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Abstract: Biogenic synthesis of nanoparticles using plant extract is a promising trend in research to
reduce chemical consumption and avoid wastewater treatment complications. In this work, the zero-
valent Fe/Fe3O4 nanoparticles (Fe0/Fe3O4 NPs) were synthesized using Caralluma acutangula (CA)
plant, widespread in the Jazan region in Saudi Arabia. The synthesis process involves hydrothermal
treatment of plant extract and iron (III) mixture at 80 ◦C to facilitate the reduction reaction of iron
(III) cations. The Fe0/Fe3O4 NPs were characterized by XRD, FTIR, SEM, EDX, TEM, XPS, TGA,
UV, and SBET. The obtained data support the formation of Fe0/Fe3O4 NPs crystal structure with an
average particle size of 9.6 nm and surface area of 89 m2·g−1. The biosynthesized Fe0/Fe3O4 NPs
were then applied for the photodegradation of Methylene blue (MB) dye as one of the most common
organic dyes in wastewater due to several industrial human activities. Different parameters for MB
degradation were performed, such as kinetics and thermodynamics studies. The data obtained reflect
the nonspontaneous endothermic process with 87.8 KJ·mol−1 activation energy (Ea).

Keywords: zerovalent iron NPs; Caralluma acutangula; photocatalyst; dye degradation; methylene blue

1. Introduction

Recently green approach has received wide attention from researchers regarding the
synthesis of a wide variety of nanomaterials due to it is unique size (1–100 nm ), structure,
shapes, physicochemical, magnetic, thermal, electrical, and catalytic properties [1–7]. The
particle size and surface area are the main parameters that could be used to define the
properties and surface activity of such materials [8–10]. Nanoparticles are highly intrigu-
ing due to their high surface area-to-volume ratio over bulk material counterparts. The
nanoparticle structure could represent a high degree of complexity that consists of three
layers, i.e., the surface layer, the shell, and the core (generally described as the nanopar-
ticles) [11]. The difference between the nanoparticles forming layers lies mainly in the
functional groups such as metal ions, surfactants, small molecules, and polymers. The
properties of nanoparticles, such as size, shape, composition, structure, and framework,
are specific and need to be optimized during synthesis [12]. Depending on their distinct
characteristics, nanoparticles are categorized into different classes, including metal oxides,
ceramics, polymers, and semiconductors, carbon and lipids based [13–16]. Other metal
oxides, such as transition metals oxides, gold, silicon, and magnesium oxides, have various
environmental applications. Metal oxide nanomaterials attribute various applications such
as photodegradation, adsorption, catalysis, textile, pharmaceutical, and energy [5,8,17–19].
Iron oxide nanoparticles possess distinguished and magnificent physical properties such
as super magnetism, liquid solution firmness, lower susceptibility to oxidation, flexible
surface chemistry, and a wide variety of environmental applications [20–23]. Iron oxide
nanoparticles also exhibit a typical shell structure and core which make it possess the
characteristics of both metallic iron and hydrous iron oxide [24–26]. Furthermore, iron

Crystals 2022, 12, 1510. https://doi.org/10.3390/cryst12111510 https://www.mdpi.com/journal/crystals

https://doi.org/10.3390/cryst12111510
https://doi.org/10.3390/cryst12111510
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/crystals
https://www.mdpi.com
https://orcid.org/0000-0003-2614-5315
https://orcid.org/0000-0003-0615-5196
https://orcid.org/0000-0002-3961-9551
https://doi.org/10.3390/cryst12111510
https://www.mdpi.com/journal/crystals
https://www.mdpi.com/article/10.3390/cryst12111510?type=check_update&version=2


Crystals 2022, 12, 1510 2 of 16

nanoparticles also possess enzyme-like catalytic properties, which can carry out the same
oxidation action of various enzymes such as peroxidase and catalase, making it a new
enzyme mimic [22,27]. Another feature of iron nanoparticles is the capability of such
particles to join with biological molecules such as peptides, nucleic acids, enzymes, and
fatty acids [28].

The use of magnetic material is important interest for researchers due to its wide
variety of application and capability of regeneration and or recycling [29]. The possible
iron oxide that could be obtained after synthesis are α-Fe2O3, γ-Fe2O3 and Fe3O4 [30].
The percentage of each kind of iron oxide depends on the method of synthesis and the
thermal treatment. Magnetite is one of the useful forms of iron oxides due to it is highest
and largest magnetization saturation. Synthesis of magnetized iron were performed using
several techniques and methods [30,31]. Several works indicate the formation of magnetite
as well as hematite at high calcination temperature lies between 400 and 500 ◦C [29]. XRD
characterization of the magnetic iron oxide did not indicate any relevance prove that could
distinguish between both magnetite and maghemite.

