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Abstract: We investigated Heusler-type Ru2VAl, a candidate material for next-generation thermo-
electric conversion, by first-principle calculations of its thermoelectric conversion properties and
direct experimental observations of its electronic structures, employing photoemission and infrared
spectroscopy. Our results show that Ru2VAl has a wider pseudogap near the Fermi level compared
to Fe2VAl. Accordingly, a higher thermoelectric conversion performance can be expected in Ru2VAl
at higher temperatures.

Keywords: Heusler-type Ru2VAl; first-principle calculation; photoemission spectroscopy; infra-red
spectroscopy; thermoelectric properties; electronic structure

1. Introduction

Thermoelectric conversion has attracted considerable attention in recent years as the
next generation of green energy because it can convert thermal energy into electrical energy.
The performance of thermoelectric materials is evaluated using the power factor, P, and the
non-dimensional figure of merit ZT, which are expressed by the following equations:

P =
S2

ρ
,

ZT =
S2

ρ κ
T,

where S is the Seebeck coefficient, ρ is the electrical resistivity, and κ is the thermal con-
ductivity. Bi2Te3 [1–3], PbTe [4], and SiGe [5–7] are typical thermoelectric materials used
in practical applications. Bi2Te3, in particular, is used in thermoelectric power generation
and laser diode cooling units, and its ZT is approximately 1.2 to 1.4 [8–11]. However, the
performance of these materials has not significantly improved in recent years, and the
development of new thermoelectric materials is desired.

Recently, Nishino suggested that material systems with valley-like electronic structures
near the Fermi level EF, such as pseudogap-like electronic structures, are promising for
thermoelectric conversion [12,13]. Based on Mott’s theory [14], the Seebeck coefficient of a
typical metal can be expressed as follows:

S = −π2
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where e is the electron charge, N(E) is the density of states (DOS), and kB is Boltzmann’s
constant. According to this equation, the Seebeck coefficient is inversely proportional to
the absolute value of the DOS at EF and proportional to its energy gradient. Therefore,
by adjusting EF to the appropriate DOS position through carrier doping by elemental
substitution, high Seebeck coefficients can be expected for both p- and n-type materials. In
fact, it has been shown that high thermoelectric performance can be achieved by controlling
the position of EF in the pseudogap in Heusler-type Fe2VAl with an ideal pseudogap-like
electronic structure [15–24].

For the electron-doped Heusler-type Fe2VAl1-xSix compound [15], P = 5.4 × 10−3 W/mK2,
is larger than the power factor of n-type Bi2Te3 material. In contrast, P = 2.3 × 10−3 W/mK2 for
hole-doped Fe2V1–xTixAl [16]. However, the shortcomings of the Heusler compounds are
that their high power factor ranges from room temperature to 400 K and their performance
is low in the mid-temperature range of 400 to 600 K. In addition, cubic Heusler-type
crystal structures have a high crystal symmetry, resulting in a thermal conductivity of
approximately 25 W/mK2, [25] which is approximately 10 times higher than that of Bi2Te3.
To further improve the thermoelectric performance, it is necessary to search for materials
that form pseudogap-like electronic structures even with low thermal conductivity.

One way to reduce thermal conductivity without significantly changing the electronic
structure is to replace some of the constituent elements with heavier elements. First-
principle calculations have shown that when Fe is replaced by Ru (same group as Fe but
with a larger atomic number), as in Ru2VAl, a wider pseudogap is formed in EF compared
to Fe2VAl [26,27]. In addition, Ru2VAl, synthesized by Ramachandran et al., has a thermal
conductivity of 10 W/mK2, which is approximately 40% lower than that of Fe2VAl [28].
Thus, Heusler-type Ru2VAl is a candidate for next-generation thermoelectric conversion
materials, surpassing the thermoelectric performance of Fe2VAl.

