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Abstract: In this work investigated the possibility of applying a superficial treatment to ultra-fine
calcium carbonate aiming to improve its interaction with the polymer chains of natural rubber so it
does not act just as a filler. Commercial processes commonly use 40 phr of Silica as reinforcement
filler. Here, we have evaluated the partial replacement of Silica by two types of calcium carbonate
into hybrid natural rubber composites, untreated ultra-fine calcium carbonate and with ultra-fine
calcium carbonate treated with 2% Chartwell C-515.71HR®. We added calcium carbonate fillers to
the composite mixtures (as replacements for commercial silica treated with silane) and studied their
influence on the vulcanization process. According to our findings, between 25% and 75% of the silica
can be replaced with treated calcium carbonate, and up to 30 parts of CaCO3 can be combined with
100 parts of NR without compromising the properties of the polymer matrix (NR), which generates
economic advantages for this industry. Treated calcium carbonate was able to link the inorganic and
organic parts of the composite due to its bifunctionality; hence, it can be used as a filler to partially
replace silica in hybrid NR composites.

Keywords: NR-CaCO3 composites; vulcanization; crosslink density; mechanical properties;
coupling agent

1. Introduction

Natural rubber (cis-1,4-polyisoprene) is one of the most valuable renewable elastomers
due to its excellent physical-mechanical properties, such as high tensile strength, flexibility,
and elasticity. It is amazingly versatile in all its applications, tremendously varied, and
comes in the form of latex or coagulated and vulcanized. As a result, it is present in the
most diverse sectors, e.g., electronic devices with energy storage [1], strain sensors [2], and
gas barriers [3]. It is also present in the field of biomaterials, specifically in bone grafting [4],
tissue regeneration [5], Nanocomposite as Human-Tissue-Mimicking Materials [6], antibac-
terial applications [7], and biodegradable films [8]. Additionally, it can be found in the
field of engineering in modified asphalt [9], seismic applications [10], and modified cement
mortar [11]. In short, Natural Rubber (NR) has great technological potential.

Rubber composites with a high crosslinking density are essential to obtain new me-
chanical, thermal, and electrical properties in NR. These properties are not achieved by
using just curing agents but also fillers widely employed in industrial processes, such as
carbon black [12] and silica [13]. In the case of silica, new synthesis methods [14] even from
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organic residues such as waste bagasse bottom ash and rice rusk ash [15,16] or preparation
of composites with multiwalled carbon nanotubes (MWCNTs) [17] represent an important
way to improve its application.

Currently, new fillers are being tested to validate their strengthening potential and
find new properties. Among the fillers studied in the literature, we can highlight clay
(montmorillonite) [18], halloysite nanotubes [19], graphene nanocomposites [20], sisal
and palm oil [21], jute [22], coconut [23], shell powder [24], sugarcane bagasse ash [25],
foundry waste [26], and leather waste [27,28]. But why limit us to just one kind of filler?
Hybrid composites are combinations of two or more fillers that can provide the new
materials with their properties, increasing their interaction possibilities and diversifying
their results. Some examples of hybrid composites are pineapple leaf fibers and carbon
black [29], bamboo and silica [30], carnauba wax and carbon nanotubes [31], and nanosilica
and carbon nanotubes [32].

The problem is that many of these fillers are costly, and others still require expensive
and complex surface treatments. In addition, sometimes they need unfeasible processing.
For example, silica, which provides one of the greatest mechanical reinforcements among
white fillers, is highly expensive, hinders the processing of composites, and requires
complementary additives such as polyethylene glycol (PEG), which is widely used as a
dispersing agent [33].

Calcium carbonate (CaCO3) is widely used in research to develop NR composites.
Lei Jong et al. [34] investigated the synergistic effect between calcium carbonate and soy
protein nanoparticles in relation to the tensile properties and low rolling resistance of NR.
In another study, Phuhiangpa et al. [35] observed the physical and mechanical properties of
rubber composites with CaCO3 powder and demonstrated the possibility of adjusting the
mechanical properties of rubber [36]. The effect of the specific surface area of nanocarbonate
on the properties of rubber composites was more pronounced in pure natural rubber than
in rubber composites filled with calcium microcarbonate.

Sarawut Prasertsri et al. [37] developed hybrid NR composites reinforced with calcium
carbonate and carbon black, with calcium carbonate and silica used in different proportions.
They showed that the hybrid system of calcium carbonate and carbon black exhibited
greater reinforcement efficiency than that of calcium carbonate and silica. In another
study, El Mogy et al. [38] investigated the application of biological waste materials (such as
eggshells and fishbone) as new fillers in natural rubber composites compared to commercial
calcium carbonate. Said fillers presented higher tensile values, modulus at 100% and 300%
of elongation, hardness, and abrasion resistance.

Nuchnapa Tangboriboon et al. [39] produced calcium bicarbonate from raw eggshells
and applied it to natural rubber latex to make films. They reported good physical-
mechanical properties and low protein content due to the raw eggshell powder added to
the composites as biofiller.

The size of calcium carbonate particles can be reduced to improve the performance
of the composite and increase the interaction between the filler and the polymer matrix;
thus, these particles assume the role of a semi-reinforcement filler. However, the interaction
between calcium carbonate and natural rubber can also be improved by applying surface
treatments with coupling agents such as aluminate [40], zirconate [41], titanate [42], and
silane [43].

