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Abstract: Laser attracts more attention and it could cause material failure by its high energy. Carbon
fiber resin composites are widely used in aerospace vehicles experiencing dramatic damage to their
surface if exposed to high-energy laser irradiation. The available studies on irradiation behavior are
mainly focused on pulsed lasers and bulk composites, and investigations of thin laminar structures
under continuous-wave laser irradiation have rarely been reported. In this study, the damage behavior
of laminar carbon fiber epoxy resin composites (CFE composites) was studied. Using a threshold
model of resin pyrolysis, CFE composite is observed to be damaged at 0.18 s when irradiated at
100 W/cm2, and if the laser power density is increased to 200 W/cm2 for 2 s, no resin remains on the
fiber surface, which is now completely exposed. With an increase in power density and irradiation
time, the ablation rate always shows an upward trend: the ablation region expands and the separation
of layers in the interior appears, which can reach 0.01156 g/s when irradiated at 100 W/cm2 for 5 s.
The damage mechanism of CFE composite was also revealed by the temperature evolution data,
thermogravimetric analysis, and composition change.

Keywords: laser irradiation; laminar structure; CFE composite; damage mechanism

1. Introduction

The laser technique has unique advantages compared to traditional light sources [1].
Lasers are mainly divided into gas laser, liquid laser, fixed laser and semiconductor laser
groups, with different materials to generate energy at different laser bands. The interaction
between lasers and materials is of longstanding importance; with irradiation by a high-
energy laser, there can be complicated physical and chemical responses before material
failure as the last stage [2,3]. The types of damage can be divided into thermal, mechanical,
and radiation damage [4,5]. The energy accumulated in the material from laser irradiation
causes melting, vaporization, and splash [6,7]. In particular, thermal damage is the main
failure type [8–12]. Reflection, absorption, refraction, diffraction, photoelectric effect, gas
breakdown, and other effects are observed in materials irradiated by lasers [13–15]; the
interaction between laser light and material is complex and has been widely studied.

Carbon fiber epoxy resin composites (CFE composites) have been widely used in many
fields [16–20]. Because of their low density, low thermal expansion, high strength and
fatigue characteristics, their performance in many aspects is superior to that of traditional
metal materials [2,21–23]. The demand for carbon fiber resin composites is rapidly increas-
ing in aerospace and other areas [24–27]. For example, the Boeing 787 aircraft uses multiple
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carbon fiber composite materials, which reduces the mass by more than 50% in comparison
to the widely used alloy alternatives [28].

CFRP composites are widely fabricated by laser processing such as laser cutting, laser
drilling, laser surface treatment, and so on [29,30]. As laser is developing to higher power,
aerospace vehicles are facing its threat of serious damage. Meanwhile, CFRP composites
may be subjected to laser irradiation when they are used as the structural material of com-
ponents. To study the performance of thermal protection CFRP composites, Chen et al. [31]
observed thermal damage under a laser power of 205 W/cm2 with tangential airflow, and
the crack was created. The size of the material specimen, 70 × 70 × 3 mm3, was slightly
larger than that of specimens in other studies reported by Zhang et al. [32]. They further
studied the damage characteristics of CFRP using various tangential airflow velocities to
guide material laser cutting applications; their specimen size was φ40 mm × 3.6 mm and
the composite was on fire. To study the coupling law of laser and composite materials,
Chang et al. [33] quantitatively described the temperature field distribution and the ablation
area of composites with a thickness of 4 mm under laser irradiation using a finite element
analysis method. The finite element ablation model can effectively simulate the ablation of
CFRP composite laminates. Jiang et al. [34] used millisecond and nanosecond pulse lasers
to irradiate CFE composites and analyzed the different effects of the two pulse widths, and
the millisecond pulse laser caused more serious damage.