Different methods have been employed for synthesizing iron oxide nanomaterials,
including chemical, physical and biological [32,33]. Chemical processes involve the use
of various chemicals, which can cause a severe impact on living organisms as well as
humans when it is wastes discharged into the echo system. Furthermore, applying phys-
ical techniques such as milling, grinding, and thermal treatment of ores could be costly,
besides time and energy consumption [23]. Therefore, the shift toward green techniques
possessing safe, biologically acceptable, coast effective echo friendly, and fast methods
became a necessity of great importance [34–36]. In the biogenic synthesis of iron oxide
nanoparticles, several living organisms, such as plants, bacteria, and fungi, can be used
instead of chemicals [7,37–39]. Two basic steps involved in biogenic mainly bio-reduction,
which consists of the reduction of metal ions to a stable oxidation state, and biosorption in
which metal ions are binding to the surface of the organism such as cell wall and peptides
to form a stabilized complex [40]. Subsidiary steps such as capping or adhering to the
biologically active phytochemicals stabilize the nanoparticle’s surface and produce stable
suspended particles. Subsequently, biogenic synthesis is an economical, nontoxic chemical
application compared to other physical and chemical synthesis procedures [38]. The South-
west region of Saudi Arabia is enriched with various plant genus, especially medicinal
plants. Apocynaceae family is a highly spread plant genus in this region of Saudi Arabia.
This genera of the Apocynaceae family traditionally treat various diseases in Saudi Arabia.
Caralluma belongs to the family Apocynaceae, and this genus comprises 14 species in the
Gizan province of Saudi Arabia [41]. Caralluma acutangula plant extract in various aqueous
or organic solvents is very efficient in treating cancer, e.g., hepatocellular carcinoma and
prostate and breast cancer. The extract of Caralluma acutangular species is enriched with
various pregnant glycosides phytochemicals that are effective biomolecules for anticancer,
appetite suppressant, and anti-obesity and antitrypanosomally treatments [42].

In this work, we used the biogenic synthesis of zero valent Fe/Fe3O4 nanoparticles
(Fe0/Fe3O4 NPs) through an aqueous extract of Caralluma acutangula (CA), which is a
widespread plant in the Jazan area. The iron precursor solution was heated at 80 ◦C
with CA aqueous solution, and iron was reduced to zero-valent iron/oxide nanoparticles,
and the phytochemicals stabilized the surface. Later, Fe0/Fe3O4 NPs were successfully
characterized by various spectroscopic techniques. The average size of Fe0/Fe3O4 NPs
has calculated at 9.6 nm with a surface area of 89 m2·g−1 and successfully applied for the
photodegradation of methylene blue dye using Fenton reaction with hydrogen peroxide.
After the degradation reaction of MB, the used Fe0/Fe3O4 NPs were collected with a
magnet. This methodology explores the cheap and environmentally friendly biogenic
synthesis of Fe0/Fe3O4 NPs and their application for environmental pollutant removal
such as MB dye and may apply to various target studies.
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2. Materials and Methods
2.1. Materials

Ferric chloride (FeCl3), Sodium hydroxide (NaOH), Methylene blue, and Methanol
(99.5% purity) were purchased from Sigma-Aldrich. All used chemicals and solvents are of
analytical grades and used without further purification. Deionized water from a Milli-Q
system was used for all the experiments. CA leaves were obtained from a healthy plant
growing in an open forest in the northern region of Jazan, Saudi Arabia.

2.2. Preparation of Fe0/Fe3O4 NPs

Figure 1a,b, show the schematic for preparing CA aqueous extract and biogenic
synthesis procedure of Fe0/Fe3O4 NP, respectively. CA leaves were dried, grinded, and
heated at 90 ◦C in 600 mL DI water for 4 h. The orange color aqueous extract was then
filtered to acquire a clear solution and stored as the mother solution at 4 ◦C for further
use. CA aqueous extract was heated at 80 ◦C and kept under constant stirring for 1 h. The
heated clear solution was then treated with 3% FeCl3 solution. The color of the orange
solution was changed from greenish to black following the addition of FeCl3 solution due
to the interaction with organic species present in the mother liquor, which resulted in the
formation of the Fe(III) complex, and then it further reduced to Fe(II) and zerovalent Fe
which usually responsible for the greenish to black color. The pH of reaction mixture was
find acid as 1.5 which is due the presence of high percent of benzoic acid and tridecanoic
acid, 4,8,12-trimethyl-methyl ester in the aqueous extract of CA as mentioned in earlier
report [43]. The reaction mixture was treated with 0.1 N NaOH to precipitate iron hydroxide
NPs that converted to magnetite upon calcination at 400 ◦C after washing and drying.
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Figure 1. Schematic representation for (a), Preparation of CA aqueous extract (b) biosynthesis process
of Fe0/Fe3O4 NPs.