Chartwell C-515.71HR®, a new coupling agent produced by Chartwell International,
Inc., is an organic metal coupling agent with enhanced amino reactant functionality because
it is synthesized like a stable neutralized metal complex. It is used similarly to silane [44],
i.e., as adhesive and coating on metals, plastics, concrete, elastomers, wood, and ceramics.

In this study, we developed natural rubber composites with ultra-fine calcium carbon-
ate treated with 2% of Chartwell C-515.71HR® as a partial substitute for commercial silica
treated with silane and evaluated the influence of this coupling agent as a new option for
elastomer vulcanization processes.
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2. Experiments
2.1. Materials

This study used Brazilian clear crepe NR (poly-cis-1,4-isoprene) supplied by DLP
Indústria e Comércio de Borrachas e Artefatos Ltda, São Paulo, Brazil, with a Mooney
viscosity of 84.50 and 0.13% of volatile materials.

Chartwell C-515.71HR® is an organic metal coupling agent with improved amino
reagent functionality because it is synthesized like a stable neutralized metal complex.
It was supplied as a pale-yellow solution of propylene glycol (solvent) with 7.3–7.9% of
metallic content, a specific mass of 1.23 g cm−3, and a pH value of 7.8 in 1% of the solution.
Generally, it is used as an adhesive or coating on metals, plastics, concrete, elastomers,
wood, and ceramics, and it serves a function similar to that of silane [38]. There is no
further available information on Chartwell C-515.71HR® because it is currently under
patent protection.

Ultra-fine calcium carbonate (325 mesh) treated with 2% of Chartwell C-515.71HR®

and untreated calcium carbonate were supplied ready to use by Aodran do Brasil Comércio
de Produtos Químicos Ltda, São Paulo, Brazil.

We acquired amorphous precipitated silica produced by Rhodia Solvay Group (Zeosil®

1165 MP), with a chemical composition of 10SiO2. H2O and the appearance of microbeads,
due to their high dispersibility and large contact surface. This product is distributed by
CYA Rubber Distribuidora Ltd. (Porto Alegre, Brazil) as silane under the trade name Si69®

and the chemical name bis (triethoxysilylpropyl) tetrasulfide.
The reagents employed in the composite curing process were purchased commercially

and used without prior purification. Additionally, other materials with a high degree of
purity were purchased from different suppliers: sulfur from Intercuf Ind. and Com. Ltda,
(Campinas, Brazil)., mercaptobenzothiazole disulfide (MTBS) and tetramethylthiuram
monosulfide (TMTM) from LANXESS Elastomers do Brasil, stearic acid from Barlocher do
Brasil, zinc oxide from Brasoxido, TMQ (2,2,4-trimethyl-1,2-dihydroquinoline) antioxidant
from Bayer, and plasticizer oil from Ipiranga Química.

2.2. Preparation of the Composites

The composites were prepared in a Makintec 379M (São José do Rio Preto, Brazil) open
cylinder mixer with a friction ratio of 1:1.25 according to ASTM D3182/07 [45]. Due to the
difference of one-quarter between the rotation of the cylinders, the shear of the polymer
chains occurs and changes the molecular structure to low-viscosity plastic, facilitating
the incorporation of fillers and reagents and their reaction with rubber. The masses were
measured in phr (per hundred rubber).

The fillers were varied in increments of 10 phr from 40/00 to 00/40 (ultra-fine sil-
ica/calcium carbonate), thus reducing the portion of silica treated with silane and increasing
that of ultra-fine calcium carbonate treated with Chartwell C-515.71HR® as the coupling
agent or that of untreated ultra-fine calcium carbonate. Also, a control sample was pro-
duced with the same formulation but without fillers, only pure gum (which means 00/00).
Table 1 details the standard vulcanization formulation [28], and Table 2 shows the densities
of the composites produced in this study.

First, the NR was plasticized in an open two-roll mixer (Makintec 379M) at approx-
imately 65 ◦C. After plasticizing the rubber, stearic acid and zinc oxide were added to
activate the rubber along with the antioxidant and the plasticizing oil. The fillers were
incorporated at the end. In the case of silica, at the time of incorporation, the silane coupling
agent (Si69®) was added in a proportion of 5% of the mass of silica used. At the end of
the complete homogenization, the samples remained at rest for 24 h, and those with silica
rested in an oven at 60 ◦C (140 ◦F) to promote silanization.

Accelerators and sulfur were added after the rubber activation period. Remarkably,
the crosslinking process was enhanced due to the formation of zinc stearate, a product of the
reaction between zinc oxide and stearic acid, which facilitates the action of the accelerators
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and the sulfur incorporated later. The function of zinc oxide is to cause the sulfur molecule
to break down so that it can promote cross-linking.

Table 1. Standard vulcanization formulation [28].

Materials and Reagents Quantity
(phr)

Density
(g cm−3) Component

1s
tS

ta
ge

Natural Rubber 100 0.95 Polymeric matrix
Stearic acid 2 0.85 Activator
Zinc oxide 4 5.57 Activator

TMQ antioxidant 1 1.20 Additive
Plasticizing oil 5 0.84 Additive

Silica (SiO2) + Si69® 40–00 2.10 Filler
Calcium carbonate (CaCO3) 00–40 2.71 Filler

2n
d

St
. MBTS a 2.5 1.53 Main accelerator

TMTM b 0.5 1.4 Secondary accelerator
Sulfur 2.5 2.07 Curing agent

a MBTS: mercaptobenzothiazole disulfide, b TMTM: tetramethyl thiuram monosulfide.

