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Abstract: Fungal infections caused by multidrug-resistant strains are considered one of the leading
causes of morbidity and mortality worldwide. Moreover, antifungal medications used in conven-
tional antifungal treatment revealed poor therapeutic effectiveness and possible side effects such
as hepatotoxicity, nephrotoxicity, and myelotoxicity. Therefore, the current study was developed
to determine the antifungal effectiveness of green synthesized silver nanoparticles (AgNPs) and
their synergistic efficiency with antifungal drugs against multidrug-resistant candidal strains. The
AgNPs were greenly synthesized using the aqueous peel extract of Punica granatum. In addition,
AgNPs were characterized using ultraviolet-visible spectrophotometry (UV/Vis), transmission elec-
tron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared
spectroscopy (FT-IR), X-ray diffraction analysis (XRD), and zeta potential analysis. In this regard,
UV-vis analysis indicated SPR of AgNPs at 396 nm, while the particle size distribution revealed
that the average particle size was 18.567 ± 1.46 nm. The surface charge of AgNPs was found to
be −15.6 mV, indicating their stability in aqueous solutions. The biofabricated AgNPs indicated
antifungal activity against Candida tropicalis, C. albicans, and C. glabrata strains showing inhibitory
zone diameters of 23.78 ± 0.63, 21.38 ± 0.58, and 16.53 ± 0.21 mm, respectively while their minimum
inhibitory concentration (MIC) was found to be 2.5 µg/mL against C. tropicalis strain. AgNPs and
itraconazole revealed the highest synergistic activity against the multidrug-resistant strain, C. glabrata,
recording a synergism percentage of 74.32%. In conclusion, the biogenic AgNPs in combination with
itraconazole drug exhibited potential synergistic activity against different candidal strains indicating
their potential usage in the bioformulation of highly effective antifungal agents.

Keywords: resistance; green synthesis; silver nanoparticles; antifungal activity; synergism

1. Introduction

Fungal infections are a major public health concern that cause a high rate of morbidity
and mortality worldwide, accounting for approximately 1.7 million deaths annually [1,2].
In this regard, high doses of antifungal agents are required for the treatment of candidal
infections caused by multidrug-resistant candidal strains, which result in severe toxicity
and unfavorable side effects [3]. The main classes of antifungal agents are reported to be
polyenes, allylamines, flucytosine, azole, and echinocandins [4]. In this regard, antifungal
agents target cell wall components of fungal cells [5]. Azoles are usually used as the first line
in the treatment of fungal infections [6]. The mechanism of action of azole antifungal agents
is based on the inhibition of the lanosterol 14-alpha-demethylase (Erg11p) enzyme, which
is coded by the ERG11 gene and responsible for ergosterol biosynthesis [7]. Inhibition of
Erg11p enzyme biosynthesis results in disrupting cell membrane integrity and consequently
inhibiting fungal growth [8]. Azole antifungal resistance is mediated by the alteration of
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the ERG11 gene and mutations of the ergosterol biosynthesis pathway [9]. Moreover,
antifungal resistance also occurrs due to overexpression of the ERG11 gene, which results
in increasing ergosterol biosynthesis and disrupting the efficiency of antifungal drugs [10].
Furthermore, antifungal resistance is also promoted by the overexpression or upregulation
of multidrug transporters, enhancing drug efflux and inhibiting azole accumulation [11].
Candida glabrata is a multidrug-resistant fungal pathogen which is characterized by its high
resistance to fluconazole antifungal agent [12]. The high incidence of multidrug-resistant
candidal species of bloodstream infections represents a global concern due to the high
mortality rate associated with these infections [13]. Accordingly, the high emergence of
antifungal resistance necessitates the formulation of novel biomaterials to improve the
therapeutic outcomes [14].