2.3. Catalytic Degradation of MB Dye

Catalytic activity of the synthesized Fe0/Fe3O4 NPs was tested by applying UV
irradiation using 6 W UV lamp with 254 nm wavelength. 100 ppm stock solution of MB
was used for the photodegradation test under varying experimental condition, such as
different MB concentrations (5–100 mg/l), different catalyst and H2O2 doses. Calibration
curve for MB dye was carried out by diluting the stock solution to the proper concentration
prior to the measurements using spectrophotometer.
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2.4. Characterization of Fe0/Fe3O4 NPs

The biogenic synthesis Fe0/Fe3O4 NPs were characterized using different techniques
to acquire a full texturing for the surface characteristics of Fe0/Fe3O4 NPs crystallinity and
structure were examined by Shimadzu XRD, LabX-6000 XRD X-ray Diffractometer, Kyoto,
Japan, with a CuKα (λ = 1.54056 Å), working on 40/30 kV/Milli Ampere, at 2◦/m amid
20–70◦ angles. The Fe0/Fe3O4 NPs surface morphology was analyzed using high-resolution
scanning electron microscopy (HRSEM), Energy-dispersive X-ray spectrometry (EDX),
and atomic mapping by FEI-Quanta FEG 250 SEM with field emission gun, Netherlands.
Fe0/Fe3O4 NPs suspension (10.0 µL) was placed on a carbon conductive adhesive tape.
Samples were dried at 80 ◦C under a vacuum overnight and subjected to HRSEM and EDX.
The Fe0/Fe3O4 NPs shape and surface morphology were analyzed using Transmission
Electron Microscope (TEM), JEOL HRTEM, JEM-2100F (Tokyo, Japan) instrument at 120 kV.
Nanoparticle suspension was prepared in methanol. A 1.0 µL sample was transferred onto a
Cu grid and heated in a vacuum oven at 80 ◦C overnight to vaporize the solvent and further
characterized by the TEM instrument. Surface functional groups such as carbon-oxygen
and iron-oxygen were analyzed using X-ray photon spectroscopy using a surface science
instrument X-probe, X-Ray000 400um–FG ON (400 µm). Fe0/Fe3O4 NPs nanoparticles
surface charge was measured by zeta sizer nano instrument, Nano ZS90, ZEN3690, Malvern
Instruments Ltd., Cambridge City, UK. The synthesized Fe0/Fe3O4 NPs’ surface area
and pore characteristics were measured by a five-point Brunauer-Emmette Teller (BET)
analysis (80 ◦C degassing temperature) with a Quantachrome Nova 2200e instrument.
CA mother liquor functional groups and Fe0/Fe3O4 NPs were determined using FTIR
set at 450–4000 cm−1, using a Prestige-21, Shimadzu, Japan IR spectrometer. Thermal
stability of Fe0/Fe3O4 NPs oxide NPs was evaluated by thermogravimetric analysis (TGA),
using Shimadzu, Kyoto, Japan. The analysis was performed in a nitrogen environment at a
heating rate of 5.0 ◦C·min−1. UV-Vis spectrophotometer (SCO TECH, SPUV-26, Dingetstädt,
Germany) with 1.0 cm quartz cuvettes in the range from 200 to 800 nm was used for UV/Vis
spectroscopic analysis. The catalytic activity of the synthesized Fe0/Fe3O4 NPs was tested
by applying UV irradiation using a 6 W UV lamp with a 254 nm wavelength.

3. Results and Discussions
3.1. UV-VIS and Band Gap Analysis

The data obtained from UV analysis for the synthesized iron nanoparticles in compar-
ison with the mother liquor was depicted in Figure 2a. Figure 2a (I) refer to the UV-Vis
absorption spectrum of FeCl3 solution at 340 nm and broad absorption peak at 300 nm. The
data obtained indicate the appearance of new bands at 280, 300, and 340 nm upon adding
iron as shown in Figure 2a (III) in CA aqueous extract. The data revealed that the new peaks
at 280, 295, and 340 nm demonstrated with both Fe (II) and Fe (III) ions, respectively. While
in Figure 2a (II), represent the CA aqueous extract alone which has absorption broad peak at
330 and 265 nm range. This finding could reflect that our synthesized sample is a mixture of
both ions with a different ratio, as indicated by XRD and XPS analysis. The calculation of the
optical energy band gap for direct transition is represented in Figure 2b. The data obtained
indicate that the calculated value is 1.94, which agrees with other research work [44]. There-
fore, the received data could reflect the biosynthesized Fe0/Fe3O4 NPs. Recently, in our pub-
lished article we demonstrated the aqueous based phytochemicals of Caralluma acutangula
using GC-MS to assimilate the metal reduction process and stabilization of metal nanoparti-
cles by biogenic synthesis [43]. Different number of aqueous based phytochemicals such as
benzoic acid (27.80%), glycerin (8.22%), D-arabinose-hexopyranoside, methyl 2,6-dideoxy-4-
O-(6-dexoy-3-O-methyl-β-D-allyopyranosyl)-3-O-methyl (11.77%), tridecanoic acid, 4,8,12-
trimethyl-,methyl ester (10.16%) were observed majorly. Nevertheless, previous published
reports show benzoic acid derivatives reduce and stabilize agents during the biosynthesis of
Fe0/Fe3O4 NPs [45–47].
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Figure 2. (a). UV-Vis absorbance spectra of (I) FeCl3 Solution, (II) Fe0/Fe3O4 NPs (III) only CA.
(b), Determination of the optical band gap of the synthesized Fe0/Fe3O4 NPs.