Table 2. Densities of the composites.

Composite (Si/CaCO3) Density
(g cm−3)

Gum 00/00 0.99
40/00 1.15
30/10 1.16
20/20 1.17
10/30 1.18
00/40 1.19

Figure 1 presents a summary of the processing of the NR composites studied here. It
includes the amount of silica and calcium carbonate in each composite in phr. For instance,
the first composite shows a proportion of 40/00, which means 40 phr of silica and 00 phr of
calcium carbonate.

Crystals 2022, 12, x FOR PEER REVIEW 5 of 22 
 

 

 

Figure 1. Natural rubber processing: from latex to vulcanization. 

2.3. Measurements of Curing Characteristics 

The rheometric curves were determined using a TEAM industrial rheometer 1300 W 

(São Bernardo do Campo, Brazil), with 1° of disk oscillation, and 150 °C isotherms, ac-

cording to ASTM D2084/01 [46]. After the ideal vulcanization parameters (optimal time 

and temperature) were established, the material was subjected to a hot-pressing process 

at 150 °C using a Mastermac Vulcan 400/20-1 Press (Itapira, Brazil) with a maximum pres-

sure of 210 kgf cm−2 aided by a 1010/1020 steel mold (150 mm × 150 mm × 2 mm), in ac-

cordance with ASTM D3182/0 [39]. 

Figure 2 presents the characteristic vulcanization curve of a sample heated to a test 

temperature of 150 °C. At that temperature, its viscosity decreases, which is typical of the 

rubber composition under testing here; this is the minimum torque point. After a while, 

the vulcanization starts, there is a rise of 1 or 2 dN m, and the scorch time (tS1) is recorded. 

From this point on, the torque continues to increase until it reaches a maximum value, 

which occurs due to the formation of crosslinks in the polymer matrix produced by the 

crosslinking agent and the fillers. Considering the 90% difference between the maximum 

and minimum torques, the optimum vulcanization time (t90) is defined. After reaching the 

maximum torque, reversion can occur, which means that this type of rubber cannot be 

over-vulcanized, or the maximum value reaches the plateaus. 

Figure 1. Natural rubber processing: from latex to vulcanization.



Crystals 2022, 12, 1552 5 of 20

2.3. Measurements of Curing Characteristics

The rheometric curves were determined using a TEAM industrial rheometer 1300 W
(São Bernardo do Campo, Brazil), with 1◦ of disk oscillation, and 150 ◦C isotherms, according
to ASTM D2084/01 [46]. After the ideal vulcanization parameters (optimal time and tempera-
ture) were established, the material was subjected to a hot-pressing process at 150 ◦C using a
Mastermac Vulcan 400/20-1 Press (Itapira, Brazil) with a maximum pressure of 210 kgf cm−2

aided by a 1010/1020 steel mold (150 mm × 150 mm × 2 mm), in accordance with ASTM
D3182/0 [39].

Figure 2 presents the characteristic vulcanization curve of a sample heated to a test
temperature of 150 ◦C. At that temperature, its viscosity decreases, which is typical of the
rubber composition under testing here; this is the minimum torque point. After a while,
the vulcanization starts, there is a rise of 1 or 2 dN m, and the scorch time (tS1) is recorded.
From this point on, the torque continues to increase until it reaches a maximum value,
which occurs due to the formation of crosslinks in the polymer matrix produced by the
crosslinking agent and the fillers. Considering the 90% difference between the maximum
and minimum torques, the optimum vulcanization time (t90) is defined. After reaching
the maximum torque, reversion can occur, which means that this type of rubber cannot be
over-vulcanized, or the maximum value reaches the plateaus.
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2.4. Swelling Measurements

The crosslink density of the composites was determined using the swelling technique,
in which samples with a mass of approximately 0.25 ± 0.05 g were weighed and immersed
in toluene for 5 days. Those samples were then removed, dried up to eliminate the excess
solvent, and weighed again, under environmental conditions. Then, the samples were
placed in the oven at a temperature of 60 ◦C for 24 h and weighed once more. These values
and those of dry sample mass, sample mass after swelling, and solvent mass trapped in the
sample were used to calculate the VB value. Therefore, the crosslink density was calculated
using Equation (1), which was developed by Flory and Rehner [47,48]:

η =
−(ln(1 − VB) + VB + χ

(
VB)

2)
(ρB)(V0)

(
V

1
3

B − VB
2

) (1)
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where:

η = crosslink density (mol cm−3);
χ = polymer-solvent interaction parameter (or Flory parameter);
ρB = rubber density;
V0 = molar volume of solvent.
VB = rubber volume fraction in the swollen form, determined from weight gain by swelling.

The ASTM D297 standard method [49] was also used to determine the density of the
composites taking into account the sample mass in air and a liquid of known density, using ethyl
alcohol with a density of 0.79 g cm−3. The measured masses were applied in Equation (2) [50].

ρ =
ρL ∗ mA

mA − mB
(2)

where:

P = sample density (g/cm−3);
ρL = ethanol density at analysis temperature (g/cm−3);
mA = wireless sample mass in the air (g);
mB = wireless sample mass in liquid (g).