Metallic nanoparticles were reported to be promising alternatives to conventional
antimicrobial agents that can defeat common microbial resistant mechanisms, including
the modification of the target site, increased drug efflux through overexpression of efflux
pumps, enzyme inactivation, and decreased cell membrane permeability [15]. Metal-
lic nanoparticles reveal various advantages in this context, including tiny particle size
(1–100 nm), minimal cytotoxicity, excellent chemical stability, and promising antimycotic
efficacy [16]. Silver nanoparticles are reported to have a high potential for inhibiting
mycotic growth and preventing microbial resistance [17]. Silver nanoparticles are easily
synthesized and have unique physical and chemical characteristics [18]. Reportedly, silver
nanomaterials exhibit promising antimicrobial effectiveness against fluconazole-resistant C.
tropicalis [19].

Different approaches have been achieved to fabricate silver nanoparticles, including
chemical, physical, and biological methods [20]. The chemical method of nanomaterial
synthesis yields high productivity; however, when employing a chemical approach to
formulate AgNPs, hazardous reducing and capping chemicals are required for synthesis,
causing the adsorption of toxic chemicals on nanoparticles, resulting in issues during
application [21]. For green biosynthesis of nanomaterials utilizing plant extracts, on the
other hand, less toxic stabilizing and reducing agents are used [22]. Furthermore, the
reaction mechanism for the synthesis of biogenic silver nanomaterials utilizing plant
extracts could be conducted in natural settings without the need for harsh or rigorous
reaction conditions [23]. Another advantage of plant extract–mediated green produced
nanomaterials is the decreased cytotoxicity of these green nanoparticles [24].

Antifungal resistance poses a significant clinical issue to clinicians who treat invasive
mycotic infections owing to the defined number of systemically applicable antimycotic
drugs [25]. In addition, current antifungal drugs may be limited by drug–drug interac-
tions, detrimental side effects, and high toxicities, which hinder their continued usage
for long term treatment [26]. Green synthesized nanoparticles, which were previously
reported to have various advantages such as tiny size, biocompatibility, large surface area
to volume ratio, and low toxicity, are used for circumventing the above-mentioned restric-
tions [27]. A previous report indicated the synergistic antifungal activity of chemically
synthesized AgNPs with either nystatin or chlorhexidine digluconate against C. glabrata
and C. albicans strains [28]. Another study indicated that the synergistic action of AgNPs
and fluconazole antifungal drugs could be a potential way to treat fluconazole-resistant
fungal infections [29]. Furthermore, poly(methacrylic acid)-AgNPs possessed synergistic
action with fluconazole antifungal drug against fluconazole-resistant C. albicans strains
through suppression of germ tube formation [30]. Recently, several reports reported the
high incidence of candidal resistance to conventional antifungal drugs [31–34], indicating
the poor therapeutic outcomes of these antifungal agents. As a result, new antifungal
formulations are needed to enhance the antifungal effectiveness of conventional antifungal
agents so that the synergistic efficiency of biogenic AgNPs with five common antifungal
agents such as clotrimazole, fluconazole, itraconazole, nystatin, and terbinafine can be
evaluated. Furthermore, few studies were performed regarding the synergistic efficiency
of the green synthesized AgNPs with the mentioned antifungal agents. Therefore, the
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objective of the present study is to detect the antimycotic efficiency of AgNPs greenly
synthesized using aqueous peel extract of P. granatum and to determine their synergistic
efficiency with commonly used antifungal agents to enhance the therapeutic outcomes of
these drugs.

2. Materials and Methods
2.1. Preparation of Pomegranate Extract

Punica granatum fruits were acquired in Riyadh, Saudi Arabia, at a local market.
The identification of plant material was confirmed by the herbarium of the Botany and
Microbiology Department, College of Science, King Saud University, and the plant materials
were deposited with voucher number (KSU_14702). The pomegranate peels were rinsed
twice with tap water before being scrubbed once more with distilled water. After drying,
the peels were pulverized into a homogeneous powder using a mechanical mortar. In total,
50 g of powdered peels were placed in 500 mL flasks with 200 mL of deionized water and
cooked for 30 min on a hot plate at 50 ◦C. The extracts were filtered using Whatman filter
paper grade 1 after being incubated at 25 ◦C for 24 h over a magnetic stirrer. The peel
extracts were kept in the refrigerator at 4 ◦C for further use [35].