3.2. FTIR and TGA Analysis

FTIR analysis was investigated to identify surface functional group characteristics
of the biosynthesized sample. FTIR spectrum of the plant extract and biosynthesized
Fe0/Fe3O4 NPs before and after calcination was depicted in Figure 3a. FTIR spectrum of
plant extracts exhibits absorbance bands at 3435, 2947, 2365, 1606, 1412, and 1066 cm−1 as
shown in Figure 2a(III). The broad absorbance band located at 3435 cm−1 could belong to
the O-H stretching vibration of adsorbed water or surface functional groups of the organic
constituents of the extract. In contrast, the band located at 2365 cm−1 could be attributed
to C-O. Furthermore, the absorbance bands at 2947 and 1606 cm−1 could be assigned to
the C-H stretching of aromatic and aliphatic organic molecules, respectively. However, the
bands at 1412 and 1066 cm−1 could be attributed to the bending vibration of COO− and
N-H, respectively.
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Figure 3. (a) FTIR of the synthesized (I); Fe0/Fe3O4 NPs after calcination, (II) Fe0/Fe3O4 NPs before
the calcination and (III) shows the CA aqueous extract, (b) Thermogravimetric Analysis (TGA) of
Fe0/Fe3O4 NPs.

Comparing the absorbance bands of the synthesized sample before calcination with the
mother liquor of the plant extract as shown in Figure 2a (II). New absorbance bands were
observed at 592 and 456 cm−1, which could be attributed to Fe-O vibrations formed due
to the interaction between added Fe ions and extract functional groups [48]. Furthermore,
the FTIR spectrum also indicates a marked shift in the band located at 1412 cm−1, which
shifted to 1375 cm−1, indicating that the carboxyl functional groups (COO−) could be going
through interaction with Fe ions led to the formation of new species.
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On the other hand, the FTIR spectrum of the Fe0/Fe3O4 NPs after calcination indicates
the appearance of a new band at 630 cm−1 that could be assigned to the existence of iron
oxide nanoparticles in the magnetite phase. The data also indicate the diminishes of the
bands located at 1375 and 1066 cm−1 after calcination, which could be attributed to the
decomposition of C=O and N-H groups upon heating.

The data collected for uncalcined Fe0/Fe3O4 NPs TGA is shown in Figure 3b. The
obtained curve shows three different stages depending on the rise of temperature [29–31].
The first stage represents 8.91% wt. loss upon heating up to 122 ◦C, which could be assigned
to the loss of physically adsorbed water molecules. The second stage exhibits 20.44% wt.
loss upon increasing the temperature to reach 290 ◦C, which could be attributed to the
decomposition of organic species that exist in the synthesized sample. Further increase of
temperature demonstrates the third stage that shows 4.23% wt. loss which could be due
to the decomposition of more stable organic species and relative temperature functional
groups moieties attached to the surface of the synthesized material.

Furthermore, the overall wt. loss (33.58%) during the TGA analysis which extended to
900 ◦C indicates that the remaining amount of Fe0/Fe3O4 NPs equals to 66.42, which means
that the total carbon content is 24.67% if we exclude the% of adsorbed water molecules. The
obtained data was found in agreement with the data obtained by other researchers [31,49].