2.5. Measurement of Tensile Properties

The tensile tests were carried out in an electromechanical INSTRON/EMiC 23-100
(São José dos Pinhais, Brazil) universal testing machine that features a microprocessed, a
strain speed of 500 mm min−1, a load cell of 1000 kN, and an internal strain transducer.
For this test, specimens based on ASTM D412 determinations [51], model C of samples
was used, evaluating the behavior of specimens in triplicates of results. The tests were
carried out in triplicate by the Department of Engineering and Architecture of the Centro
Universitário Antônio Eufrásio de Toledo in Presidente Prudente, Brazil.

2.6. Measurement of Hardness (Shore A)

The influence of the incorporation of fillers into the polymeric matrix on hardness was
determined according to the ASTM D2240 standard [52] using a Kiltler (São Paulo, Brazil)
durometer. This method consists of forcing a penetrator on the specimen, resulting in a
value that is lower the greater the depth reached.

2.7. Measurement of Abrasion-Resistance Properties

Abrasion loss was evaluated using a MaqTest (Franca, Brazil) rotating drum abrasion
tester in accordance with ASTM D5963/10 standard [53], with a rotation frequency of
40 rpm, a cylinder diameter of 150 mm, and a nominal distance of 40 m. The force applied
to the samples was 5.0 N at a tilt angle of 3◦. The abrasion resistance index was calculated
using Equation (3):

IR =
m1dt

mtd1
× 100 (%) (3)

where:

IR = abrasion resistance index in percentage;
m1 = standard rubber mass (mg);
mt = test composite mass (mg);
d1 = standard rubber density (mg cm−3);
dt = test composite density (mg cm−3).

The density values of the test composites used to calculate the abrasion resistance
index were the same as those presented in Table 2.
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2.8. Scanning Electron Microscopy (SEM)

This study employed a Carls Zeiss EVO LS15 (Jena, Germany) scanning electron
microscope using a secondary electron detector in high vacuum and constant temperature
with an applied voltage of 20 kV to produce magnifications between 1000 and 10,000 times.

The samples for the SEM were prepared by fracturing the composites in their glassy
state at liquid nitrogen temperature and fixed to the sample holder (stub) with double-faced
carbon conductive tape. Afterward, the samples were metalized with a thin layer of gold
using a Quorum Q150TE sputtering machine.

2.9. Fourier Transform Infrared (FTIR) Spectroscopy

The FTIR spectroscopy measurements were taken in a Bruker Vetor 22 (Billerica, MA,
USA) spectrometer (with a wavenumber in the 500–4000 cm−1 range, 4 cm−1 of spectral
resolution, and a DTGS detector using 32 scans) operating in Attenuated Total Reflectance
(ATR) mode analyzed over a zinc selenide (ZnSe) window.

3. Results and Discussion
3.1. Composites with Calcium Carbonate Only

First, we studied the influence of Chartwell® as a coupling agent and compared it with
silane, the coupling agent commonly used in the literature [54–59]. Figure 3 and Table 3
present the results obtained from the rheometric tests.
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Figure 3. Rheometric curve of the NR composites with 40 phr of calcium carbonate (CaCO3) measured
with 1◦ of disk oscillation and isotherms at 150 ◦C. Only the coupling agents were changed. Gum is
included as a reference point.

Table 3. Rheometric properties of the NR composites with 40 phr of calcium carbonate (CaCO3)
measured with 1◦ of disk oscillation and isotherms at 150 ◦C. Only the coupling agents were changed.
Gum is included as a reference point.

Composites
ts1 t90 ∆t ML MH ∆M

(s) (s) (s) (dN.m) (dN.m) (dN.m)

Gum 192 ± 0.6 252 ± 4.7 60 ± 5 2.4 ± 0.1 26 ± 1.7 24 ± 1.8
A-CaCO3 without treatment 178 ± 0.5 208 ± 0.5 30 ± 1 1.9 ± 0.1 31 ± 0.2 29 ± 0.3
B-CaCO3 with silane 169 ± 7.0 213 ± 4.0 44 ± 6 1.9 ± 0.1 30 ± 1.4 28 ± 1.5
C-CaCO3 with Chartwell® 148 ± 0.5 173 ± 1.5 25 ± 2 1.7 ± 0,1 35 ± 0.4 33 ± 0.5
D-CaCO3 with Chartwell® and silane 161 ± 1.0 209 ± 5.0 48 ± 6 1.9 ± 0,1 31 ± 1.2 29 ± 1.3

The minimum torque, ML, is an indirect measure of the compound’s viscosity. De-
creasing the ML with Chartwell is related to enhanced processability, since the rheometer
requires lower torque for oscillation. The enhancement in the processability by using
Chartwell® as a coupling agent can be associated to improve filler dispersion and interac-
tion between the filler and the polymer matrix [60].

The maximum torque, MH, is a characteristic of crosslinked rubber. Its value depends
on the viscosity of the vulcanized product. The difference between the maximum and
minimum torque, ∆M, is a parameter that defines the degree of chemical crosslinking,
which reaches the maximum value for CaCO3 with Chartwell® addition (33 dN.m).
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Figure 4 shows the tensile strength test results of composites treated with (A) untreated
40 phr calcium carbonate, (B) silane only, (C) Chartwell® only, and (D) both. The results
show an increase in tensile strength due to the synergy between the two coupling agents.
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Figure 4. Tensile strength test results of the NR composites with 40 phr of calcium carbonate (CaCO3)
under a deformation speed of 500 mm min−1 and a load cell of 1000 kN. Only the coupling agents
were changed.

