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Abstract: This study is the first to use the diagonalization method for the new modelling of a
homogeneous, thermoelastic, and isotropic solid sphere that has been subjected to mechanical
damage. The fundamental equations were derived using the hyperbolic two-temperature generalized
thermoelasticity theory with mechanical damage taken into account. The outer surface of the sphere
has been assumed to have been shocked thermally without cubical dilatation. The numerical results
for the dynamical and conductive temperatures increment, strain, displacement, and average of
the principal stresses components have been represented graphically with different values of the
hyperbolic two-temperature parameter and mechanical damage parameters. The two-temperature
model parameter and the mechanical damage parameter have significant effects. The propagations
of the thermomechanical waves take place at finite speeds in the context of the hyperbolic two-
temperature theory as well as in the usual context of the Lord–Shulman theory with one-temperature.

Keywords: hyperbolic two-temperature; generalized thermoelasticity; solid sphere; damage mechan-
ics; diagonalization method

1. Introduction

Several mathematical models for heat transport and thermal waves in solids and
thermoelastic materials have been created by researchers. However, not all of these models
are accurate because obtaining a finite progress rate of mechanical and thermal waves for
the experimental effects is one of the best model parameters. We will look at experimental
models that are close to laboratory findings and that are consistent with the physical
behavior of thermoelastic material as well as try to include new information.

Chen and Gurtin proposed the thermoelasticity theory based on two different temper-
atures: conductive and dynamic temperatures. Differences are according to the amount
of heat supply between these two types of temperatures [1]. Warren and Chen looked at
how waves propagate under the notion of a two-temperature framework [2]. However,
this hypothesis did not change until Youssef modified this hypothesis and presented the
two-temperature model of general thermoelasticity [3]. Youssef co-operated with other
authors and used this model in many applications [4–6]. Youssef and El-Bary reported
that the classical generalized two-temperature thermoelectricity model does not provide a
given speed of thermal wave propagation [7]. This model was then modified by Youssef
and El-Bary and was developed into a new two-temperature model based on the various
laws of heat conduction, which are known as generalized hyperbolic two-temperature ther-
moelasticity [7–9]. Youssef suggested the difference between the conductive temperature
acceleration and the dynamic temperature acceleration during the material transition is
proportional to the heat supply. Within this model, the speed of thermal wave propagation
is reduced [7]. Hobiny [10] applied the hyperbolic two-temperature model without dissi-
pating the energy on the photothermal interaction in a semiconducting medium. Alshehri
and Lotfy studied a theoretical novel model of generalized photo-thermoelasticity and a
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hyperbolic two-temperature theory [11]. Abbas et al. investigated photo–thermal–elastic
interactions in an unbounded semiconductor media containing a cylindrical hole under
a hyperbolic two-temperature model [12]. Youssef solved some applications of an infi-
nite thermoelastic spherical medium subjected to a moving heat source, fractional strain,
rotation, and mechanical damage [13–15].

For the isotropic damage, the total effective stresses takes the form [16]:

σij = (1− D)σ̃ij (1)

where in the undamaged material, σ̃ij are the stress tensor components. The variable of
mechanical damage may be represented in many ways. We consider an area element dA
with unit normal vector n in a cross-section of the damaged body. Hence, the area of the
defects in this element is given by dAD, and the total amount of the damage D can be
obtained by the area fraction as follows [16]:

D =
dAD
dA

, 0 ≤ D ≤ 1 (2)

Hence, D = 0 represents the undamaged material, and D = 1 formally represents
the complete full damage of the material. In real materials, processes take place at values
D ≈ 0.2 . . . 0.5.

The description of the damage mechanics in Equation (2) has been published in many
applications and models [17–21].

This work aims to study and discuss the effects of the mechanical damage parameters
on the induced conductive temperature, dynamic temperature, deformation, and stress
fields in a thermoelastic solid sphere by using the diagonalization method for the first
time. The governing equations of the mathematical model have been prepared by using the
hyperbolic two-temperature heat conduction theory when the mechanical damage variable
is included.