3.3. XRD Analysis

X-ray diffraction patterns of the synthesized Fe0/Fe3O4 NPs after calcination are
illustrated in Figure 4. The obtained diffraction lines located at (311), (110), (113), (024),
(442), (511), (620), (440), (300), (620), (533), (622) and (444) are in good agreement with
tetragonal structure (JCPDS file no. 25-1402) of magnetite (Fe3O4). Some magnetite could
contain maghemite species because standard reflections of such kinds of species are indis-
tinguishable. Furthermore, the diffraction lines located at (012), (104), (011), (400), and (211)
could be assigned to the formed hematite rhombohedral (α-Fe2O3) structure (JCPDS file no.
24-0072) [50]. Moreover, one diffraction line appears at 2θ = 45◦, which is in agreement with
iron zero that could be formed upon the reduction of iron ions in the presence of elemental
carbon as a source of the electron [51].
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3.4. TEM and Particles Size Distribution

HRTEM image and electron diffraction patterns of the synthesized sample are pre-
sented in Figure 5a. The obtained image indicates the formation of Fe0/Fe3O4 NPs with a
core/shell structure. The obtained image also shows different shapes of Fe0/Fe3O4 NPs,
which could reflect that the NPs have a variety of polycrystalline orientations, which agrees
with XRD results. In addition, an analysis of particle size distribution was collected using a
diameter of 9.6 nm, which agrees with the data obtained from SBET.
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sized Fe0/Fe3O4 NPs.

3.5. SEM and EDX Analysis

EDX spectrum represented in Figure 6a and SEM image in Figure 6b indicates the
appearance of C, O, and Fe species and a tiny amount of Ca as well as surface analysis of
biosynthesized Fe0/Fe3O4 NPs. The obtained data indicate the presence of carbon content
with 14.32 weight %, indicating that the calcined samples retain some organic species even
after calcination at 400 ◦C. The data also show that the depicted weight % of O and Fe
was 10.41 and 74.27% for O and Fe, respectively. The lower weight % of O compared to Fe
content might reflect that some iron exists in zero-valent (Fe0), which supports the data
obtained from XRD. The data also reflect that the detected calculated ratio of Fe/O atomic
% of O (38.69%) is not high enough, which could support the formation of magnetite. Upon
analysis of the % of both O and Fe, we can conclude that the formed Fe0/Fe3O4 NPs species
is a mixture of magnetite and maghemite with Fe/O ratio equal to 1:2.

3.6. XPS Analysis

The surface chemical composition of the synthesized sample was investigated using
XPS, and the oxidation state of existing iron species was determined. Figure 7a shows the
characteristic XPS survey spectrum of the calcined Fe0/Fe3O4 NPs. Signals from Fe, O, and
Na were detected. The oxygen signals can be attributed to existing oxide species and the
magnetic shell. The deconvolution analysis of the Fe2p in the (700–740 eV) range reveals
that the synthesized sample contains Fe atoms in different oxidation states (Figure 7b). As
illustrated in Figure 7b, high-resolution XPS spectra of Fe2p showed two shake-up satellites
and two spin-orbit doublets. The peaks at 711/725.3 eV and 713.8/728.5 eV are assigned
to Fe2+ and Fe3+ species with Fe2+/Fe3+ ratio of 1.19. Furthermore, the obtained data also
indicate that the amount of Fe2+ in the synthesized sample was 54.27%, whereas Fe3+ was
45.73%. Furthermore, the O1s scan illustrated in Figure 7c indicates two signals at 530 and
532 eV. The first signal at 530 is assigned to magnetite species Fe3O4, whereas the second
signal is located at 532 eV assigned to C=O species [51]. On combining all XPS results, it
can be observed that the magnetite species was identified from O1s and Fe2P spectra. The
characteristic peak of zerovalent Fe should be at 706.9 and 719.8 eV [52]. In Fe0/Fe3O4 NPs
XPS spectra as shown in Figure 7b we observed characteristic peak at 719.9 eV which is
evidence for the presence of metallic iron (Fe0) while peak at 706.8 eV is missing. It may refer
the presence Fe0 is reside blow the iron oxide surface. Fe2p3/2 and Fe2p1/2 were modeled,
and magnetite was the sole iron oxide phase because it is positively identified with XRD.
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Figure 6. (a), EDX elemental analysis, (b) SEM images of the biosynthesized Fe0/Fe3O4 NPs.
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Figure 7. (a), Survey XPS spectrum of biosynthesized Fe0/Fe3O4 NPs with the assigned peaks of the
corresponding elements. (b), Narrow scan high resolution XPS spectra of synthesized Fe0/Fe3O4

NPs. (c), O1s Narrow scan high resolution XPS spectra of synthesized Fe0/Fe3O4 NPs.
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3.7. Surface Area Measurement of Fe0/Fe3O4 NPs

Investigation of Surface characteristics and pore volume using N2 adsorption-desorption
isotherm was collected in Table 1, and illustrated in Figure 8a. it’s clear from Table 1 that
the biosynthesized Fe0/Fe3O4 NPs sample possesses a relatively higher SBET (89.1 m2·g−1).
On the other hand, the data represented graphically in Figure 8a indicate that the biosyn-
thesized Fe0/Fe3O4 NPs exhibit type IV adsorption isotherm, which is obtained with
mesoporous (2 nm < pore diameter < 50 nm) solids, with almost vertical and parallel two
branches of Hysteresis loop over a wide range of gas uptake which associated with the
porous materials that might be consists of agglomerates or uniform spherical structure in a
regular arrangement. Furthermore, particles surface characteristics are depicted in Table 1.
That obtained from Figure 8b indicates that the mean pore size is located at 10.75 nm, which
prove that the synthesized sample possesses a mesoporous structure.
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Figure 8. (a), Nitrogen adsorption-desorption isotherm of the biosynthesized Fe0/Fe3O4 NPs. (b), Par-
ticle pore size of the biosynthesized Fe0/Fe3O4 NPs.