In the (Shore A) hardness and abrasion tests (Figure 5), we observed no variation
in the hardness results, but the abrasion loss of Composite D (226 mm3/40 m) showed a
decrease. This behavior is due to the synergy between the two coupling agents (silane and
Chartwell®), which facilitated the dispersion and reduction of aggregates formed by the
filler during their incorporation into the polymer matrix.
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Figure 5. Shore A hardness of the NR composites with 40 phr of calcium carbonate (CaCO3) measured
with a Kiltler durometer and their loss of volume by abrasion measured with a rotating drum with
a diameter of 150 mm at a frequency of 40 rpm and a nominal distance of 40 m. Only the coupling
agents were changed.

Thus, the use of Chartwell® as a coupling agent for calcium carbonate is justified
because it proved to be a viable alternative to replace or be applied in combination with
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silane. Therefore, given the performance described above, calcium carbonate treated with
Chartwell® was also used in this study as a partial substitute for silica in natural rubber
composites, producing what we call here hybrid composites. The characteristics of these
hybrid composites are presented below.

3.2. Hybrid Composites
3.2.1. Measurement of Curing Characteristics

The rheometric curves of the hybrid composites are shown in Figure 6, and their rheo-
metric data are detailed in Table 4. The minimum and maximum torque of the composites in
Table 4 present a small variation as the ratio between the fillers in the composites changes.
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Figure 6. Rheometric curve (with 1◦ of disk oscillation and isotherms at 150 ◦C) of the hybrid com-
posites of NR with silica (SiO2 + Si69®) and calcium carbonate (CaCO3) treated with 2% Chartwell®.
Gum was included as a reference point.

Table 4. Rheometric properties (with 1◦ of disk oscillation and isotherms at 150 ◦C) of the hybrid com-
posites of NR with silica (SiO2 + Si69®) and calcium carbonate (CaCO3) treated with 2% Chartwell®.
Gum was included as a reference point.

Hybrid Composite ts1 t90 ∆t ML MH ∆M

(phr) (s) (s) (s) (dN m) (dN m) (dN m)

Gum 212 ± 1.0 262 ± 7.2 50 ± 8.2 2.6 ± 0.2 29 ± 1.9 27 ± 2.1
00/40 (Si/CC) 158 ± 2.3 203 ± 3.2 45 ± 5.5 2.5 ± 0.1 41 ± 1.1 38 ± 1.2
10/30 (Si/CC) 146 ± 2.8 184 ± 1.4 38 ± 4.2 3.0 ± 0.1 45 ± 1.4 42 ± 1.5
20/20 (Si/CC) 150 ± 2.1 189 ± 1.4 39 ± 3.5 2.6 ± 0.4 47 ± 0.6 45 ± 1.0
30/10 (Si/CC) 162 ± 4.7 211 ± 10.6 49 ± 15.3 3.0 ± 0.2 43 ± 3.1 40 ± 3.3
40/00 (Si/CC) 224 ± 7.7 306 ± 9.3 82 ± 17.0 3.4 ± 0.2 44 ± 4.4 41 ± 4.6

Regarding the beginning of the vulcanization process, a delay was observed in the
40/00 (Si/CC in phr) composite, which is attributed to the interaction between silica and
the accelerators. This behavior was also observed in its optimal healing time due to the
interaction of silanol groups present on the silica surface [61]. The composites with calcium
carbonate treated with Chartwell® exhibit a reduction in the interference of silica in the
entire crosslinking process of the polymer matrix.

Regarding the rheometric curve of the hybrid composites (Figure 6 and Table 4), the
lowest and t90 were achieved by Composites B and C, with 10/30 and 20/20 phr of silica
and calcium carbonate, respectively. Lower t90 is interesting due to the faster process
consequently reducing energy spend for composites preparation. However, if evaluating
the linear performance after reaching the maximum torque, mainly 20/20 composites show
a tendency to reversion of vulcanization observed by decreasing torque. For a conventional
system of vulcanization, at the end of the vulcanization process, the excess of sulfur can
cause thermal degradation of polysulfide linking, it has been observed as a reversion of
curing and reduces the torque. Moreover, composites maintained a good synergy between
the two coupling agents, outperforming the t90 of Composite E (40/00-Si/CC), which
needed an optimum vulcanization time longer than five minutes. This is longer than the
t90 of gum, which was around four and a half minutes.
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The same happened with ts1 because the composites with treated calcium carbonate
exhibited improved filler dispersion, thus decreasing their shear strength, which is reflected
in the lowest values around 40 s. However, Composite E (only silica) showed the longest
time. Moreover, even the decreasing scorching time (ts1) and the optimal curing time (t90)
can reduce the able time processability, it requires us to know the desired product and
properties to standard the optimum parameters. Here, the scorching time (ts1) and the
optimal curing time (t90) decrease can be associated with the cost and spend time processing
decreased, attributed to the earlier starting formation of crosslink by sulfur (ts1) and the
faster reach of optimum vulcanization (t90). Evaluating the hybrid composites, the 30/10
Si/CC shows a lower decrease in ts1 compared to other amounts of Calcium Carbonate.