For Fe2VAl, the relationship between the electronic structure and thermoelectric conver-
sion properties by photoelectron spectroscopy [29–36] and infrared (IR) spectroscopy [37,38]
has been discussed in detail. The pseudogap width in Fe2VAl is actually much smaller than
predicted by band calculations due to the strong electron correlation induced by the Fe
atoms [39]. Based on the understanding of this difference in electronic structure, significant
performance improvements have been achieved based on the material design utilizing
the electronic structure of Fe2VAl. Therefore, knowledge of the electronic structure is
essential for improving the performance of thermoelectric conversion materials. However,
for Ru2VAl, only band-structure calculations are available and there are no experimental
observations. Therefore, in this work, we discuss the potential of Ru2VAl as a thermoelectric
conversion material by attempting to relate the electronic structure and thermoelectric
conversion properties using first-principle calculations and experimental observations.

2. Theoretical and Experimental Methods

The electronic band structures of Fe2VAl and Ru2VAl were calculated using the full-
potential linearized augmented plane-wave method and generalized gradient approxima-
tion as implemented in the WIEN2k package [39]. The equilibrium crystal structure was
determined by minimizing the total energy, which was achieved by relaxing the lattice
parameters. The convergence energy threshold was set to 0.0001 Ry. The theoretical ther-
moelectric properties were calculated using the Boltzmann transport equation within the
constant relaxation time approximation using the BoltzTraP code based on the WIEN2k
electronic structure [40].

Ingots of Fe2VAl and Ru2VAl alloys were prepared by repeated arc melting of ap-
propriate mixtures of 99.99% pure Fe, Ru and Al, and 99.9% pure V in an argon atmo-
sphere. For hard X-ray photoemission spectroscopy (HAXPES) and IR measurements,
1 mm × 1 mm × 3 mm and 3 mm × 3 mm × 2 mm samples were used. Each sample was
cut from a disk with a SiC blade, sealed in an evacuated quartz capsule, and annealed at
1273 K for 1 h and then at 673 K for 4 h, followed by furnace cooling.
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High-resolution synchrotron radiation X-ray powder diffraction (SR-XRD) measure-
ments were performed at 300 K using the BL02B2 beamline (wavelength = 0.04600 nm),
SPring-8 [41]. The wavelength was precisely calibrated using a CeO2 standard sample. The
VESTA program was used to simulate XRD patterns [42].

HAXPES measurements were performed at BL12XU of the SPring-8 Taiwan beamlines,
and all photoemission spectra were recorded at room temperature. A clean surface of the
material for HAXPES measurement was obtained by ex situ fracturing with a knife edge and
immediately installing the sample in the HAXPES chamber. EF and total energy resolution
were determined from the Fermi edge of the gold films. The total energy resolution of the
HAXPES measurements was set to 310 meV at an excitation photon energy (hν) of 6916 eV.

IR measurements were performed using a Fourier interferometer (FTIR6100, JASCO
Inc.) in the temperature range of 10–300 K. The surface of the sample was then polished to
a mirror finish. The absolute value of reflectivity was determined by dividing the measured
data from the calibration spectrum obtained by depositing gold on the sample surface after
IR spectroscopy measurement of the sample.

3. Results and Discussions

Figure 1a,b show the volume dependence of the total energies of Fe2VAl and Ru2VAl,
respectively. As shown in Table 1, the lattice parameters and Young’s moduli were derived
by fitting the obtained volume dependence of the total energy to the Birch–Murnaghan
equation of state. Experimental lattice constants were calculated from XRD measurements
on the fabricated materials. The calculated lattice parameters and Young’s moduli were
in good agreement with previously reported calculations for both Fe2VAl [43,44] and
Ru2VAl [26,27]. Comparing the experimental and calculated lattice parameters obtained
from SR-XRD measurements, which will be discussed in the next session, the experimental
lattice parameter is larger for Fe2VAl but comparable for Ru2VAl. In general, the lattice
parameter calculated by the GGA method tends to be slightly larger than the experimen-
tal value. The discrepancy in the trend of the difference between the experimental and
calculated lattice parameters of Ru2VAl is discussed in the next section. The calculated
Young’s modulus is larger for Ru2VAl than for Fe2VAl, indicating a higher strength. This is
expected to increase the overall strength of the module and improve its reliability when a
thermoelectric conversion module is fabricated using Ru2VAl.

Crystals 2022, 12, 1403 4 of 10 
 

 

 
Figure 1. Volume dependence of the total energy of Fe2VAl (a) and Ru2VAl (b). The curves are the 
result of fitting with the Birch–Murnaghan equation of state. Calculated density of states of Fe2VAl 
(c) and Ru2VAl (d). The inset shows the band structure along the Г–X line. 