Table 1. Surface characteristics of Fe0/Fe3O4 NPs.

Sample SBET (m2·G−1) Vp (cm3·G−1) Pore Size (nm)

Fe3O4 89.1 0.2264 10.75

3.8. Catalytic Activity of Fe0/Fe3O4 NPs

The photocatalytic activity of the biosynthesized Fe0/Fe3O4 NPs was tested with
Methylene blue dye as an example of the most common organic pigments used in a wide
variety of applications [53–55]. Different experimental parameters were also investigated
in order to depict the most suitable conditions that would possess the highest catalytic
activity for the synthesized sample.

3.8.1. Photolysis of Methylene Blue (MB)

Under varying experimental conditions, MB did not exhibit any degradation capability
that indicates marked stability of MB under our working conditions [56]. Therefore, the
photodegradation of MB has been investigated in the absence and in the presence of H2O2.
The obtained data indicate that the presence of UV only has no degradation effect in the
absence of oxygen carrier materials. However, the application Fe0/Fe3O4 NPs with H2O2
indicates a marked degradation behavior for MB due to the formation of highly energetic
hydroxyl radicals that attack the organic MB molecules, leading to degradation, shown
from the blue color diminishing throughout the process (Figure 9).
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Figure 9. UV-Vis spectra of MB photolysis degradation using Fe0/Fe3O4 NPs in the presence of H2O2.

Figure 10a, depicts the photodegradation of 50 ppm MB in the presence of different
doses of oxygen carrier hydrogen peroxide. The data obtained indicate the dependence
of degradation rate on the amount of H2O2 added to the aqueous MB solution. It also
reflects that the time consumed during the degradation process was varied according to
the amount of H2O2, starting with 150 min for the lower doses of H2O2 (0.005 mmol) and
ending with 50 min with the highest amount of H2O2 (0.020 mmol). The rate of reaction
can be expressed as follows.

Rate = −dMB
dt

= k[H2 O2] (1)
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The results obtained from experimental data for the effect of H2O2 doses on the
degradation of MB were found to fit with the Langmuir-Hinshelwood first-order kinetics
model as described in the following equation.

ln
Co

Ct
= kapp. ∗ t (2)

where Co and Ct is the initial and remaining concentration of MB, respectively. The plot of
ln Ct

Co
vs. time gives a straight-line relation with a slope equal to the first-order degradation

rate constant kapp.

(
min−1

)
, as depicted in Figure 10b.
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The data illustrated in Table 2 indicate that the increased amount of H2O2 strongly
affects the values of the apparent rate constant, which rise to a maximum upon increasing
the amount of H2O2 used. This increase could be attributed to the rise in the number of
hydroxyl radicals formed after adding H2O2 and exposure to UV irradiation. The linear
regression coefficient values (R2) for MB photolysis were within the range of 0.996 to 0.998.
the highest value of the apparent reaction rate constant observed (Kapp) of 0.13343 min−1

corresponding to 0.020 mmol H2O2.

Table 2. Calculated rate constant of MB photolysis and photocatalytic degradation.

H2O2 (mmol/L) Kapp R2 Fe Oxide NPs (g/L) Kapp R2

0.005 0.03361 0.996 0.05 0.058 0.999

0.010 0.04514 0.998 0.10 0.137 0.999

0.015 0.06690 0.998 0.15 0.243 0.998

0.020 0.13343 0.999 0.20 0.704 0.998

3.8.2. Effect of Fe0/Fe3O4 NPs Catalyst on the Photocatalytic Degradation of MB

The investigated behavior of Fe0/Fe3O4 NPs in combination with H2O2 on the
degradation of MB is illustrated in Figure 11a,b. The data obtained indicate that adding
Fe0/Fe3O4 NPs to the aqueous MB solution dramatically enhances the degradation rate,
Figure 11a. This enhanced effect of Fe0/Fe3O4 NPs could be attributed to the formation
of highly energetic hydroxyl radicals produced from the decomposition of H2O2 via the
catalyst particles as well as the UV irradiation. Furthermore, the reaction kinetics was
represented graphically in Figure 11b, and the calculated rate constant was tabulated in
Table 2. The results indicate that the highest reaction rate constant (0.704 min−1) was
observed with 0.2 g/L Fe0/Fe3O4 NPs.
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3.8.3. Thermodynamic Study of MB Degradation with Fe0/Fe3O4 NPs