3.2.2. Swelling Measurements

The swelling crosslink density of the composites was determined using the Flory–
Rehner equation [47,48]. As observed in Figure 7, Chartwell® is a coupling agent, leading
to an increase in the crosslink density, acting similarly to the silane used as a coupling
agent in a crosslinking process that employs silica as a filler [62]. The increase in the
number of crosslinks was attributed to the strong physical interaction related to interfacial
adhesion between the calcium carbonate particles and the polymeric chains of the matrix.
The increase in the crosslink density by Calcium carbonate treated with Chartwell® can be
also associated with the filler acting as a physical barrier, hindering solvent penetration,
as verified by de Maria et al. [63]. However, even though these procedures occur, it is in
agreement with the strong interfacial adhesion, since it did not dissociate by solvent.
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Figure 7. Crosslink density of the hybrid composites of NR with silica (SiO2 + Si69®) and carbonate
of calcium (CaCO3) treated with 2% Chartwell®. Said density was calculated using the Flory–Rehner
swelling equation (mass ≈ 0.25 ± 0.05 g, immersed in toluene for 5 days, then placed in the oven for
24 h at 60 ◦C). Gum was included as a reference point.

3.2.3. Measurement of Tensile Properties

Figure 8 shows the tensile stress results of the hybrid composites containing the
treated calcium carbonate (which presented the best response) compared to that of their
counterparts containing calcium carbonate that did not undergo surface treatment. The
highest tensile stress (16.8 MPa) was obtained by the 40/00 (Si/CC in phr) which is
compared to 16.7 MPa reached by the 30/10 composite in which the calcium carbonate had
been treated with Chartwell® changing 10 phr of Silica. By comparison, the composite with
the same proportions in which the calcium carbonate did not undergo surface treatment
reached 11.3 MPa.
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Figure 8. Tensile strength test results (at a deformation speed of 500 mm min−1 and a load cell of
1000 kN) of the hybrid composites of NR with silica (SiO2 + Si69®) and calcium carbonate (CaCO3)
treated with 2% Chartwell®. The first composite is gum, and the silica composite (SiO2 + Si69®) was
used as a reference point for comparison.

The rupture process occurs initially when the crosslinks are stressed and then broken.
Only at that time, the main polymer chain breaks down. The increase in the number
of crosslinks achieved using Chartwell® provides a higher breaking strength, which is
reinforced by the polysulfide crosslinks that can rearrange under the stress associated with
high tensile strength [64,65].

This 47.8% increase in tensile strength (from 11.3 to 16.7 MPa) is due to the action of the
Chartwell® coupling agent because it promoted the anchoring of calcium carbonate fillers
in the polymer matrix, restricting their mobility and increasing the tensile strength and
decreasing the elongation at break (Figure 9a). Even the modulus at 100% (Figure 9b) shows
similar behavior, restricting the mobility as an increased amount of Calcium Carbonate
indicates the interfacial adhesion between the filler and the polymeric matrix. The crosslink
density results in Figure 7 corroborating this statement.
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Figure 9. (a) Deformation at break (b) Modulus at 100% of hybrid composites.

3.2.4. Measurement of (Shore A) Hardness and Abrasion-Resistance Properties

Figure 10 shows the results obtained in the Shore A scale and the abrasion resistance
tests. The increase in the hardness of the composites, especially that of the 30/10 (Si/CC in
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phr) composite, i.e., 68 in the Shore A scale, was attributed to the presence of fillers that led
to an increase in stiffness and the large number of cross-links generated by the curing agent
and Chartwell® (as seen in Figure 7). Surface filler treatments contributed to restricting the
mobility of the polymer chains, causing the composites to stiffen further, thus becoming
more rigid than gum [66,67].
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Figure 10. Shore A hardness of gum and the hybrid composites with silica (SiO2 + Si69®) and calcium
carbonate (CaCO3) treated with 2% Chartwell® measured with a Kiltler durometer. The volume loss
by abrasion was measured using a rotating drum, 150 mm in diameter, at a frequency of 40 rpm and
a nominal distance of 40 m.

In the abrasion test, the 30/10 (Si/CC in phr) composite showed a low mass loss
(146 mm3/40 m). This behavior is attributed to the coupling agent (Chartwell®), which
facilitates the dispersion of calcium carbonate and silica [68], thus preventing the formation
of agglomerates and aggregates. The presence of these agglomerates and aggregates
generates stress points on the composite surface, facilitating mass loss due to abrasion [69].
The composite 40/00 (Si/CC) reached the higher abrasion resistance (122 mm3/40 m),
which was not significantly changed for 30/10 composites (146 mm3/40 m).

3.2.5. Scanning Electron Microscopy (SEM)

Figure 11 shows the SEM micrographs of the torn region on the specimens after
cryogenics. It can be observed that the calcium carbonate and silica particles have a circular
shape. The EDS spectrum proved that these particles are calcium carbonate (micrograph
b) and silica (micrograph f), which are present throughout the samples. In addition, some
voids are found on the surface of the hybrid vulcanizates with a calcium carbonate content
equal to or greater than 20 phr. However, the dispersion of these fillers in the rubber matrix
and the interfacial interaction between rubber and fillers were more effective in composites
with a hybrid filler ratio of 30/10 due to the presence of silanol groups on the silica surface
and Chartwell® on the surface of the calcium carbonate. This facilitated filler dispersion
prevents the formation of agglomerates and promotes mechanical reinforcement.