Previous reports have mainly focused on pulsed lasers and bulk materials with thick-
nesses above 1.6 mm. However, the energy of a continuous wave laser is distributed
uniformly in time and space, and the interaction between the laser and materials is com-
pletely different from that in the pulsed case. In addition, many practical materials such
as the medical ct board, aircraft parts and machine equipment parts have a thin laminar
structure to meet the requirement of low mass. Under continuous laser irradiation, the
heating of materials is rapid, reaching a rate of hundreds of degrees per second. The heating
rate and ultimate temperature play key roles in the damage or performance of the materials.
The thermal resistance of CFRP depends on the heat property of the resin, and oxidation
and decomposition begin at about 300 ◦C. The increase in the number of layers will lead to
the decrease in the back temperature, which has a slowing effect on the thermal damage.
However, there are few studies on laminar structures irradiated by continuous-wave lasers.

In this study, the irradiation behavior of the laminar CFE composites under different
continuous laser parameters was examined. The laminar material damage threshold
was determined using the forward scattered light curve. The damage mechanism of the
composite was analyzed in detail based on micro-morphologies, thermal analysis, and
spectral analysis. This study has great significance for ensuring the safe and stable service
of components made of laminar CFE composites and providing a guidance for the selection
between the required temperature and heating power on the laser processing and damage
research. In addition, it improves the understanding of laser interactions with matter.

2. Materials and Methods

CFE composites (M40/4211) were provided by the material department of the China
Academy of Space Technology. All materials are produced by itself. The resin type is
4211 resin, and the fiber is M40 carbon fiber with a density of 1.77 g/cm3. The laminates
were made by a hot-pressing technology, which consists of two layers, and the fiber cloth
is a two-way arrangement. The composites were cut into 40 mm × 40 mm pieces with a
thickness of 0.4 mm and a mass of 1 g. Specimens were cleaned with distilled water and
industrial alcohol to remove surface impurities before irradiation.

Laser irradiation has been a recognized characterization method for many years [8].
As shown in Figure 1, the laser irradiation experiment was performed using a continuous
wave laser with a beam spot of 10 mm × 10 mm. The laser wavelength was 1070 nm,
laser power density was 50–200 W/cm2, and irradiation time was 2–5 s. The back-surface
temperature was measured using a thermocouple, the temperature difference between
front surface and back surface can reach 500 ◦C during irradiation [12]. A scattering light
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receiver was used to record light reflected from the sample front surface; a data recording
system was employed.
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Figure 1. Schematic diagram of laser irradiation platform.

A scanning electron microscope (SEM) (BCPCA S4800: 15,000 V, 8600–9000 nA, work-
ing distance 15.6 mm) was used to observe the micro-morphologies of the composite,
helpful in studying the laser damage behavior. An electronic balance was used to weigh the
mass of the sample before and after irradiation, and the value is accurate to four decimal
places. To reduce the errors, the mass was measured immediately after irradiation. The
mass of the sample was weighed using an electronic balance before and after irradiation.
The ablation rate (V) can be expressed by Equation (1):

V = ∆m/t, (1)

where the ratio of the mass change is ∆m, and the irradiation time is t. The mass ablation
rate was used to analyze the evolution of the composite ablation rate under different
laser parameters.

The thermochemical reaction process of the composite was studied in an air atmo-
sphere (Netzsch STA449 F3 thermal analyzer). The heating rate was 10 ◦C/s, and the
temperature range was from room temperature to 900 ◦C. The chemical groups of the
composites before and after irradiation were determined using Fourier transform infrared
spectroscopy (FTIR, Nicolet 6700, Thermo fisher, Waltham, MA, USA).

3. Results and Discussion
3.1. Macro-Morphologies and Ablation Behavior of the Composite

The macro-ablation behavior of CFE composites under different laser power densities
and times is shown in Table 1. For an irradiation duration of 2 s, the ablation changes from
slight smoke to flame as the power density is increased; at 200 W/cm2, a bright flame is
produced, and the material burns violently. For a power density of 100 W/cm2, increasing
the irradiation time from 2 to 5 s causes the flame to expand to the back surface of the
composite, causing severe damage. For the same total energy, the increase in the power
density has a greater influence than the irradiation time. Thermal diffusion under high
power density is more rapid, causing higher temperature in a short time.