2.2. Green Synthesis of Silver Nanoparticles

Silver nitrate (AgNO3) salt was supplied by Sigma-Aldrich, MO, USA. Green synthesis
of silver nanoparticles was achieved by adding 10 mL of the aqueous peel extract of P.
granatum to 90 mL of AgNO3 solution (1 mM). The reaction mixture was incubated in dark
conditions over a shaking incubator at 24 ◦C. The change of AgNO3 solution from colorless
to dark brown color primarily indicated AgNPs formation. The green biosynthesized
AgNPs were harvested by centrifuging the reduced reaction mixture for 10 min at 10,000
rpm. After discarding the supernatant, the harvested AgNPs were washed three times
using distilled H2O and finally dried at 80 ◦C in an oven. The dried AgNPs were used for
further analysis and characterization [36].

2.3. Characterization of the Biosynthesized AgNPs

The biosynthesized AgNPs were characterized for the detection of their physicochem-
ical properties. UV-Vis spectral analysis of biogenic AgNPs synthesized using aqueous
peel extract of P. granatum was conducted using a UV-Vis spectrophotometer (UV-1601,
Shimadzu, Kyoto, Japan) [37]. A transmission electron microscope (JEOL, JEM1011, Tokyo,
Japan) was used to detect the nanoparticles’ shape and their particle size distribution [38].
Sonication of AgNPs was performed for 5 min prior to analysis, and a drop of properly
diluted sample was placed onto a carbon-coated copper grid. Fourier transform infrared
(FTIR) spectral analysis was conducted to detect different functional groups in the aqueous
peel extract of P. granatum peels, acting as reducing and capping agents of AgNPs. The
elemental mapping of AgNPs was investigated using a Scanning Electron Microscope
(SEM) equipped with an Energy Dispersive X-ray (EDX) analyzer (JEOL, JSM-6380 LA,
Tokyo, Japan). X-ray powder diffraction (XRD) analysis of AgNPs was achieved using a
Shimadzu XRD model 6000 diffractometer (Japan) equipped with a graphite monochro-
mator to detect crystallographic characteristics of AgNPs [39]. Zeta potential analysis of
AgNPs was characterized using a Zeta sizer instrument (Malvern Instruments Ltd.; zs90,
Worcestershire, UK) to investigate the surface charge of the biogenic AgNPs based on
photon correlation spectroscopy.

2.4. Screening of Anticandidal Efficiency of Biogenic AgNPs

Three candidal strains namely, namely, C. albicans (ATCC 18804), C. tropicalis (ATCC
13803), and C. glabrata (ATCC 15545), were obtained from the American Type Culture
Collection. The anticandidal activity of biogenic AgNPs synthesized using aqueous peel
extract of P. granatum against the tested Candida strains was investigated using the stan-
dard procedure for disk diffusion testing no M44-A [40]. Firstly, the candidal suspension



Crystals 2022, 12, 816 4 of 18

was prepared by gathering the fungal growth of 24 h old candidal colonies using a sterile
loop and disseminating it into a sterile saline solution (0.85%). The turbidity of the fungal
suspension was adjusted using 0.5 McFarland standards which correspond to 106 CFU/mL.
The sterile Mueller Hinton agar (MHA) medium (Oxoid, Ltd., Hampshire, UK) supple-
mented with 0.5 µg/mL of methylene blue and 2% glucose was dispensed into sterile Petri
dishes, and then the plates were seeded with 0.2 mL of the prepared fungal suspension.
The dried AgNPs were disbanded in methanol solvent, and then 50 and 100 µg of the dis-
solved AgNPs were impregnated into sterile filter paper disks 8 mm in diameter. Positive
controls were filter paper disks loaded with terbinafine antifungal agent at a concentration
of 30 µg/disk, while filter paper disks impregnated with methanol solvent only were used
as negative controls. The AgNPs, positive and negative control disks, were placed over
the MHA plates, and the Petri dishes were then maintained in the refrigerator for 2 h at
4 ◦C to allow AgNPs diffusion. The plates were incubated at 35 ± 2 ◦C for 48 hr, and
the clear zones were measured with a Vernier caliper afterwards. Moreover, the aqueous
pomegranate peel extract (APPE) was investigated for the antifungal activity against the
tested strains to compare the antimicrobial efficiency with that of biogenic AgNPs. In this
regard, another group of filter paper disks (8 mm in diameter) were impregnated with
100 µg/disk of the aqueous pomegranate peel extract and placed over sterile MHA plates
previously seeded with the concerned candidal suspensions. Similarly, filter paper disks
loaded with sterile distilled water were used as negative controls, while another group
of filter paper disks loaded with terbinafine antifungal concentration (30 µg/disk) were
used as positive controls. After a 24 h incubation period, the plates were investigated for
antimicrobial activity. Minimum inhibitory concentration (MIC) was measured using a
broth microdilution assay as stated in CLSI document M27-Ed4 to determine the least con-
centration of AgNPs showing antifungal efficiency [41]. To determine MFC values, 10 µL
of MIC wells with no obvious candidal growth were streaked over MHA plates, which
were then incubated at 35 ± 2 ◦C for 48 h before being examined for candidal growth. MFC
was found to be the lowest concentration of AgNPs that showed no candidal growth [42].