Table 1. Lattice parameter and Young’s modulus of Fe2VAl and Ru2VAl. 

 Fe2VAl Ru2VAl 
Lattice parameter (nm) 0.5709 0.6011 

Experimental Lattice parameter (nm) 0.5761 0.5994 
Young module (GPa) 223.05 256.03 

Figure 1c,d show the DOS of Fe2VAl and Ru2VAl, respectively. Both the DOSs exhibit 
a pseudogap-like feature with a sharp drop in DOS close to EF. The magnitude of the DOS 
at EF was similar for Fe2VAl and Ru2VAl. In Fe2VAl, the sizes of the hole and electron 
pockets were almost the same, whereas, in Ru2VAl, the hole pocket was larger than the 
electron pocket. As a result, the pseudogap structure of Ru2VAl is asymmetric between 
the valence and conduction band sides, with a gradual increase on the conduction band 
side, resulting in a wider pseudogap than that of Fe2VAl. Because of this larger pseudogap 
width in Ru2VAl compared to Fe2VAl, the peak temperature of the absolute Seebeck coef-
ficient is expected to shift to a higher temperature. This shift is caused by the thermal 
excitation of carriers that are suppressed in Ru2VAl compared to Fe2VAl at high tempera-
tures. To discuss the effect of the difference in DOS between Fe2VAl and Ru2VAl on the 
Seebeck coefficient and power factor, we next discuss the electronic transport properties 
calculated from the obtained electronic structures using the Boltzmann transport equa-
tion. 

Figure 2a,b show the chemical potential dependence of the Seebeck coefficients for 
Fe2VAl and Ru2VAl calculated in the range 300–1000 K. Fe2VAl shows a maximum posi-
tive value of 140 μV/K, a maximum negative value of −110 μV/ K, and large Seebeck coef-
ficients for both p- and n-type materials. In contrast, Ru2VAl has a large Seebeck coeffi-
cient for p-type materials with a maximum positive value of 70 μV/K but a small Seebeck 
coefficient value of −30 μV/K for n-type materials. Figure 2c,d show the chemical potential 
dependence of the calculated power factors for Fe2VAl and Ru2VAl in the 300–1000 K 
range. The power factor of the calculation is not directly comparable to the power factor 
of the experiment because the units are different from those of the experiment, since the 
relaxation time cannot be calculated in the band calculation. The Seebeck coefficient is 
generally smaller for Ru2VAl than for Fe2VAl, but the power factor is similar for both p-
type materials with 125 × 1010 W/K2 cm s at 1000 K. The smaller n-type thermoelectric 

Figure 1. Volume dependence of the total energy of Fe2VAl (a) and Ru2VAl (b). The curves are the result
of fitting with the Birch–Murnaghan equation of state. Calculated density of states of Fe2VAl (c) and
Ru2VAl (d). The inset shows the band structure along the Г–X line.



Crystals 2022, 12, 1403 4 of 10

Table 1. Lattice parameter and Young’s modulus of Fe2VAl and Ru2VAl.

Fe2VAl Ru2VAl

Lattice parameter (nm) 0.5709 0.6011

Experimental Lattice parameter (nm) 0.5761 0.5994

Young module (GPa) 223.05 256.03

Figure 1c,d show the DOS of Fe2VAl and Ru2VAl, respectively. Both the DOSs exhibit
a pseudogap-like feature with a sharp drop in DOS close to EF. The magnitude of the DOS
at EF was similar for Fe2VAl and Ru2VAl. In Fe2VAl, the sizes of the hole and electron
pockets were almost the same, whereas, in Ru2VAl, the hole pocket was larger than the
electron pocket. As a result, the pseudogap structure of Ru2VAl is asymmetric between the
valence and conduction band sides, with a gradual increase on the conduction band side,
resulting in a wider pseudogap than that of Fe2VAl. Because of this larger pseudogap width
in Ru2VAl compared to Fe2VAl, the peak temperature of the absolute Seebeck coefficient
is expected to shift to a higher temperature. This shift is caused by the thermal excitation
of carriers that are suppressed in Ru2VAl compared to Fe2VAl at high temperatures. To
discuss the effect of the difference in DOS between Fe2VAl and Ru2VAl on the Seebeck
coefficient and power factor, we next discuss the electronic transport properties calculated
from the obtained electronic structures using the Boltzmann transport equation.