Table 1. Macro-ablation behavior of CFE composites under different irradiation conditions.

Power Density/(W·cm−2) Irradiation Time/s Ablation Behavior Ablation Morphology

50 2 Slight smoke
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Table 1. Cont.

Power Density/(W·cm−2) Irradiation Time/s Ablation Behavior Ablation Morphology

100 2 Flame
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Figure 2. Macro-morphologies of CFE composites irradiated with different power densities and
irradiation times: (a) irradiated at 50 W/cm2-2 s; (b) irradiated at 100 W/cm2-2 s; (c) irradiated at
200 W/cm2-2 s; (d) irradiated at 100 W/cm2-2 s; (e) irradiated at 100 W/cm2-3 s; (f) irradiated at
100 W/cm2-5 s.

The macro-morphologies of the composites for different irradiation times are shown
in Figure 2d–f. As irradiation time increases from 2 to 5 s, the width of the ablation region
gradually increases from 12 to 18 mm; from these, it is deduced that the width of the
ablation region increases by 2 mm/s. The ablation width increases with the increase in
irradiation power and time. In addition, the relation between the ablation width L and the
irradiation time t can be expressed by Equation (2). According to this relation, the width of
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the ablation region for different irradiation times from 2 to 5 s can be deduced. The heat
generated by laser irradiation rapidly diffuses in the horizontal direction, leading to an
increase in the width of the ablation region. The thermal conductivity of the composite
determines the width of the ablation region to some extent. The thermal conductivity of
the carbon fiber material varies greatly between the horizontal and vertical directions (i.e.,
along and perpendicular to the fibers); in the vertical fiber direction it is approximately
0.001–0.01 W/(m·K) at different temperatures; along the fiber direction (i.e., horizontal), it
is approximately 50 times that in the vertical direction [35]. Meanwhile, the lower thermal
conductivity in the vertical fiber direction blocks heat conduction, acting as a thermal
barrier and protecting the composite.

L = 2t + 8, 2 ≤ t ≤ 5. (2)

3.2. Mass Ablation Rate of the Composite

The mass ablation rates of CFE composites for an irradiation duration of 2 s and
different laser power densities, and for a power of 100 W/cm2 but different durations,
are shown in Figure 3. An increase in the power density or the irradiation time leads
to more serious ablation damage. This behavior is characterized by an increase in the
amount of material ablated and the degree of resin pyrolysis and product oxidation. It is
also a factor that an expanded ablation region on the sample leads straightforwardly to an
increase in the ablation rate. Notably, the ablation rate was stable in other studies [31,36].
However, the ablation rate in this study always shows an upward trend with an increase
in the power density and irradiation time. According to the above analysis, more severe
damage occurred in the laminar structure than in its bulk composite as a result of more
severe damage in the thickness direction.
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3.3. Micro-Morphologies of the Composites

The micro-morphologies of the composites are shown in Figure 4. When the laser
power density is low (50 W/cm2), the micromorphology is unaffected. This is in good
agreement with the macroscopic ablation behavior analysis. With an increase in the power
density to 100 W/cm2, the carbon fibers are partially exposed, and only approximately
one-third of the resin covering the surface remains. For a power density of 200 W/cm2,
the carbon fibers in the irradiation region are almost completely exposed; however, the
composite remains intact. There is no damage such as breaking of fibers caused by oxidation,
the carbon fibers are not damaged under irradiation of 200 W/cm2 for 2 s, for which the
damage threshold of carbon fiber was not reached. This is attributed to the fact that laser
irradiation causes pyrolysis of the resin, and the gases produced take away a large amount
of heat, reducing the temperature of the ablation region.
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The micro-morphology of the irradiation region after exposure to 100 W/cm2 for
5 s is shown in Figure 5. As shown in Figure 5a, delamination of the layers occurs in
the carbon fiber epoxy resin composite after laser irradiation. From the combination of
internal thermal stress and gas expansion, separation of layers occurs inside the composite.
Figure 5b shows that the separation occurs at a depth of 150 µm. The magnified image
(Figure 5c) shows obvious clumps of resin adhering to the surface of the carbon fiber.
However, these adhesions account for only a small amount of the resin, which indicates
that much of it was lost inside the composite. The enlarged view in Figure 5d further
indicates the presence of resin inside.
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3.4. Damage Mechanism Analysis of the Composite

