
crystals

Communication

New Radical-Cation Salts Based on the TMTTF and TMTSF
Donors with Iron and Chromium Bis(Dicarbollide) Complexes:
Synthesis, Structure, Properties †

Denis M. Chudak 1, Olga N. Kazheva 2,3,*, Irina D. Kosenko 4, Gennady V. Shilov 2, Igor B. Sivaev 4,5 ,
Georgy G. Abashev 6, Elena V. Shklyaeva 6, Lev I. Buravov 2, Dmitry N. Pevtsov 2, Tatiana N. Starodub 7,
Vladimir I. Bregadze 4 and Oleg A. Dyachenko 2

����������
�������

Citation: Chudak, D.M.; Kazheva,

O.N.; Kosenko, I.D.; Shilov, G.V.;

Sivaev, I.B.; Abashev, G.G.; Shklyaeva,

E.V.; Buravov, L.I.; Pevtsov, D.N.;

Starodub, T.N.; et al. New

Radical-Cation Salts Based on the

TMTTF and TMTSF Donors with Iron

and Chromium Bis(Dicarbollide)

Complexes: Synthesis, Structure,

Properties. Crystals 2021, 11, 1118.

https://doi.org/10.3390/

cryst11091118

Academic Editors: Georgina Rosair

and Marina Yu. Stogniy

Received: 11 August 2021

Accepted: 9 September 2021

Published: 14 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Chemistry Department, V. N. Karazin Kharkiv National University, 4 Svoboda Sq., 61077 Kharkiv, Ukraine;
chudakdenis@gmail.com

2 Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1 Semenov Av.,
142432 Chernogolovka, Moscow Region, Russia; genshil@icp.ac.ru (G.V.S.); buravov@icp.ac.ru (L.I.B.);
pevtsovdm@gmail.com (D.N.P.); doa@rfbr.ru (O.A.D.)

3 Institute of Experimental Mineralogy, Russian Academy of Sciences, 4 Academician Osypyan Str., 4,
142432 Chernogolovka, Moscow Region, Russia

4 A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str.,
119991 Moscow, Russia; kosenko@ineos.ac.ru (I.D.K.); sivaev@ineos.ac.ru (I.B.S.); bre@ineos.ac.ru (V.I.B.)

5 Basic Department of Chemistry of Innovative Materials and Technologies,
G.V. Plekhanov Russian University of Economics, 36 Stremyannyi Line, 117997 Moscow, Russia

6 Organic Chemistry Department, Perm State University, 15 Bukirev Str., 614990 Perm, Russia;
gabashev@psu.ru (G.G.A.); EV_Shklyaeva@psu.ru (E.V.S.)

7 Institute of Chemistry, Jan Kochanowski University, 15G Swietokrzyska Str., 25-406 Kielce, Poland;
tstarodub@ujk.edu.pl

* Correspondence: koh@icp.ac.ru
† Dedicated to Professor Alan J. Welch in recognition of his outstanding contribution to the chemistry

of carboranes.

Abstract: New radical-cation salts based on tetramethyltetrathiafulvalene (TMTTF) and tetram-
ethyltetraselenefulvalene (TMsTSF) with metallacarborane anions (TMTTF)[3,3′-Cr(1,2-C2B9H11)2],
(TMTTF)[3,3′-Fe(1,2-C2B9H11)2], and (TMTSF)2[3,3′-Cr(1,2-C2B9H11)2] were synthesized by electro-
crystallization. Their crystal structures were determined by single crystal X-ray diffraction, and
their electrophysical properties in a wide temperature range were studied. The first two salts
are dielectrics, while the third one is a narrow-gap semiconductor: σRT = 5 × 10−3 Ohm−1cm−1;
Ea ≈ 0.04 eV (aprox. 320 cm−1).