Figure 2a,b show the chemical potential dependence of the Seebeck coefficients for
Fe2VAl and Ru2VAl calculated in the range 300–1000 K. Fe2VAl shows a maximum positive
value of 140 µV/K, a maximum negative value of −110 µV/ K, and large Seebeck coeffi-
cients for both p- and n-type materials. In contrast, Ru2VAl has a large Seebeck coefficient
for p-type materials with a maximum positive value of 70 µV/K but a small Seebeck coef-
ficient value of −30 µV/K for n-type materials. Figure 2c,d show the chemical potential
dependence of the calculated power factors for Fe2VAl and Ru2VAl in the 300–1000 K
range. The power factor of the calculation is not directly comparable to the power factor
of the experiment because the units are different from those of the experiment, since the
relaxation time cannot be calculated in the band calculation. The Seebeck coefficient is
generally smaller for Ru2VAl than for Fe2VAl, but the power factor is similar for both
p-type materials with 125 × 1010 W/K2 cm s at 1000 K. The smaller n-type thermoelectric
properties can be attributed to the larger hole pocket in Figure 1d. In other words, when
the material is electron-doped, EF shifts to the conduction band side, but the large hole
pocket reduces the slope of the DOS at EF, resulting in a smaller Seebeck coefficient and
thus a smaller power factor in Ru2VAl.

Figure 3 shows the SR-XRD measurements on Fe2VAl and Ru2VAl. The overall X-ray
diffraction patterns of Fe2VAl and Ru2VAl were identified as a single-phase Heusler-type
(L21) structure. However, the diffraction peak due to the (111) mirror plane, which should
be observed around 7◦, was not observed for Ru2VAl. This result, together with the
fact that the experimental and calculated lattice parameter are comparable, suggests that
Ru2VAl may not be completely ordered L21 structure, but may have a partially disordered
B2 structure. In order to obtain the L21 ordered phase of Ru2VAl in the future, it is necessary
to explore for the optimum heat treatment conditions for ordering.

Next, we discuss the agreement of the calculated DOS with the experimentally ob-
served DOS. Figure 4a shows a wide range of core–electron photoemission spectra of
Fe2VAl and Ru2VAl for each core–electron state of the constituent elements in Fe2VAl and
Ru2VAl. The observed photoelectron spectra can be entirely attributed to the core–electron
states of the constituent elements, and oxygen and carbon adsorbed on the surface be-
fore the sample was introduced into the HAXPES chamber. The core–electron states of
Al 1s (b), V 2p3/2 (c), Fe 2p3/2 (d), and Ru 3d5/2 (e) in Fe2VAl and Ru2VAl are shown in
Figure 4. Two peaks are observed near 1558 eV and 1562 eV for the Al 1s state. The
broad peak observed at the high-binding-energy side is attributed to Al2O3 associated with
surface oxidation [45]. In contrast, no oxidation-induced peak structures are visible for the
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other constituent elements Ru, Fe, and V. In general, Al2O3 is a stable surface oxide film,
and when an Al2O3 surface-oxide film is formed, oxygen is less likely to diffuse into the
interior at high temperatures, improving the oxidation resistance [46]. Therefore, Ru2VAl,
like Fe2VAl, is expected to have high thermal stability at high temperatures and can be
adapted to thermoelectric conversion modules that are stable at high temperatures. The
peak positions of Al 1s and V 2p3/2 shift towards higher binding energies in Ru2VAl than
in Fe2VAl. As shown in Figure 4b,c, the trend of this shift is consistent with the energy
difference of the core–electron states expected from the all-electron calculations shown
in Figure 1. The probability of the existence of the wave function in the Ru 4d state is
more spatially extended than that in the Fe 3d state. Therefore, the DOS near EF in Ru2VAl
is expected to be strongly hybridized than that in Fe2VAl, resulting in a wider pseudo-
gap. Therefore, the peaks of the Al and V core electron states in Ru2VAl with stronger
hybridization are located on the higher binding energy side compared to Fe2VAl, and this
interpretation is consistent with the experimental and calculated results.
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Figure 5a,b show the experimental and calculated valence band photoemission spectra
of Ru2VAl and Fe2VAl. The calculated valence band photoelectron spectra were obtained
by considering the photoexcitation cross-sections [47] at the excitation photon energies
used for the HAXPES measurements for each constituent element in DOS in Figure 1c,d.
The SR-XRD results suggest that Ru2VAl may not be a completely ordered-L21 structure,
but the effect of the disordered-B2 structure on the electronic structure is considered to
be very small because no broadening of the photoelectron spectrum was observed when
comparing the photoelectron spectra of Ru2VAl and Fe2VAl. The photoelectron spectrum
of Ru2VAl shows a large peak around 1.5 eV, which is not observed in Fe2VAl. This state
is emphasized because the photoexcitation cross-section of Ru 4d state is larger than that
of the Fe 3d state. Similar to Fe2VAl, Ru2VAl has a pseudogap electronic structure with
low photoelectron intensity near the EF. The increase in the intensity of the photoelectron
spectrum from the EF in Ru2VAl is comparable to that in Fe2VAl. This result is in agreement
with the band calculation results, where the DOS on the valence band side is similar for
both, and the difference in the pseudogap width is attributed to the different density of
states on the conduction band side.