3.2.6. Fourier Transform Infrared (FTIR) Spectroscopy

FTIR spectroscopy was used to study the hybrid composites with different filler ratios
between silica and calcium carbonate. Figure 12 presents the main peaks found by FTIR
in gum, the fillers in pure form (not incorporated), and the hybrid composites. Table 5
summarizes these results and their assignments.
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Figure 11. SEM images enlarged 200 times (cryogenically broken samples fixed with double-faced
carbon conductive tape on one side and metalized with a thin layer of gold on the other side) of
(a) gum and the NR-silica hybrid composites (SiO2 + Si69®) with calcium carbonate (CaCO3) treated
with 2% Chartwell: (b) 00/40, (c) 10/30, (d) 20/20, (e) 30/10, and (f) 40/00. All the fractions are in
phr. (g) EDS of the 30/10 (Si/CC in phr) composite.



Crystals 2022, 12, 1552 14 of 20

Crystals 2022, 12, x FOR PEER REVIEW 15 of 22 
 

 

gum and the NR-silica hybrid composites (SiO2 + Si69® ) with calcium carbonate (CaCO3) treated 

with 2% Chartwell: (b) 00/40, (c) 10/30, (d) 20/20, (e) 30/10, and (f) 40/00. All the fractions are in phr. 

(g) EDS of the 30/10 (Si/CC in phr) composite. 

3.2.6. Fourier Transform Infrared (FTIR) Spectroscopy 

FTIR spectroscopy was used to study the hybrid composites with different filler ra-

tios between silica and calcium carbonate. Figure 12 presents the main peaks found by 

FTIR in gum, the fillers in pure form (not incorporated), and the hybrid composites.  

Table 5 summarizes these results and their assignments. 

 

Figure 12. FTIR spectroscopy in ATR mode (4 cm−1 spectral resolution, DTGS detector using 32 

scans, and analyzed over a zinc selenide, ZnSe, window) of the NR hybrid composites with silica 

(SiO2 + Si69® ) and calcium carbonate (CaCO3) treated with 2% Chartwell®  and the hybrid composites 

with silica (SiO2 + Si69® ) and untreated calcium carbonate (CaCO3). Gum and treated and untreated 

fillers in pure form were included as reference points.*untreated calcium carbonate. 

The peaks that correspond to the main bands of cis-1,4 polyisoprene (NR) appear at 

2960 cm−1, which is related to an asymmetric axial deformation of the CH bond in CH3. 

The asymmetric and symmetric stretching of the methyl group (-CH3) appears at 2918 and 

2850 cm−1 [70,71]. The first band results from the asymmetric elongation mode, where two 

C-H bonds of the methyl group are extended while the third one is contracting. The sec-

ond band is produced by symmetric stretching, in which all three C-H links extend and 

contract in phase [72]. 

The peak at 1540 cm−1, attributed to the elongation vibration of a conjugated double 

bond assisted by methyl C=C (symmetric axial deformation), is more intense in untreated 

hybrid composites, and it practically disappears in those treated with Chartwell® . This 

indicates that the filler surface treated with the coupling agents reacted along with the 

carbon-carbon, breaking the double bonds and binding to them [73,74]. 

In the 1450 and 1376 cm−1 regions, we find the asymmetric and symmetric angular 

deformation of the methyl group, that is, the angular deformation of CH2 and the sym-

metric deformation of the CH3 group. Finally, in the 834 cm−1 regions, the bending of 

Figure 12. FTIR spectroscopy in ATR mode (4 cm−1 spectral resolution, DTGS detector using
32 scans, and analyzed over a zinc selenide, ZnSe, window) of the NR hybrid composites with silica
(SiO2 + Si69®) and calcium carbonate (CaCO3) treated with 2% Chartwell® and the hybrid composites
with silica (SiO2 + Si69®) and untreated calcium carbonate (CaCO3). Gum and treated and untreated
fillers in pure form were included as reference points. * untreated calcium carbonate.

The peaks that correspond to the main bands of cis-1,4 polyisoprene (NR) appear at
2960 cm−1, which is related to an asymmetric axial deformation of the CH bond in CH3.
The asymmetric and symmetric stretching of the methyl group (-CH3) appears at 2918 and
2850 cm−1 [70,71]. The first band results from the asymmetric elongation mode, where two
C-H bonds of the methyl group are extended while the third one is contracting. The second
band is produced by symmetric stretching, in which all three C-H links extend and contract
in phase [72].

The peak at 1540 cm−1, attributed to the elongation vibration of a conjugated double
bond assisted by methyl C=C (symmetric axial deformation), is more intense in untreated
hybrid composites, and it practically disappears in those treated with Chartwell®. This
indicates that the filler surface treated with the coupling agents reacted along with the
carbon-carbon, breaking the double bonds and binding to them [73,74].

In the 1450 and 1376 cm−1 regions, we find the asymmetric and symmetric angular
deformation of the methyl group, that is, the angular deformation of CH2 and the symmetric
deformation of the CH3 group. Finally, in the 834 cm−1 regions, the bending of C=CH
(angular deformation) occurs in a trisubstituted olefin typical of the cis-1,4 chain [75,76], while
at 750 cm−1 it is related to -CH2 torsional vibration [77]. Thus, this set of bands and peaks
characterize the polymer matrix studied here, as clearly observed in the spectrum [56,78,79].
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Table 5. Main peaks of the natural rubber composite (gum) and the pure fillers (silica and calcium
carbonate) found by FTIR in ATR mode (4 cm−1 spectral resolution, DTGS detector using 32 scans,
and analyzed over a zinc selenide, ZnSe, window).