2. The Governing Equations

Consider a perfect conducting, isotropic, and thermoelastic spherical body that fills the
region Λ = {(r, ψ, φ) : 0 ≤ r ≤ a, 0 ≤ ψ ≤ 2π, 0 ≤ φ < 2π }. We use the spherical
coordinates system (r, ψ, φ), where r denotes the radial co-ordinate, ψ denotes the co-
latitude, and φ indicates the longitude of a spherical coordinate system, respectively, as
seen in Figure 1. We assume the sum of the external forces is zero and that it is initially
quiescent. Only when there are no latitudinal and longitudinal differences in the symmetry
is the requirement fulfilled. All state functions will therefore be dependent on the radial
distance r and time t.
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Because of the spherical symmetry, the components of displacement take the form:

U(r, t) = (u(r, t), 0, 0 ) (3)

The essential equation of motion is

(λ + 2µ)(1− D)
∂e
∂r
− γ(1− D)

∂TD
∂r

= ρ
..
u (4)

The constitutive equations with the damage mechanics variable are

σrr = 2(1− D)µerr + λ(1− D)e− γ(1− D)(TD − T0) (5)

σψψ = 2µ(1− D)eψψ + λ(1− D)e− γ(1− D)(TD − T0) (6)

σφφ = 2µ(1− D)eφφ + λ(1− D)e− γ(1− D)(TD − T0) (7)

σrφ = σφψ = σrψ = 0 (8)

The strain components are

err =
∂u
∂r

, eψψ = eφφ =
u
r

(9)

and
erφ = eφψ = erψ = 0 (10)

e defines the cubical dilatation and satisfies the relation

e = err + eψψ + eφφ =
∂u
∂r

+
2u
r

=
1
r2

∂
(
r2u
)

∂r
(11)

The heat conduction equation under the hyperbolic two-temperature theory takes
the forms

K∇2TC =

(
∂

∂ t
+ τ0

∂ 2

∂ t2

)
[ ρCETD + γT0e] (12)

and ..
TC −

..
TD = c2∇2TC (13)

c
(
m s−1) is called the parameter of the hyperbolic two-temperature theory, and

∇2 = 1
r2

∂
∂r

(
r2 ∂

∂r

)
.

We assume that ϕ = (TC − T0) and θ = (TD − T0), where ϕ is the conductive temper-
ature increment while θ is the dynamic temperature increment. Hence, Equations (4)–(7),
(12), and (13) take the forms

(1− D)

[
(λ + 2µ)

∂e
∂r
− γ

∂θ

∂r

]
= ρ

..
u (14)

σrr = (1− D)[2µerr + λe− γθ] (15)

σψψ = (1− D)
[
2µeψψ + λe− γθ

]
(16)

σφφ = (1− D)
[
2µeφφ + λe− γθ

]
(17)

Equation (14) can be modified to be in the form

(1− D)
[
(λ + 2µ)∇2e− γ∇2θ

]
= ρ

..
e (18)
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To simplify the equations, we will use the following dimensionless variables [5,22]:{
t′, τ′, τ′o

}
= c2

oη {t, τ, τo},
{

r′, u′, a′
}
= coη {r, u, a},

{
θ′, ϕ′

}
=

1
T0
{θ, ϕ}, σ′ =

σ

µ
(19)

We then obtain
(1− D)

[
∇2e− b∇2θ

]
=

..
e (20)

∇2 ϕ =

(
∂

∂ t
+ τo

∂ 2

∂ t2

)
[θ + εe] (21)

..
ϕ−

..
θ = c̃2∇2 ϕ (22)

σrr = (1− D)
[

β2e− 2
u
r
− ε1 θ

]
(23)

σψψ = (1− D)

[
β2e− 2

∂ u
∂ r
− ε1 θ

]
(24)

σφφ = (1− D)

[
β2e− 2

∂ u
∂ r
− ε1 θ

]
(25)

where γ = (3λ + 2µ) αT , c2
o = λ+2µ

ρ , η = ρCE
K , ε = γ

ρ CE
, ε1 = γTo

µ , β =
(

λ+2µ
µ

) 1
2 , b = ε1

β2 ,

c̃2 = c2

c2
o
.