The damage mechanism is associated with the complicated interaction between the
laser and material, which involves the physical response to light (including conventional
optical factors), thermal and chemical factors. Therefore, light scattered from the surface,
evolution of the temperature and thermogravimetric factors, and changes in composition
were studied. The absorbed laser energy causes the temperature to rise rapidly since the
composite cannot reflect or scatter all when it is irradiated by a high-energy laser. Figure 6a
shows the real-time in situ measurement curve of the back-surface temperature and the
front-surface scattered light of the composite irradiated by 100 W/cm2 for 5 s. The back-
surface temperature rises rapidly from 22 ◦C to 672 ◦C within 5 s, and the heating rate
gradually increases at an average rate of 130 ◦C/s. The back-surface temperature of 672 ◦C
suggests that the front-surface temperature may reach over 1100 ◦C [12], much higher than
672 ◦C, which causes serious damage to the composite. Because of heat conduction, the
temperature rises to 688 ◦C and then begins to drop, following a delay after irradiation.
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surface temperature of the composite and the front-surface scattered light curve; (b) the morphology
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The trace of front-surface scattered light begins to decrease at 0.18 s, then fluctuates
slightly within a limited range. The curve begins to increase gradually at approximately
0.6 s, suddenly drops at 2 s, and then remains stable until the end of irradiation at 5 s. The
composite was damaged at an irradiation power density of 100 W/cm2, and the pyrolysis
of the surface resin mainly leads to damage to CFE composites. The front-surface scattered
light has a sharp transformation at 0.18 s, which suggests that the surface morphology
changes at this time. It can be inferred that resin pyrolysis begins after exposure to this level
for a duration of 0.18 s, indicating that the composite has reached the damage threshold.
The sample area is much larger than the laser spot, so the heat can carry out enough
transverse thermal diffusion. However, if the sample area is smaller, the damage threshold
reduces, which is caused by the transverse heat dissipation reduction. The rise of the
scattered light at 0.6 s is caused by the combustion of the composite under irradiation
(Figure 6b). As shown in Figure 6c, a bright flame appears on the surface during irradiation
caused by the pyrolysis of the resin and the combustion of small-molecule products in
the air; the resin releases combustible gases such as CO and H2 [36]. Black smoke can be
produced when the composite is on fire, which has a weakening effect on the energy of
laser [37]. After irradiation ends, a flame still exists on the surface (Figure 6d), which is in
good agreement with the temperature analysis above. The flame gradually disappears and
the composite surface shows an ablation morphology (Figure 6e).

To explore the response of CFE composites under a rising temperature profile, ther-
mogravimetric analysis was conducted in air from 25 ◦C to 900 ◦C under a heating rate of
10 ◦C/s. The mass loss, heat absorption and release curves are shown in Figure 7. When
the temperature is lower than 300 ◦C, the water adsorbed by the composite evaporates,
resulting in a small weight loss. In the range 300–450 ◦C, the weight loss rate is 11.52%.
This stage corresponds to the weight loss from epoxy resin pyrolysis. This indicates that
when the temperature of the composite exceeds 300 ◦C, the composite is damaged, which
is similar to the study of Chen [38]. This stage is accompanied by exothermic combustion
of small-molecule pyrolysis products and hence there is no obvious endothermic peak for
pyrolysis in this range. In the range of 450–700 ◦C, the weight loss rate is 23.64%, and an
obvious heat release peak appears. The weight loss and heat release at this stage correspond
to the oxidation of the residual carbon that is produced by epoxy resin pyrolysis. When
the temperature is raised above 700 ◦C, the weight loss rate increases significantly. At
900 ◦C, the total weight loss of the composite is approximately 60%. This stage corresponds
to the oxidation of the carbon fibers. According to Figure 6, the resin pyrolysis happens
completely and the residual carbon begins to oxidize at this temperature, and the carbon
fiber also oxidizes due to the higher surface temperature. With an increase in temperature,
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the carbon fiber epoxy resin composite gradually undergoes the above reaction. Notably,
the thermogravimetric analysis heating rate is 10 ◦C/s, which is much lower than the real
heating rate under laser irradiation. The composite reaches the latter reaction directly.
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Figure 7. Thermal analysis of CFE composites under air atmosphere.