2.5. Determination of Synergistic Activity of Biogenic AgNPs with Common Antifungal Drugs

The synergistic effectiveness of AgNPs in combination with regularly used antifun-
gal drugs against the concerned candidal strains was evaluated using the disk diffusion
method [43,44]. Antifungal standards of itraconazole, fluconazole, nystatin, terbinafine,
and clotrimazole were purchased from Sigma-Aldrich, MO, USA. Sterile filter paper disks
(8 mm in diameter) were loaded with 10 µg, 25 µg, 20 µg, 30 µg, and 10 µg of itraconazole,
fluconazole, nystatin, terbinafine, and clotrimazole as antifungal agents, respectively, while,
another group of filter paper disks was impregnated with the same concentration of antifun-
gal drugs plus the MIC concentration of AgNPs. In addition, filter paper disks impregnated
with methanol solvent only were used as negative controls. Finally, disks loaded with
AgNPs (2.5 µg/disk) were prepared to compare the antimicrobial efficiency with the other
groups. Seeded MHA plates were prepared as mentioned above, and then the loaded
filter paper disks were placed over the seeded plates. Consequently, each plate had four
filter paper disks impregnated with the following: biogenic AgNPs (MIC concentration),
antifungal drugs, AgNPs in combination with antifungal agents, and negative control disks.
The plates were incubated at 25 ◦C for 24 hr after being preserved for 2 hr in a refrigerator
to allow AgNPs diffusion. Finally, the plates were checked for inhibition zone formation,
and the zone diameters were recorded using a Vernier caliper. The synergistic efficiency
was measured by the equation B−A

A × 100, where A and B are the inhibition zone diameters
for antifungal and antifungal + silver nanoparticles, respectively [45,46].

2.6. Statistical Analysis

Statistical analysis of antifungal activity data was conducted using GraphPad Prism
5.0 (GraphPad Software, Inc., La Jolla, CA, USA) with a one-way analysis of variance and
Tukey’s test. The data were tabulated as the mean of triplicates ± standard error.
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3. Results and Discussion
3.1. UV–Vis Spectral Analysis

Figure 1A show the colorless AgNO3 solution which was reduced by the aqueous
extract of Punica granatum peels (Figure 1B). The observed change in color of AgNO3
solution from colorless to dark brown after the addition of pomegranate peel extract was a
preliminary sign of AgNPs formation, as seen in Figure 1C. The formation of AgNPs was
affirmed using UV-Vis analysis of the reduced silver nitrate solution. In this setting, broad
peak formation was detected at a wavelength of 396 nm, which indicated surface plasmon
resonance (SPR) of the biosynthesized AgNPs in the reaction mixture, as seen in Figure 2.
Our findings matched those of a previous study that found an absorption band at 396 nm,
confirming the biosynthesis of AgNPs utilizing grape juice extracts [47]. Nanoparticles’
size, aggregation, and the presence of stabilizing agents in the reaction medium were all
found to influence the intensity of SPR production [48].
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Figure 1. Change of color silver nitrate solution after addition of pomegranate peel extract confirming
the biosynthesis of silver nanoparticles. ((A) colorless silver nitrate solution; (B) pomegranate peel
aqueous extract; (C) the biosynthesized AgNPs).
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Figure 2. UV-vis spectrum of the biogenic AgNPs synthesized utilizing pomegranate peel extract.