Photoelectron spectroscopy measurements can only reveal the electronic structure of
the valence band and not the conduction band. Infrared spectroscopy allows us to observe
the reflectivity representing the electronic structure of both the valence and conduction
bands. Therefore, IR is a useful tool in elucidating the details of the electronic structure near
EF. Figure 6 shows the photon energy dependence of the reflectivity of Ru2VAl. Overall
reflectivity showed a gradual decrease with increasing photon energy, reflecting the semi-
metallic electronic structure. The overall shape of the temperature dependence of reflectivity
remained unaltered, but the reflectivity gradually decreased with increasing measurement
temperature. This result suggests a decrease in the number of carriers with decreasing
measurement temperatures. This result is qualitatively consistent with the electronic
resistivity measurement results, which show an increase in the electrical resistivity with
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increasing temperature. The reflectivity changes abruptly at about 0.03 eV and 0.2 eV, with
the latter change in reflectivity energy being related to the width of the pseudogap based
on previous IR results for Fe2VAl [39]. This suggests that Ru2VAl has a larger pseudogap
than Fe2VAl, which is consistent with the band calculations. However, we did not observe an
abrupt phenomenon in the DOS below 0.02 eV, as observed in the IR measurements of Fe2VAl.
This may be due to the strong electronic correlation of Fe 3d in Fe2VAl; such a decrease in
reflectivity was not observed in Ru2VAl, which has a stronger itinerant nature, as observed in
SrM4Sb12 (M = Fe, Ru) [48]. The pseudogap width of Ru2VAl is expected to be similar to the
band calculation result due to the itinerant nature of Ru atoms. Therefore, Ru2VAl is expected
to have a higher Seebeck coefficient peak at higher temperatures than Fe2VAl due to its wider
pseudogap width, and is expected to be a thermoelectric conversion material with higher
performance at higher temperatures than Fe2VAl.
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4. Conclusions

In this study, first-principle calculations of the thermoelectric conversion properties
and direct observation of the electronic structure by photoelectron and infrared spec-
troscopy were performed to investigate the potential of Heusler-type Ru2VAl alloys as
thermoelectric materials. First-principle calculations showed that the n-type power factor
is smaller in Ru2VAl than in Fe2VAl, but the p-type power factor is comparable. Compared
with Fe2VAl, Ru2VAl has a lower thermal conductivity owing to its higher density. There-
fore, ZT, which is a performance index that includes the thermal conductivity, is expected to
be large. A comparison of the electronic structures of Ru2VAl and Fe2VAl shows that Ru2VAl
has a wider pseudogap, which was confirmed experimentally and theoretically. This result
may be due to the shift of the peak temperature of the thermoelectric conversion property
to the higher-temperature side of Ru2VAl. Based on these results, Ru2VAl is expected to
be a candidate material for next-generation thermoelectric conversion materials with better
thermoelectric conversion properties at higher temperatures compared to Fe2VAl.
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