Thermodynamic parameters are considered as one of the most important conditions that
could control the process of degradation due to the motion of the increased molecules inside
the aqueous solution upon raising the temperature giving rise to the increase in degradation
rate. The effect of varying temperatures, i.e., 288, 293, 298, and 303 K on the photodegradation
of MB using Fe0/Fe3O4 NPs and H2O2 was evaluated and illustrated in Figure 12a,b. The data
obtained indicate that the increase in temperature leads to an enhancing degradation effect on
the process of MB degradation, which might reflect the endothermic nature of the degradation
of MB under experimental working conditions [53,56,57]. The effect of temperature was
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examined at different temperatures lying around the ambient temperature (15–30 ◦C) to avoid
energy consumption in the heating process if required in large-scale treatment. The obtained
data illustrated in Figure 12a reflect that complete degradation of MB was achieved at different
time intervals depending on the temperature applied. For instance, at 288 K the degradation
process ended with a complete blue color disappearance after 70 min, whereas at 293 K it
consumed 35 min. Furthermore, as the temperature rose when it reached 298 and 303, the
degradation ended after 25 and 10 min for 298 and 303 K, respectively. This obvious effect of
temperature could be assigned to the formation of OH radicals which became highly energetic
due to the absorbance of thermal energy following the increase in temperature.

Crystals 2022, 12, x FOR PEER REVIEW 13 of 17 
 

 

Furthermore, as the temperature rose when it reached 298 and 303, the degradation ended 

after 25 and 10 min for 298 and 303 K, respectively. This obvious effect of temperature 

could be assigned to the formation of OH radicals which became highly energetic due to 

the absorbance of thermal energy following the increase in temperature. 

 
Figure 12. Different temperature effect on MB degradation using Fe0/Fe3O4 NPs and H2O2 (a) Pho-

tolysis of MB vs. Time (min) graph, (b) Photolysis of MB kinetics vs. Time graph. 

The investigation of temperature effect kinetics is demonstrated in Figure 12b. The 

illustrated data indicate a straight-line relation with different slopes depending on the 

temperature used. The degradation rate was found to be directly proportional to the tem-

perature, and the highest degradation rate was observed at 303 K, which consumed less 

than 10 min. for complete degradation of 50 mg/ L MB in the presence of 0.05 g Nano iron 

catalyst. The increasing trend of the obtained rate constant depicted in Table 3 could be 

assigned to the fact that upon increasing temperature, the collision frequency of the re-

acted molecules increases with the rise of temperature [56,58,59]. This increase in collision 

frequency led to an enhancement in the rate of MB degradation. 

Table 3. MB photodegradation calculated thermodynamic parameters. 

T(K) 
T−1 

(10−3) 

Kapp 
Ln(K) 

Ea. Δ ΔS ΔG 

(min−1) (KJ. mol−1) (KJ. mol−1) (J. K−1. mol−1) (KJ. K−1.mol−1) 

288 3.47 0.069 −2.67 

87.78 308.4 −323 

92.9864 

293 3.41 0.120 −2.12 93.9656 

298 3.36 0.200 −1.61 95.8964 

303 3.30 0.440 −0.82 97.5054 

3.8.4. Thermodynamic Parameters Calculations 

Thermodynamic parameters were calculated based on Arrhenius relation: 

𝑘 = 𝐴𝑒
−𝐸𝑎
𝑅𝑇                                            (3) 

where k; is the rate constant, A is the frequency constant, Ea. is the activation energy, R is 

the gas constant (8.314 j. K−1. mol−1) and T is the temperature in K. 

The plot of (lnk v/s 1/T ) in the linear transformation of the above equation (eq. 3) and 

(1/T), as illustrated in Figure 13a, gives a straight-line relation with a slope equal (−Ea/R) 

from which the value of the energy of activation can be easily calculated: 

𝑙𝑛𝑘 = 𝑙𝑛𝐴 −
𝐸𝑎

𝑅𝑇
       (4) 

Figure 12. Different temperature effect on MB degradation using Fe0/Fe3O4 NPs and H2O2 (a) Pho-
tolysis of MB vs. Time (min) graph, (b) Photolysis of MB kinetics vs. Time graph.