3.2. TEM Characterization of the Biogenic Silver Nanoparticles

Transmission electron microscopy examination is the most accurate approach for deter-
mining the nanoparticle shape and average particle size of the bio-fabricated AgNPs [49]. A
TEM micrograph of the bio-formulated AgNPs revealed the biosynthesis of well dispersed
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and spherical silver nanoparticles, as seen in Figure 3. The biogenic AgNPs were found
to be in the range of 5 to 100 nm, as clearly shown in TEM micrographs. A particle size
distribution graph was constructed using TEM micrographs and indicated the formation
of AgNPs with an average size of 18.425 ± 1.12 nm, as seen in Figure 4. Furthermore,
due to the small estimated particle size, the particle size distribution verified the excellent
efficiency of AgNPs synthesis utilizing P. granatum aqueous peel extract. Our results were in
accordance with that of a previous study which demonstrated the bioformulation of AgNPs
of average particle size of 18 nm using aqueous Naringi crenulate leaf extract [50]. However,
the estimated average particle size was smaller than that of a recent study, which found
that Crataegus microphylla extract facilitated bioformulation of AgNPs with an average size
of 40 nm, as demonstrated by TEM micrographs [51].
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Figure 4. Particle size distribution histogram of AgNPs synthesized utilizing Punica granatum aqueous
peel extract.

3.3. FTIR Analysis of the Biogenic Silver Nanoparticles

The biogenic AgNPs were analyzed using FTIR to identify the different functional
groups that were responsible for the reduction and stability of the produced nanomaterials.
As shown in Figure 5, the FTIR spectrum showed the presence of many absorption peaks,
each of which was ascribed to a different functional group. The vibrational frequencies
of the biogenic AgNPs were found at 3434.45, 1695.50, 1626.46, 1448.63, 1339.07, 1112.58,
1056.97, 757.10, and 579.43 cm−1, corresponding to different functional groups of the bio-
genic AgNPs. The broad absorption peak at 3434.45 cm−1 was assigned for O-H stretching
vibration, which indicated the presence of alcoholic and phenolic groups. The hydroxyl
groups of phenolic and alcoholic groups were attached to the surface of silver nanopar-
ticles, acting as a capping agent to prevent nanoparticle agglomeration and enhance the
stability of the medium [52]. Furthermore, the absorption bands at 1695.50 and 1626.46
cm−1 suggested the presence of C=O and C=C stretching vibrations, respectively, corre-
sponding to conjugated alkenes and aldehydes, as seen in Table 1. Moreover, the bands at
1339.07, 1112.58 and 1056.97 cm−1 were assigned for the presence of proteins, while the
absorption bands at 1448.63 and 757.10 cm−1 indicated the presence of C-H bending, which
were assignable for the presence of aromatic groups. In this context, the identified amino
functional groups of proteins were previously found to act as stabilizing agents for silver
nanoparticles and prevent their agglomeration [53].
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Figure 5. FTIR spectrum of the biogenic silver nanoparticles synthesized utilizing Punica granatum
peel extract.

Table 1. Functional groups of silver nanoparticles fabricated using aqueous peel extract of Punica granatum.

No. Absorption Peak (cm−1) Appearance Functional Groups Molecular Motion

1 3434.45 Strong, broad Alcohols and phenols O-H stretching
2 1695.50 Medium Conjugated aldehyde C=O stretching
3 1626.46 Medium Conjugated alkene C=C stretching
4 1448.63 Medium Aromatic group C-H bending
5 1339.07 Medium Amine C-N stretching
6 1112.58 Medium Amine C-N stretching
7 1056.97 Medium Amine C-N stretching
8 757.71 Weak Aromatic group C-H bending
9 579.43 Strong, broad Halo compound C-Br stretching

