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Table 1. Comparison of the performance of the state-of-the-art hafnium oxide thin-film capacitors at different frequencies.

Ref. Material Tanneal d (nm) fmin (MHz) ε’(fmin) tanδ (fmin) fmax (MHz) ε’(fmax) tanδ (fmax)

[19] HfO2 500 °C 10 10−3 16 0.013 5000 15 0.013

[20] HfO2 - 10 90 19 0.01 20,000 21 0.07

[22] La2Hf2O7 900 °C 18 2 × 10−5 15 0.01 2 14 0.2

[23] Ce0.63Hf0.37O2 900 °C 56–98 10−4 32 - 1 25 -

[24] HfO2 400 °C 104 2 × 10−5 18.8 0.01 10 1.88 150

[29] HZO 500 °C 30 10−3 17.5 - 1 15 -

[15] HZO - 6 1000 9.8 0.09 14,000 7 0.02

Our work HZO 400 °C 10 10 24.6 0.027 500 23.8 0.2

3.2. C-V Characteristics and Tunability

Since the method, as described in Appendix A, involves the measurement of two
devices, it introduces a significant variation in the extracted parameters, and thus becomes
ineffective for a smooth C-V characteristics. Therefore, to extract the capacitance of a single
device, a simpler approach was used (see Appendix B) to extract both capacitance and loss
tangent. Since the extracted permittivity obtained by this method is less accurate, as the
parasitic sheet resistance is not compensated, it was coined an effective permittivity.

In Figure 5a, a C-V characteristics is plotted at different frequency values. In the
plot, C-V curves have a “butterfly” shape, which is a standard indication of a ferroelectric
behavior [7,29], thus confirming the measurement authenticity. The peaks are located
at coercive voltage Vc = 1 V, which is not changing with frequency. Upon increase in
frequency, the loops shift to lower permittivity values, repeating the trend, described in
Section 3.1. In [29], a similar drop in the C-V curves with increasing frequency is observed,
although it occurs in a much lower frequency range than in our case.
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Figure 5. C-V (a) and Q-V (b) characteristics of HZO MFM thin film varactors, (c)—development of
tunability and minimum Q-factor upon frequency.

Based on the C-V curves, the corresponding tunability was calculated using the relation:

τ =
ε′max(V)− ε′min(V)

ε′max(V)
(1)

where ε′max and ε′min are maximum and minimum values of the real parts of complex
permittivity, respectively.

In Figure 5b the corresponding Q-V characteristics are plotted at different frequency
values in logarithmic scale for a better peak visualization. The Q-V minima lie on the coer-
cive bias points, which was explained in Section 3.1 for tan δ. Upon increasing frequency,
the Q-factor drops due to an increase in tan δ.
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In Figure 5c, tunability and minimum Q-factor are both plotted with respect to the
frequency. The tunability experiences a reduction from 18.6% at 10 MHz towards 15.4% at
500 MHz and the minimum Q-factor decreases from 22.7 to 1.45, respectively. This can also
be attributed, at least in part, to an effect of the inhomogeneous field distribution close to
the TiN electrode.

4. Conclusions

In this work we have investigated the RF properties of 1:1 Hf:Zr doped ferroelec-
tric HfO2 thin-film varactor, implementing the annular ring reflectivity method. In the
frequency range of 10 MHz to 500 MHz, HZO shows a slight decrease in effective per-
mittivity and an increase in effective loss tangent. The co-simulation has demonstrated
an inhomogeneous distribution of the electric field on the bottom thin film TiN electrode,
which is contributing to the reduction of varactor performance. Upon the bias sweep,
varactors exhibit a stable shift of permittivity. For the extracted C-V-characteristics we
are observing the typical butterfly shape, indicating a perfect match with low-frequency
C-V measurements. The extracted tunability shows a slight decrease, which can at least
partially be attributed to the inhomogeneous field distribution on the bottom electrode.
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Appendix A. Calculation of Complex Permittivity

By measuring the return loss (S11) of two structures with different inner circle radii
r1 and r2 (Figure A1), and extracting the real and imaginary parts of the impedance,
the complex permittivity and loss tangent (tan δ) can be obtained [25]:

Z1 − Z2 =
Rs

2π
ln(

r2

r1
) +

1
iωπ

d
ε0εr

(
1
r2

1
− 1

r2
2
) (A1)

where Rs is the sheet resistance of bottom electrode and d is the film’s thickness. For our
bottom TiN electrode, Rs = 50 Ω/sq.
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Figure A1. Return loss (S11) in dB obtained from the measurement of the two annular ring structures
with inner dot radii of 18 µm and 24 µm, respectively.

By inserting the complex properties of impedance and permittivity:

Z1 − Z2 = (R1 − R2) + i(X1 − X2) (A2)

εr = ε′ − iε′′ (A3)

one finally gets the real and imaginary part of permittivity and the loss tangent:

ε′ =

(X2 − X1) · d
wπε

(
1
r2

1
− 1

r2

)2

(
R1 − R2 − Rs

2π ln
(

r2
r1

))2
+ (X2 − X1)

2
(A4)

ε′′ =

(
R1 − R2 − Rs

2π ln
(

r2
r1

))
· d

wπε0

(
1
r2

1
− 1

r2
2

)
(

R1 − R2 − Rs
2π ln

(
r2
r1

))2
+ (X2 − X1)

2
(A5)

tan δ =
ε2

ε1
=

R1 − R2 − Rs
2π ln

(
r2
r1

)
X2 − X1

(A6)

Appendix B. Calculation of an Effective Permittivity for C-V Characteristics

First, an effective capacitance Ce f f is calculated from the imaginary part of complex
impedance Im(Z11):

Ce f f = − 1
w Im(Z11)

(A7)

Then the effective permittivity εe f f is calculated:

εe f f =
Ce f f · d

πε0

(
r2

1 + r2
3 − r2

2
)

r2
1
(
r2

3 − r2
2
) (A8)

where d is the thickness of HZO; r1 is the radius of the inner circle, and r2, r3 are the inner
and outer radii of the outer ring, respectively.
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In the same way, the effective loss tangent and Q-factor can be calculated:

tan δe f f =

Rs
2π ln

(
r2
r3

)
− Re(Z11)

Im(Z11)
(A9)

Qe f f =
1

tan δ
(A10)
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