The investigation of temperature effect kinetics is demonstrated in Figure 12b. The
illustrated data indicate a straight-line relation with different slopes depending on the
temperature used. The degradation rate was found to be directly proportional to the
temperature, and the highest degradation rate was observed at 303 K, which consumed
less than 10 min. for complete degradation of 50 mg/L MB in the presence of 0.05 g Nano
iron catalyst. The increasing trend of the obtained rate constant depicted in Table 3 could
be assigned to the fact that upon increasing temperature, the collision frequency of the
reacted molecules increases with the rise of temperature [56,58,59]. This increase in collision
frequency led to an enhancement in the rate of MB degradation.

Table 3. MB photodegradation calculated thermodynamic parameters.

T(K) T−1 (10−3)
Kapp Ln(K)

Ea. ∆H ∆S ∆G

(min−1) (KJ·mol−1) (KJ·mol−1) (J·K−1·mol−1) (KJ. K−1.mol−1)

288 3.47 0.069 −2.67

87.78 308.4 −323

92.9864

293 3.41 0.120 −2.12 93.9656

298 3.36 0.200 −1.61 95.8964

303 3.30 0.440 −0.82 97.5054

3.8.4. Thermodynamic Parameters Calculations

Thermodynamic parameters were calculated based on Arrhenius relation:

k = Ae
−Ea
RT (3)

where k; is the rate constant, A is the frequency constant, Ea. is the activation energy, R is
the gas constant (8.314 J·K−1·mol−1) and T is the temperature in K.
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The plot of (lnk v/s 1/T ) in the linear transformation of the above equation (Equation (3))
and (1/T), as illustrated in Figure 13a, gives a straight-line relation with a slope equal
(−Ea/R) from which the value of the energy of activation can be easily calculated:

lnk = lnA − Ea

RT
(4)
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tion of ∆H and ∆S for the degradation of MB using Eyring Polanyi equation.

Furthermore, the calculation of other thermodynamic parameters such as ∆H and ∆S
can be carried out using the linear transformation of the Eyring Polanyi equation:

ln
kapp

T
=

KB
h

+
∆S
R

− ∆H
RT

(5)

where (KB) is the Boltzmann constant (1.380 × 10−23 J·K−1), h is the Plank’s constant
(6.626 × 10−23 J·s−1), ∆H is the change in standard enthalpy, and ∆S is the change in
standard entropy.

The plot of ln kapp
T vs 1

T (Figure 10) gives a straight-line relation with a slope equal to
∆H
R and intercept equal to KB

h + ∆S
R . From the value of slope and intercept, ∆H and ∆S can

be calculated as shown in Figure 13b.
In our study, the calculated ∆H value is 308.4 KJ·mol−1 and ∆S are −323 KJ·K−1·mol−1,

respectively. The negative value obtained for the entropy change indicates that the reaction
between MB molecules and the oxidizing species generated on the surface of Fe0/Fe3O4
NPs due to exposure to UV irradiation is nonspontaneous. However, the positive value of



Crystals 2022, 12, 1510 14 of 16

∆H accompanied by the increase of reaction rate constant following the rise of temperature
might confirm the endothermic nature of MB photodegradation using our biosynthesized
Fe0/Fe3O4 NPs.

Moreover, the values of both ∆H and ∆S can be used to calculate the value of free
energy by using the following equation:

∆G = ∆H − T∆S (6)

The obtained values obtained for ∆G are depicted in Table 3. The higher positive
value of ∆G obtained upon elevating the temperatures indicates the non-spontaneity of the
photodegradation of MB dye.

4. Conclusions

This work first refers to the successful biogenic synthesis of Fe0/Fe3O4 NPs using
Caralluma acutangulla (CA) leaves aqueous extract. Biogenic successfully synthesized
Fe0/Fe3O4 NPs was confirmed by various spectroscopic techniques such as UV-Vis, FTIR,
TEM, SEM, EDX, XPS, and TGA. The effective surface area of Fe0/Fe3O4 NPs was calculated
at 89 m2·g−1, pore size was calculated as 10.75 nm using the Brunauer, Emmett, and Teller
(BET) process. The obtained data indicate the formation of zero-valent metallic Fe NPs. The
upper surface of zero-valent Fe NPs forms a magnetite phase with semiconductor properties
obtained as 1.94 band gap energy. Particles size distribution was observed from 1 to 18 nm
and diameter average size was calculated as 9.5 nm. The synthesized Fe0/Fe3O4 NPs were
applied in the photodegradation of MB dye under different experimental conditions using
H2O2. Biogenic synthesized Fe0/Fe3O4 NPs possess high degradation efficiency with a
nonspontaneous endothermic nature with ∆G = +95.1 KJ·K−1·mol−1. Biogenic synthesized
Fe0/Fe3O4 NPs using CA successfully may apply for successive removal of organic waste
from polluted water. The obtained data also indicate that our method can be applied for
the successful synthesis of Fe0/Fe3O4 NPs which can be used in the remediation of organic
pollutants through the photodegradation techniques.
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