The primes have been deleted for simplicity.
The differential operator ∇2 = 1

r2
∂
∂r

(
r2 ∂

∂r

)
is a singular operator when r = 0, and this

singularity could be removed by applying L’Hopital’s rule as follows [23]:

∇2{e, θ, ϕ} = lim
r→0

[
1
r2

∂

∂r

(
r2 ∂{e, θ, ϕ}

∂r

)]
= lim

r→0

[
∂2{e, θ, ϕ}

∂r2 +
2
r

∂{e, θ, ϕ}
∂r

]
=

∂2{e, θ, ϕ}
∂r2 + 2

∂2{e, θ, ϕ}
∂r2

We then acquire

∇2{e, θ, ϕ} = 3
∂2

∂r2 {e, θ, ϕ} (26)

and satisfy the boundary conditions

∂

∂r
{e, θ, ϕ}

∣∣∣∣
r=0

= 0 (27)

We then obtain

∇2e(r, t) = 3
∂2e(r, t)

∂ r2 , ∇2θ(r, t) = 3
∂2θ(r, t)

∂ r2 , ∇2 ϕ(r, t) = 3
∂2 ϕ(r, t)

∂ r2 (28)

By using the forms in Equation (26) in Equations (20)–(22), we obtain the following equations:

3(1− D)
∂2e
∂r2 − 3b(1− D)

∂2θ

∂r2 =
..
e (29)

3
∂2 ϕ

∂r2 =

(
∂

∂ t
+ τo

∂ 2

∂ t2

)
[θ + εe] (30)

..
ϕ−

..
θ = 3c̃2 ∂2 ϕ

∂r2 (31)

The Laplace transform is applied as follows:

`{ f (r, t)} = f (r, s) =
∫ ∞

0
e−st f (r, t) dt (32)
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when the following zero initial conditions have been used:

e(r, 0) = ϕ(r, 0) = θ(r, 0) =
∂e(r, t)

∂t

∣∣∣∣
t=0

=
∂θ(r, t)

∂t

∣∣∣∣
t=0

=
∂ϕ(r, t)

∂t

∣∣∣∣
t=0

= 0 (33)

Equations (20)–(25) then take the following forms:

(1− D)

[
3

d2e
dr2 − 3b

d2θ

dr2

]
= s2e (34)

3
d2 ϕ

dr2 =
(

s + τ0s2
) [

θ + ε e
]

(35)

θ = ϕ− δ2 d2 ϕ

dr2 (36)

σrr = (1− D)

[
β2e− 2

u
r
− ε1 θ

]
(37)

σψψ = (1− D)

[
β2e− 2

d u
d r
− ε1θ

]
(38)

σφφ = (1− D)

[
β2e− 2

d u
d r
− ε1θ

]
(39)

e =
1
r2

d
(
r2u
)

dr
(40)

where δ2 = 3c̃2

s2 .

Using Equation (36) and Equations (34) and (35), we obtain(
d2

dr2 − α1

)
e = b

d2 ϕ

dr2 − bδ2 d4 ϕ

dr4 (41)

d2 ϕ

dr2 = α2 ϕ + α3 e (42)

where α1 = s2

3(1−D)
, α2 =

(s+τ0s2)
(3+δ2(s+τ0s2))

, α3 =
ε (s+τ0s2)

(3+δ2(s+τ0s2))
.

Using Equation (42) and Equation (41), we obtain

d2e
dr2 = α4 ϕ + α5e (43)

where α4 =
(α2b −α2α3bδ2)

(1+α3bδ2 )
, α5 =

(α1+α3 b−α3α2 bδ2)
(1+α3bδ2 )

.

3. The Method of Diagonalization

We can put Equations (42) and (43) into a matrix form as follows:

d
dr


ϕ
e
ϕ′

e′

 =


0 0 1 0
0 0 0 1
α2 α3 0 0
α4 α5 0 0




ϕ
e
ϕ′

e′

 (44)

The system in (44) has been written as a homogenous system of first-order linear
differential equations as follows [24]:

dR(r)
dr

= AR(r) (45)
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where R(r) =


ϕ(r)
e(r)
ϕ′(r)
e′(r)

, and A =


0 0 1 0
0 0 0 1
α2 α3 0 0
α4 α5 0 0

.

Matrix A gives four independent linear eigenvectors; hence, we can obtain a matrix V
from the eigenvectors of the matrix A such that W = V−1 AV where W gives a diagonal
matrix [24].