Wavenumber (cm–1) Assignment References

Natural Rubber (cis-1,4-polyisoprene)

2960 Asymmetric axial deformation—C-H [59–61]
2918 Asymmetric stretch—CH3 [59–61]
2850 Symmetric stretch—CH3 [59–61]
1540 Symmetric axial deformation—C = C [47,48]
1450 Asymmetric angular deformation—CH2 [62–66]
1376 Symmetric angular deformation—CH3 [62–66]
834 Link bending—C = CH [62–66]
750 Twist—CH2 [64]

Silica-Silicon dioxide-SiO2

1085 Asymmetric stretch—O-Si-O [76,77]
954 Symmetric stretch—O-Si-O [76,77]
798 Symmetric stretch—O-Si-O [76,77]

Calcium carbonate-Carbon dioxide-CaCO3

1406 Amorphous phase vibration—CO3 [70–73]
874 Asymmetric axial deformation—CO3 [70–73]
712 Symmetric axial deformation—CO3 [70–73]

Concerning calcium carbonate, two well-defined peaks were recorded in the regions
around 712 cm−1 and 874 cm−1; they are associated with the symmetric and asymmetric
axial deformation of CO3, respectively [80–82]. The band at 1406 cm−1 is attributed to a low
crystalline phase of calcite (CaCO3), and the band at 1796 cm−1 is attributed to vibrations of
carbonate ions common in crystalline polymorphism [83–85]. The other bands that show less
intensity compared to that of the carbonate ion [86–88] can be attributed to the capping agent.

Silica showed characteristic peaks around 1100 cm−1 that are attributed to the siloxane
functional group. Therefore, the band of strong intensity at 1085 cm−1 is attributed to the
asymmetric stretching vibration of the O-Si-O bond, while the bands at 954 and 798 cm−1

are attributed to the symmetric stretch vibration of the said bond [89,90].
Regarding the composites, the peaks at 2960 and 2850 cm−1 can be related to the

asymmetric and symmetric stretching of CH2, which validates the presence of silane on the
silica surface, especially in the 40/00 (Si/CC) composite [51].

Jarnthong et al. [91] highlight that there is an elongation of amide I and flexion in the
plane of amide II at 1630 cm−1 and 1541 cm−1, respectively, which can be attributed to
the inter- and intramolecular hydrogen bond between the protein molecules in the groups
present in natural rubber and the silane of silica.

Likewise, Jiao et al. [92], who studied a silane-grafted ethylene-octene copolymer,
reported that the peaks at 1167, 1105, 1082, and 958 cm−1 could be attributed to the Si-
OCH2CH3 deformation of the silane coupling agent.

However, gum also shows the same absorption ranges between 1400 and 700 cm−1;
thus, it is difficult to say that there were Si–O–C deformations in the composites when silane
was added. Consequently, after analyzing the results of this technique and the mechanical
tests, we can affirm that signaling occurred.

In the 1432 cm−1 region present in the composites, mainly those with only 40 phr of
CaCO3, there is a band associated with the asymmetric stretching of CO3 that may indicate
carbonation by calcium carbonate [93].

This infrared analysis revealed significant changes in the characteristic absorption
bands of the chemical structure of the composites compared to gum (polymer matrix),
which were caused by the incorporation of the fillers.

The vibration of the characteristic connections present in the composites demonstrates
the presence of fillers because the differences in their characteristic bands appear in intensities
that vary according to the quantity of each incorporated filler. The partial replacement of silica
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with calcium carbonate is evidenced in the transition of the composites from 40/00 to 00/40
(silica/calcium carbonate in phr) and reflected in the bands at 1406, 1085, and 872 cm−1.

In conclusion, the fillers dispersed in the polymer matrix possibly had a chemical
interaction with the latter. The Chartwell C-515.71HR® coupling agent has bifunctional
molecules because they were able to connect the calcium carbonate (organic) and the
polymeric matrix (inorganic), which produced peak changes due to variations in the
electronegativity of neighboring atoms (such as the hydrogen bond) and the energy level
of infrared light needed to cause this molecular vibration [68,94].

4. Conclusions

Physical-mechanical properties of hybrid natural rubber composites with Chartwell®

coupling agent-treated calcium carbonate and silica-reinforced were evaluated. Commonly
silica is the main reinforcement filler used in natural rubber products. In fact, the composites
40/00 (Si/CC) had reached higher tensile strength (16.8 MPa), hardness (68 on Shore
A scale), and superior abrasion resistance. However, the cost of silica is higher than
calcium carbonate, which is another commonly used rubber filler. Thus, hybrid composites
have been evaluated to obtain similar mechanical properties with low cost and a faster
vulcanization process when compared to rubber-based silica. Among the hybrid composites
investigated here, the 30/10 (Si/CC in phr) achieved significant results as tensile strength
reaching 16.7 MPa and hardness of 68 in Shore A scale comparable to composites with only
silica as well as keeping a lower abrasion mass loss (146 mm3/40 m). Therefore, Silica (SiO2
+ Si69®) in NR was successfully replaced with calcium carbonate (CaCO3) treated with
Chartwell C-515.71HR® while Chartwell C-515.71HR® successfully performed the function
of coupling agent for the calcium carbonate surface treated with 2% in hybrid composites by
keeping the original properties of the composites even decreasing the amount of silica. The
cost of calcium carbonate treatment is 56% that of silica treated with silane, thus generating
savings of approximately 11% in processing costs. Moreover, the t90 of composites 30/10
reached 211 s, smaller as compared to 40/00 (306 s), decreasing also ts1, which directly
imply on the cost and time released over the production process, which represents an
interesting financial alternative for the rubber industry.
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