3.4. Edx Analysis of the Biosynthesized AgNPs

The elemental analysis of the biogenic AgNPs was performed utilizing the Energy-
dispersive X-ray spectroscopy (Edx) technique. Edx analysis revealed that silver was the
main component, recording 60.92%, followed by carbon (16.91%), oxygen (15.19%), silicon
(3.83%), and chloride (2.43%). The elemental mapping showed robust signals at 3.0 keV
resulting from silver atoms confirming the successful formation of silver nanoparticles as
seen in Figure 6, and our findings were in accordance with that of previous reports [54,55].
The silver percentage was significantly higher than that found in a previous study, which
found that Gleichenia Pectinata facilitated the green synthesis of silver nanoparticles with an
elemental silver percentage of 16% based on Edx results [56].
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3.5. XRD Analysis of the Biogenic Silver Nanoparticles

XRD analysis was carried out in order to determine the crystalline nature of the syn-
thesized AgNPs. The crystalline analysis of the biogenic AgNPs indicated the formation of
five diffraction peaks at 2θ values of 28.0759, 38.1934, 44.2502, 65.3250, and 77.5620, as seen
in Figure 7. The formation of the crystalline structure of face-centered cubic was confirmed
by the Bragg reflections at 2θ degrees of 38.1934, 44.2502, 65.3250, and 77.5620, correspond-
ing to the planes (111), (200), (220), and (311) of silver crystals, respectively, as stated by
the Joint Committee on Powder Diffraction Standards (JCPDS), file No. 04-0783 [57]. The
unidentified peak at a 2θ value of 28.0759 may be attributed to the formation of silver
oxides, as reported by a previous study [58].
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Figure 7. XRD spectrum of silver nanoparticles biosynthesized using aqueous peel extract of
Punica granatum.

3.6. Zeta Potential Analysis of the Biosynthesized Silver Nanoparticles

Dynamic light scattering showed that the average hydrodynamic diameter of the
biosynthesized AgNPs was 49.95 nm with a polydispersity index of 0.640 (Figure 8). The es-
timated average size of AgNPs in an aqueous solution detected by dynamic light scattering
was higher than that detected by TEM analysis and could be assigned to the accumulation
of extra hydrate layers on the AgNPs’ surface. Zeta potential analysis is an important tech-
nique for the determination of the surface charge of silver nanoparticles which is a crucial
factor for their stability in an aqueous medium [59]. Accordingly, the negative charge on
the surface of the biosynthesized AgNPs revealed the electrostatic repulsion between them,
which plays an important role in stability [60,61]. The estimated zeta potential values of
the bio-inspired AgNPs were found to be −15.6 mV, as seen in Figure 9. Taken together,
the negative charge of the biogenic AgNPs could be assigned to the capping action of the
biomolecules of the pomegranate peel extract.
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3.7. Screening of Anticandidal Activity of the Biogenic AgNPs

The biogenic AgNPs were screened for their anticandidal activity against C. albicans,
C. glabrata, and C. tropicalis. The disc diffusion method was utilized to detect the suscep-
tibility of the concerned candidal strains to different concentrations of AgNPs. In this
regard, C. tropicalis was the most sensitive strain to the biosynthesized AgNPs formulated
using aqueous peel extract of Punica granatum at 50 and 100 µg/disc, with inhibitory zone
diameters of 20.67 ± 0.41 and 23.78 ± 0.63 mm, respectively, as seen in Table 2. Furthermore,
the biogenic AgNPs of concentrations 50 and 100 µg/disc exhibited anticandidal efficiency
against the C. glabrata strain with inhibitory zones of 13.89 ± 0.45 and 16.53 ± 0.21 mm,
respectively, which were significantly higher than that of the control (p ≤ 0.05). In con-
trast, a previous study revealed that the C. glabrata strain was the most sensitive to silver
nanoparticles greenly synthesized using curcumin, while the C. tropicalis strain revealed
the lowest sensitivity, with inhibitory zone diameters of 22.2 ± 0.8 and 16.4 ± 0.7 mm,
respectively [19]. Moreover, the biogenic AgNPs exhibited antifungal efficiency against
C. albicans, recording zone diameters of 18.13 ± 0.46 and 21.38 ± 0.58 mm, respectively.
Our results were consistant with that of a prior study that reported the antifungal efficiency
of AgNPs (60 µL) formulated using aqueous leaf extract of Alhagi graecorum, recording sup-
pressive zones of 14 and 21 mm against C. albicans and C. tropicalis strains, respectively [62].
In contrast, the aqueous extract of pomegranate peel exhibited no antifungal efficiency
against the concerned strains. This finding was in accordance with that of Endo et al., 2010
who reported that the crude extract of pomegranate peel showed no antifungal efficiency
against the C. albicans strain [63].