If we use the matrix R = V Y in the system (45), then

V Y′ = AV Y, which provides Y′ = V−1 AV Y = W Y (46)

We then obtain 
y′1
y′2
y′3
y′4

 =


k1 0 0 0
0 k2 0 0
0 0 k3 0
0 0 0 k4




y1
y2
y3
y4

 (47)

where ±k1and ± k2 provide the eigenvalues of Matrix A (the roots of the characteristic
equation)

k4 − L k2 + M = 0 (48)

where L = k2
1 + k2

2 = α2 + α5, M = k2
1k2

2 = α2α5 − α3α4, k2 = −k1, and k4 = −k3.
Because W is a diagonal matrix, the system (47) will be uncoupled, making each

differential equation have the form yi
′ = kiyi, i = 1, 2, 3, 4. The solution of each of these

linear equations is yi = ciekix, i = 1, 2, 3, 4. The solution of the system (47), in general, is
then given by the following column vector [24]:

Y =


c1ek1r

c2e−k1r

c3ek2r

c4e−k2r

 (49)

Ultimately, the solution of the system (45) in a final form is

R(r) = V Y(r) (50)

The matrix V of Matrix A takes the form

V =


α3

k1(k2
1−α2)

−α3
k1(k2

1−α2)
α3

k2(k2−α2)
−α3

k2(k2−α2)
1
k1

− 1
k1

1
k2

− 1
k2

α3
(k2

1−α2)
α3

(k2
1−α2)

α3
(k2−α2)

α3
(k2−α2)

1 1 1 1

 (51)

Substituting from Equations (49) and (51) into Equation (50), we obtain


ϕ(r)
e(r)
ϕ′(r)
e′(r)

 =



α3
k1(k2

1−α2)
−α3

k1(k2
1−α2)

α3
k2(k2−α2)

−α3
k2(k2−α2)

1
k1

− 1
k1

1
k2

− 1
k2

α3
(k2

1−α2)
α3

(k2
1−α2)

α3
(k2−α2)

α3
(k2−α2)

1 1 1 1




c1ek1r

c2e−k1r

c3ek2r

c4e−k2r

 (52)

By using the boundary conditions (27) and Equation (52), we obtain

c2 = −c1 and c4 = −c3 (53)
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Hence, we have

ϕ (r, s) = α3

2

∑
i=1

Ai

ki
(
k2

i − α2
) cosh(kir) (54)

and

e (r, s) = α3

2

∑
i=1

Ai
ki

cosh(kir) (55)

To acquire the constants A1 and A2, we can use the boundary conditions when r = a
and consider that the surface of the sphere is loaded thermally as follows:

ϕ(r, t)|r=a = ϕo H(t) (56)

H(t) is the unit step function (Heaviside function), and ϕo is constant.
We assume the surface of the sphere to be connected to a rigid foundation which can

prevent any displacement u(a, t) = 0. Thus, from Equation (40), the surface of the sphere
has no volumetric deformation, which gives the following boundary condition:

e(r, t)|r=a = 0 (57)

Apply the Laplace transform on Equations (56) and (57), we have

ϕ(r, s)|r=a =
ϕo

s
(58)

and
e(r, s)|r=a = 0 (59)

Applying the boundary conditions (58) and (59) into Equations (54) and (55), we
obtain the following linear algebraic system:

2

∑
i=1

α3 Ai

ki
(
k2

i − α2
) cosh(kia) =

ϕ0

s
(60)

and
2

∑
i=1

α3 Ai
ki

cosh(kia) = 0 (61)

By solving the system in (60) and (61), we obtain
A1 = ϕ0α4k1

s(k2
2−k2

1) cosh(k1a)
and A2 = − ϕ0α4k2

s(k2
2−k2

1) cosh(k2a)
.