Keywords: iron bis(1,2-dicarbollide); chromium bis(1,2-dicarbollide); tetramethyltetrathiafulvalene;
tetramethyltetraselenafulvalene; radical-cation salts; crystal and molecular structure; electric conductivity

1. Introduction

Radical-cation salts and charge transfer complexes based on derivatives of tetrathiaful-
valene (TTF) constitute a wide class of organic materials with transport properties ranging
from insulating to superconducting [1–4]. This work is part of the systematic study of
radical-cation salts of tetrathiafulvalene and its derivatives with metallacarborane anions,
of which earlier results were summarized in works [5–7].

Transition metal bis(dicarbollide) complexes [3,3′-M(1,2-C2B9H11)2]− (M = Fe, Co, or Ni)
are of great interest as counterions for the synthesis of TTF-based molecular conductors due
to the unique high stability, possibility of tuning the charge and nature of the metal, and
wide range of options for modification with dicarbollide ligands via hydrogen substitution
by other atoms and functional groups [5,6]. Although most of the compounds studied
were BEDT-TTF-based radical-cation salts, recently, we have synthesized radical-cation
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salts based on such unconventional and rather exotic donors as bis(1,3-propylenedithio)-
tetrathiafulvalene [8,9], dibenzotetrathiafulvalene [10], and 4,5-ethylenedithio-4′,5′-(2-oxa-
1,3-propylenedithio)-tetrathiafulvalene [9]. On the other hand, although compounds of the
composition (TMTXF)2Y (X = T, S) are usually classical organic metals among which the
first organic superconductors were discovered [4,7], and TMTTF and TMTSF radical-cation
salts continue to attract the attention of researchers [11–15], very little attention has been
paid to TMTTF and TMTSF radical-cation salts with metallacarborane anions [16–19]. This
prompted us to prepare and investigate new TMTTF and TMTSF radical-cation salts with
metallacarborane anions.

This contribution describes the synthesis, structure, and electrical conductivity of new salts
with TMTTF and TMTSF radical-cations and metallacarborane anions: (TMTTF)[3,3′-Cr(1,2-
C2B9H11)2] (1), (TMTTF)[3,3′-Fe(1,2-C2B9H11)2] (2), and (TMTSF)2[3,3′- Cr(1,2-C2B9H11)2] (3).

2. Results and Discussion

Single crystals of compounds 1–3 suitable for X-ray diffraction studies in the form of
thin plates were obtained by electrochemical crystallization (See Supplementary Materials
and Table 1). The crystal structure of 1 is formed by the TMTTF radical-cations and the
[3,3′-Cr(1,2-C2B9H11)2]− anions occupying general positions in the unit cell (Figure 1).
(TMTTF)[3,3′-Cr(1,2-C2B9H11)2] has a pseudo-layered structure, in which anionic layers
alternate along the ac diagonal with layers formed by radical-cation dimers (Figure 2).
The dimer formation corresponds to the stoichiometry of the salt: in this case due to
the Peierls instability a phase transition should occur with doubling of the stacks pe-
riod [7]. The distances between the averaged planes of the TMTTF donors in the dimers
are 3.38 Å (the planes are drawn through all S atoms), and the dihedral angle between the
planes is 0◦ by symmetry conditions. There are short intermolecular S . . . S interactions
(3.426(1)–3.432(1) Å) of the “face-to-face” type between the TMTTF donors in the dimers.

Table 1. Crystal data and structure refinement for (TMTTF)[3,3′-Cr(1,2-C2B9H11)2] (1), (TMTTF)[3,3′-
Fe(1,2-C2B9H11)2] (2), and (TMTSF)2[3,3′-Cr(1,2-C2B9H11)2] (3).