Table 2. Screening of antimicrobial efficiency of P. granatum silver nanoparticles against the concerned
candidal strains.

Concentration (µg/Disk)
Inhibition Zone Diameter (mm)

C. albicans C. glabrata C. tropicalis

AgNPs (50 µg/disk) 18.13 ± 0.46 13.89 ± 0.45 20.67 ± 0.41
AgNPs (100 µg/disk) 21.38 ± 0.58 16.53 ± 0.21 23.78 ± 0.63
APPE extract (100 µg/disk) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
Terbinafine (50 µg/disk) 28.53 ± 0.23 8.91 ± 0.35 34.63 ± 0.46
(-ve) control 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

APPE: Aqueous pomegranate peel extract.
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The minimum inhibitory concentration of the biogenic AgNPs was investigated against
C. tropicalis, which demonstrated the highest susceptibility to the biogenic AgNPs (Figure 8).
The MIC of biogenic AgNPs against the C. tropicalis strain was 2.5 µg/mL, while the MFC
value was found to be 5 µg/mL. Our results were consistant with that of a previous study
that revealed that the green synthesized AgNPs synthesized using Parrotiopsis jacquemon-
tiana (Decne) Rehder leaf extract revealed anti-candida activity recording MIC and MFC
values of 5 and 10 µg/mL, respectively [64]. Furthermore, a previous report demonstrated
that silver nanoparticles synthesized using aqueous extract of aerial parts of Pulicaria
vulgaris revealed antimycotic efficiency against C. glabrata and C. albicans, recording MIC
values ranging from 40 to 60 µg/mL [65]. Taken together, the low MIC value of the biosyn-
thesized AgNPs attained in our current study indicated their high efficiency as antifungal
agents against the etiological agents of candidiasis.

3.8. Synergistic Antifungal Activity of the Biogenic AgNPs with Commonly Used
Antifungal Agents

The Candida glabrata strain was found to be resistant to terbinafine, nystatin, and
itraconazole antifungal drugs. This result was consistant with that of a previous report
which investigated the resistance pattern of 22 clinical isolates of C. glabrata and reported
their resistance to nystatin and itraconazole drugs [66].

The MIC concentration of the biosynthesized AgNPs was investigated for their syn-
ergistic efficiency against the concerned candidal strains. A disc diffusion assay was
performed to detect the synergistic efficiency of biogenic AgNPs in combination with anti-
fungal agents against the tested 12andida strains. Silver nanoparticles in combination with
itraconazole antifungal agent showed the highest synergistic efficiency against C. glabrata,
C. albicans, and C. tropicalis, recording relative synergism percentages of 74.32%, 57.78, and
36.37%, respectively. Antimicrobial assays of AgNPs in combination with antifungal agents
clearly confirmed the potent synergistic action of the biogenic AgNPs with itraconazole
antifungal agent against C. albicans, C. tropicalis, and C. glabrata, as seen in Figures 10–12,
respectively. In addition, terbinafine and nystatin antifungal agents exhibited a high syner-
gistic efficiency against C. glabrata and C. albicans strains, recording synergism percentages
of 59.13 and 42.66%, respectively. Our findings matched those of a previous study, which
found that nystatin combined with AgNPs synthesized using Tagetes erecta aqueous flower
extract revealed synergistic antifungal action against the C. albicans strain [67]. Taken
together, the biosynthesized AgNPs showed promising synergistic activity with nystatin
antifungal agent against multidrug-resistant candidal strains such as C. glabrata. In contrast,
no interaction was observed between AgNPs and nystatin antifungal agent against the
C. glabrata strain, while antagonistic interaction was detected between AgNPs and flucona-
zole antifungal agent against the same strain, as clearly presented in Table 3. Moreover, a
slight synergism was detected between AgNPs and fluconazole antifungal drug against C.
albicans and C. tropicalis, recording synergism percentages of 16.51 and 16.31%, respectively,
while AgNPs revealed the least synergistic activity against C. glabrata recording the relative
percentage of 27.71%, as seen in Figure 13. Our results were consistant with that of a
previous study which revealed that the aqueous extract of Anastatica hierochuntica medi-
ated green biofabrication of biogenic AgNPs with synergistic efficiency with fluconazole
antifungal drug [68]. AgNPs were found to have sizes ranging from 1 to 100 nm, indicating
their potential utility as antibacterial and cytotoxic agents, as evidenced by their capacity
to easily bind to cell walls [69]. This attachment resulted in an adverse impact on cellular
permeability and respiration, causing cell death [70]. Furthermore, AgNPs were reported
to be able to also certainly enter cells to interact with vital molecules, including protein and
DNA, via their sulfur and phosphorus groups, respectively, resulting in disruption of these
biomolecules and induction of cell death [71].
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Table 3. Antimicrobial activity of biogenic silver nanoparticles in combination with common antifun-
gal agents.