Hence, we have

ϕ (r, s) =
ϕ0α4α3

s
(
k2

2 − k2
1
)[ cosh(k1r)(

k2
1 − α2

)
cosh(k1a)

− cosh(k2r)(
k2

2 − α2
)

cosh(k2a)

]
(62)

and

e (r, s) =
ϕ0α3α4

s
(
k2

2 − k2
1
)[ cosh(k1r)

cosh(k1a)
− cosh(k2r)

cosh(k2a)

]
(63)

Equations (40) and (63) will be used to obtain the displacement function as follows [23]:

u(r, s) =

∫ (
r2e(r, s)

)
∂r

r2 (64)

The singularity (64) can be resolved by using L’Hopital’s rule as follows:

u(r, s) = lim
r→0

∫ (
r2e(r, s)

)
∂r

r2 = lim
r→0

r2e(r, s)
2r

=
re(r, s)

2
(65)
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Hence, we have

u(r, s) =
ϕ0α3α4

2s
(
k2

2 − k2
1
)[ r cosh(k1r)

cosh(k1a)
− r cosh(k2r)

cosh(k2a)

]
(66)

We will obtain the average of the three principal stresses components by using
Equations (37)–(39) as follows:

σavg(r, s) =
σrr + σψψ + σφφ

3
=
(

β2 − 4/3
)
(1− D)e(r, s)− ε1(1− D)θ(r, s) (67)

4. Numerical Results

To compute the functions of the conductive temperature increment, and dynamic
temperature increment, strain, and average stress components in the time domain, the Rie-
mann sum method of approximation will be used. Using this method, the inversions of the
Laplace transforms can be calculated numerically by applying the following formula [25]:

f (r, t) =
eκt

2t
f (r, κ) +

eκt

t
Re

N

∑
n=1

(−1)n f
(

r, κ +
i nπ

t

)
(68)

“i” is the well-known imaginary number unit, while “Re” is known as the real part.
Several digital experiments have demonstrated that the value κ corresponds to the

relationship between the faster phase and convergence κ t ≈ 4.7 [25].
For the computational results, copper has been chosen as the thermoelastic material,

so, the following values of the different physical constants will be used [13]:
K = 386 kg m k−1s−3 , αT = 1.78 (10)−5 k−1, ρ = 8954 kg m−3, To = 293 k,

CE = 383.1 m2 k−1 s−2, µ = 3.86 (10)10 kg m−1 s−2, λ = 7.76 (10)10kg m−1 s−2.
Thus, the dimensionless values of the parameters of the problem will be:
b = 0.01047, ε1 = 0.0419, ε = 1.6086, β2 = 4, ϕ0 = 1.0, τo = 0.02.

5. Discussion

The final numerical results of the conductive temperature increment, dynamic temper-
ature increment, strain, displacement, and average stress functions have been illustrated
in different two- and three-dimensional figures with a wide range of the dimensionless
radial distance when (0.0 ≤ r ≤ 3.0) and the value of the dimensionless value of time when
t = 1.0.

Figures 2–6 have been created for various values of the two-temperature parameter
δ2 =

(
0.0, 3c̃2, 3c̃2

s2

)
and the mechanical damage parameter D = 0.2. The value δ2 = 0.0

is devoted to the usual L-S model of thermoelasticity with one-temperature; the value
δ2 = 3c̃2 represents the classical two-temperature model, while δ2 = 3c̃2

s2 represents the
hyperbolic two-temperature thermoelasticity model.
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Figure 2 shows the conductive temperature increment distribution in which all of
the curves start from the position r = 3.0 when ϕ = 1.0, which agrees with the thermal
shock value as in the thermal boundary condition. The three curves have identical behavior
with different values, where the conductive temperature increment distributions have the
following order:

ϕ(One− temp.) < ϕ(Hyp. two− temp.) < ϕ(Class. two− temp.) (69)

Figure 3 represents the dynamic temperature increment distributions, where the first
curve δ2 = 0.0 represents the one-temperature model, which starts from the position r = 3.0
with the value θ = 1.0. This value agrees with the thermal boundary condition, and the
dynamic temperature increment has the following order:

θ(Class. two− temp.) < θ(Hyp. two− temp.) < θ(One− temp.) (70)



Crystals 2021, 11, 1014 11 of 17

Figure 4 represents the volumetric strain distributions in which all of the curves start
from the position r = 3.0 with zero values, which agrees with the mechanical boundary
condition. The three curves have identical behavior with different values. Each curve has a
different peak point and takes the following order:

|emax(Class. two− temp.)| < |emax(Hyp. two− temp.)| < |emax(One− temp.)| (71)