Compound (1) (2) (3)

Empiric formula C14H34B18CrS4 C14H34B18FeS4 C24H46B18CrSe8
Formula weight 577.23 581.08 1212.87
Crystal system Monoclinic Monoclinic Triclinic

Space group P21/c C2/m P 1
a (Å) 11.726(2) 17.3487(8) 7.451(4)
b (Å) 12.753(2) 12.0235(6) 12.342(6)
c (Å) 19.387(3) 6.6791(3) 12.961(7)
α (◦) 90 90 117.743(7)
β (◦) 102.701(2) 90.7840(6) 92.344(8)
γ (◦) 90 90 100.325(8)

V (Å3) 2828.3(6) 1393.08(11) 1027.1(9)
Z 4 2 1

λ (Å) 0.71073 0.71073 0.71073
Dcalc (Mg m−3) 1.36 1.38 1.96

µ (mm−1) 0.708 0.850 7.388
Number of reflections collected 28470 11191 4513

Number of independent reflections 8147 2319 4513
Number of reflections with [F0 > 4σ(F0)] 6787 2183 3754

Number of parameters refined 426 130 233
(2θ)max (◦) 60.48 63.70 55.44

R 0.037 0.021 0.051
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Figure 1. TMTTF radical-cation and anion in (1). Thermal ellipsoids are given at 30% probability 
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The TMTTF+ radical-cations are non-planar and have a “boat” conformation: the
maximum deviations of terminal C(9), C(10), C(11), and C(12) atoms from the plane of the
averaged molecule drawn through all sulfur atoms are 0.30–0.36 Å.

The Cr-C and Cr-B bond lengths are 2.173(2)–2.180(2) and 2.232(2)–2.279(2) Å, cor-
respondingly. The distances from the chromium atom to the C2B3 faces of the dicarbol-
lide ligands are equal to 1.68 Å, which is close to the corresponding distances found in
the structures of Cs [3,3′-Cr(1,2-C2B9H11)2] [20], (TTF)[3,3′-Cr(1,2-C2B9H11)2] [21], and
(BEDT-TTF)2[3,3′-Cr(1,2-C2B9H11)2] [22,23]. The dicarbollide ligands in the [3,3′-Cr(1,2-
C2B9H11)2]− anion are turned relative to each other by 180◦, forming the transoid conforma-
tion. The C2B3 faces deviate slightly from parallel, being inclined by 178.7◦ to each other.

The electrical conductivity measurements have shown that 1 is an insulator with
σ293~10−11 Ohm−1cm−1. The low value of electrical conductivity is apparently connected
with the absence of conducting layers and dimerization of the radical-cations stacks.

It should be noted that compound 1 is the first TMTTF radical-cation salt with an
unsubstituted transition metal bis(dicarbollide), while the radical-cation salts (TMTTF)[8-
HO-3,3′-Co(1,2-C2B9H10)(1′,2′-C2B9H11)] and (TMTTF)(8,8′-Cl2-3,3′-Co(1,2-C2B9H10)2]2
obtained earlier contained substituted bis(dicarbollide) anions [16,17].

The crystal structure of (TMTTF)[3,3′-Fe(1,2-C2B9H11)2] (2) is formed by a quarter of
the TMTTF radical-cation in a special position placed on the m plane and a quarter of the
[3,3′-Fe(1,2-C2B9H11)2]− anion in the 2/m special position of the unit cell (Figure 3). The
compound 2 is characterized by a structure where the TMTTF cations and the metallacarbo-
rane anions form staggered stacks (Figures 4 and 5). The distances between the averaged
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planes of the TMTTF donors in the dimers are 3.38 Å, and the dihedral angle between the
planes is 0◦ by symmetry conditions.
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The Fe-C and Fe-B bond lengths are 2.0790(9)–2.1001(8) and 2.1001(8)–2.1494(8) Å,
correspondingly, and the overlapping values are due to the statistical disordering of carbon
and boron atoms in the dicarbollide ligands. The distances from the iron atom to the C2B3
faces of the dicarbollide ligands are equal to 1.53 Å, which is close to the distances in
analogous salts of the iron bis(dicarbollide) anion [19,24,25]. The dicarbollide ligands are
turned relative to each by 180◦, forming the transoid conformation. The C2B3 faces are
parallel by symmetry conditions.