Since different molecular structures have different infrared absorption spectra (Figure 8),
FTIR is used to analyze the compositional changes following laser irradiation. Before
irradiation, the wide peak at 3440 cm−1 (the O-H bond stretching vibration) and the
2926 cm−1 peak (the C-H bond stretching vibration) are observed. The peaks at 1453 cm−1,
1112 cm−1, 819 cm−1, and 755 cm−1 correspond to C-H bond bending vibration. The
peaks at 1510 cm−1 and 1626 cm−1 are C=C stretching vibrations in the aromatic ring,
and the peaks at 1242 cm−1 and 1036 cm−1 correspond to C-O bond stretching vibrations
in the aromatic ether. All of the above are normal FTIR peaks in the composite. After
laser irradiation (100 W/cm2 for 5 s), resin pyrolysis produces small molecular products
and gases, the result of breaking C-H and C-O bonds. In addition, the C=C bond is more
resilient to the laser than C-H and C-O bonds. Hence, an increase in the number of C=C
bonds is beneficial for improving the laser resistance of the composite.
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Based on the above analysis, the response of the CFE composite under laser irradiation
is shown in Figure 9, which is divided into three stages. In the first step, the laser is applied
to the surface, leading to a high temperature. The surface resin pyrolysis generates carbon
residues and small-molecule products, which generate CO, H2, and other gases under the
action of oxygen. The lateral heat dissipation of the laser-induced local temperature rise
leads to a larger affected area. In the second step, the temperature rise diffuses downward
during the irradiation, increasing the pyrolysis of the internal resin, and the carbon residue
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is formed on the surface. Moreover, the carbon fiber is a dense body, and its oxidation
rate is lower than that of carbon residue in the same environment. The results of the
thermogravimetric analysis in the first stage correspond to the above steps. Finally, the CO,
H2, and other combustible gases are generated to produce a flame, and the composite is
eventually burned. The last stage corresponds to the second step of the thermogravimetric
analysis and the irradiation after 0.6 s in Figure 8. The cracking and oxidation of composites
are more serious, and the coupling effect of thermal and mechanical damage is caused
inside. In contrast to pulsed lasers, continuous irradiation affects the depth of the effects
more strongly.
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4. Conclusions

In the previous studies, there were few researches on laminar structures irradiated
by continuous-wave lasers. In this work, the laser irradiation behavior of CFE composites
with a laminar structure was studied under the 1070 nm wavelength laser, and especially
the damage threshold was determined. The width of the ablation region and the ablation
rate increase gradually with an increase in laser power density and irradiation duration,
and the ablation rate can reach 0.01156 g/s when irradiated at 100 W/cm2 for 5 s. The
composite was not damaged at 50 W/cm2-2 s. According to the front-surface scattered light
curve, the resin begins to pyrolyze after an irradiation duration of 0.18 s under 100 W/cm2

when it reaches the damage threshold. With the combined effect of internal thermal stress
and gas expansion, separation of layers occurs inside the composite, an effect different
from that in bulk composites. In addition, the damage mechanism is understood by the
temperature evolution data, thermogravimetric analysis, and composition change studies.
Therefore, this work has important reference for the safe and stable use of laminar CFE
composites, and improves the understanding of laser interaction with matter.
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