Figure 5 represents the displacement component distributions in which all of the
curves begin from the position r = 3.0 from the zero value. All of the curves have identical
behavior with different values, and each curve has a peak point that takes the following
order:

|umax(Class. two− temp.)| < |umax(Hyp. two− temp.)| < |umax(One− temp.)| (72)

Figure 6 shows the distributions of the average stress, where all the curves begin from
the position r = 3.0 with different values. The three curves have identical behavior with
different values. The values of the start points have the following order:

|σr=3.0(Class. two− temp.)| < |σr=3.0(Hyp. two− temp.)| < |σr=3.0(One− temp.)| (73)

Figures 7–11 have been prepared for different values of the damage mechanics param-
eter when D = (0.0, 0.2, 0.4) under the hyperbolic two-temperature thermoelasticity model.
The value D = 0.0 represents the undamaged case, while the values D = 0.2 and 0.4
represent two different damage cases.
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Figure 11. The distribution of the average stress for the variance values of the mechanical damage
parameter in the context of the hyperbolic two-temperature model.

Figures 7 and 8 represent how the mechanical damage parameter has no effect on the
conductive and dynamic temperature increment.

Figure 9 shows that the volumetric strain distribution has a substantial impact on the
mechanical damage variable. A rise in the mechanical damage value allows the absolute
value of the volumetric strain to decrease. Figure 10 indicates a significant influence on the
displacement distribution of the mechanical damage component—a rise in the mechanical
damage variable results in a reduction in the absolute displacement value.

Figure 11 indicates a significant influence on the average stress distribution of the
mechanical damage variable. A rise in the value of the mechanical damage parameter leads
to a decrease in average stress absolute value.

Figures 12–16 represent the distributions of conductive temperature increment, dy-
namic temperature increment, volumetric strain, displacement, and average stress under
the hyperbolic two-temperature thermoelasticity model in three dimensions. The figures
have been created for a wide range of dimensionless radi 0.0 ≤ r ≤ 3.0 and dimensionless
time intervals 1.0 ≤ t ≤ 3.0. We can see that the value of time has significant effects on all
the studied functions. The mechanical and thermal waves propagate with finite or limited
speeds under the hyperbolic two-temperature thermoelasticity model, and increasing the
time value helps the thermomechanical waves disappear faster.
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Figure 14. The distribution of the volumetric strain in the context of the hyperbolic two-temperature
model when D = 0.2.
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6. Conclusions

The diagonalization method is used for the first time in this study to create a new
model of a homogeneous, thermoelastic, and isotropic solid sphere subjected to mechanical
damage. The fundamental equations were derived using the hyperbolic two-temperature
generalized thermoelasticity theory while considering mechanical damage.

The one-temperature and hyperbolic two-temperature thermoelasticity models gener-
ate thermomechanical waves with finite or limited propagation velocity, according to the
computational results.

As a result, the hyperbolic two-temperature thermoelasticity model works well in the
characterization of the thermodynamic behaviors of thermoelastic materials.

Furthermore, the two-temperature parameter and time have substantial effects on all
of the functions tested, whereas the mechanical damage variable only has a substantial
impact on the strain, displacement, and stress distributions.

The conductive and dynamical temperature distributions are unaffected by the me-
chanical damage variable.

The value of the conductive temperature increment based on the one-temperature
model is greater than its value based on hyperbolic two-temperature model and its value
based on the classical two-temperature model. The value of the dynamical temperature
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increment based on the classical two-temperature model is greater than its value based on
the hyperbolic two-temperature model and its value based on the one-temperature model.

The absolute values of the peak points of the strain and displacement distributions
based on the classical two-temperature model is greater than its values based on the
hyperbolic two-temperature model and its value based on the one-temperature model.
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Nomenclature

CE The specific heat at constant strain

co =
√

λ+2 µ
ρ

D The mechanical damage parameter
eij The strain tensor components
K The thermal conductivity
TD The absolute dynamical temperature
TC The absolute conductive temperature
To The reference temperature
t The time
U = (u, 0, 0) The displacement components
αT The coefficient of linear thermal expansion

β =
(

λ+2µ
µ

) 1
2

γ = (3λ + 2µ)αT
ε = γ

ρ CE

ε1 = γTo
µ

η =
ρ CE

K
λ , µ Lamé’s parameters
ρ The density
σij The stress tensor components
τ0 The thermal relaxation time
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