According to the electric conductivity measurements, compound 2 is an insulator
with conductivity ~10−10 Ohm−1cm−1. The low value of electroconductivity is in an
agreement with the 1:1 stoichiometry and non-layered structure of the salt, as well as with
the inclination angle of the radical-cations in the stack, at which there is only slight overlap
between neighboring radical-cations.

The (TMTSF)2[3,3′-Cr(1,2-C2B9H10)2] (3) crystals are isostructural to (TMTSF)2[3,3′-
Co(1,2-C2B9H11)2] and (TMTSF)2[3,3′-Fe(1,2-C2B9H11)2] salts studied earlier, containing
cobalt and iron bis(dicarbollide) anions [18,19]. The crystal structure of 3 is formed by the
TMTSF cation in a general position and the [3,3′-Cr(1,2-C2B9H11)2]− anion in a special
centrosymmetrical position (Figure 6). Compound 3 possesses a structure (Figures 7 and 8)
where the TMTSF+• radical-cations and anions form staggered stacks. The distances
between the averaged planes of the TMTSF donors in the dimers are 3.70 and 3.73 Å, and
the dihedral angle between the planes is 0◦ by symmetry conditions.

The Cr-C and Cr-B bond lengths are 2.175(7)–2.176(7) and 2.226(8)–2.277(8) Å, corre-
spondingly. The distances from the chromium atom to the C2B3 faces of the dicarbollide
ligands are equal to 1.68 Å, and the dicarbollide ligands in the [3,3′-Cr(1,2-C2B9H10)2]−

anion are turned relative to each other by 180◦, forming the transoid conformation. The
C2B3 faces are parallel to each other by the symmetry conditions.

The electroconductivity measurements have revealed that compound 3 in the range
of 41–195 K behaves like a dielectric. However, above 195 K, the delocalization of the
positive charge disappears due to the numerous intermolecular S . . . S contacts and an
inconspicuous dielectric–semiconductor structural phase transition occurs, caused by
charge ordering: stacks contain both TMTSF molecules and TMTSF radical-cations. The
room temperature electric conductivity σ293 = 5·10−3 Ohm−1cm−1 and activation energy
Ea ∼= 0.04 eV (Figure 9). It should be noted that analogous salts (TMTSF)2[3,3′-Co(1,2-
C2B9H11)2] and (TMTSF)2[3,3′-Fe(1,2-C2B9H11)2] were characterized by electroconductivity
values σ293 of 15 and 0.1 Ohm−1cm−1, correspondingly [18,19].
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In conclusion, new salts with the TMTTF and TMTSF radical-cations and metallacarbo-
rane anions (TMTTF)[3,3′-Cr(1,2-C2B9H11)2] (1), (TMTTF)[3,3′-Fe(1,2-C2B9H11)2] (2), and
(TMTSF)2[3,3′-Cr(1,2-C2B9H11)2] (3) were electrochemically synthesized and investigated.
Their crystal structures were determined by X-ray study and electroconductivities were
measured. Salts (1) and (2) are insulators, which is explained by the 1:1 stoichiometry and
the absence of an extended network of interdonor interactions, whereas (3) is a semicon-
ductor at room temperature with electroconductivity σ293 = 5·10−3 Ohm−1cm−1, which
is lower than in (TMTSF)2[3,3′-Fe(1,2-C2B9H11)2] and (TMTSF)2[3,3′-Co(1,2-C2B9H11)2]
salts (electroconductivity values σ293 of 0.1 and 15 Ohm−1cm−1, correspondingly). The
tendency of a rise in conductivity (5·10−3 < 0.1 < 15) is apparently connected with de-
creasing the cation size in the order Cr3+ > Fe3+ > Co3+ [26], which leads to decreasing the
corresponding metallacarborane anion size and, in turn, to unit cell compression and a
tighter radical-cation packing of the salts.
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