Concentrations (µg/Disk) Inhibition Zone Diameter (mm)

C. albicans C. glabrata C. tropicalis S I R

CLO (10 µg) 24.68 ± 0.34 35.89 ± 0.32 23.89 ± 0.45 ≥20 12–19 <11
CLO (10 µg) + AgNPs (2.5 µg) 24.78 ± 0.15 27.91 ± 0.42 17.78 ± 0.36
FLU (25 µg) 45.31 ± 0.12 22.12 ± 0.17 43.56 ± 0.41 ≥22 15–21 <14
FLU (25 µg) + AgNPs (2.5 µg) 34.41 ± 0.16 19.34 ± 0.23 37.45 ± 0.26
ITZ (10 µg) 38.23 ± 0.31 8.01 ± 0.07 20.92 ± 0.31 ≥23 14–22 <13
ITZ (10 µg) + AgNPs (2.5 µg) 24.26 ± 0.25 14.12 ± 0.36 29.78 ± 0.20
NST (25 µg) 32.16 ± 0.47 0.00 ± 0.00 15.89 ± 0.36 ≥15 10–19 <10
NST (25 µg) + AgNPs (2.5 µg) 42.14 ± 0.36 0.00 ± 0.00 22.67 ± 0.24
TER (30 µg) 31.76 ± 0.51 8.21 ± 0.08 34.98 ± 0.27 ≥20 12–19 <11
TER (30 µg) + AgNPs (2.5 µg) 37.98 ± 0.43 12.89 ± 0.21 33.76 ± 0.13

S: susceptible, I: intermediate, R: resistant.
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Previous studies demonstrated the synergistic mode of action between AgNPs and
antifungal drugs demonstrating that chlorhexidine dingluconate and nystatin could disrupt
the candidal cell membranes, resulting in changes in cell permeability and the leakage of
cell constituents, whereas AgNPs could bind to sulphur-containing proteins, causing cell
membrane disruption, interrelating with phosphorus-containing compounds, and finally
disruption of the respiratory chain [28,72]. Another study investigated the synergistic
antifungal effectiveness between azole antifungal drugs such as fluconazole or voriconazole
and polyvinylpyrrolidone-coated AgNPs, finding that the PVP-coated AgNPs bonded to
the cellular membranes and suppressed the budding replication, resulting in synergistic
antifungal action with fluconazole or voriconazole in fungal cells [73]. Moreover, the
synergistic mode of action was demonstrated by another study between echinocandin
drugs as caspofungin or micafungin and chemically synthesized AgNPs, hypothesizing
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that echinocandin drugs suppressed the enzymatic action of β-1,3-d-glucan synthase that is
necessary for cell wall synthesis causing disruption of fungal cell walls, facilitating the entry
of Ag NPs into the fungal cells and disrupting purine metabolism and finally incidence
of cell death [74]. Collectively, we hypothesized that both itraconazole drugs and the
biogenic AgNPs demonstrated synergistic antifungal mode of action as both itraconazole
and AgNPs targeted different fungal cellular constituents. In this regard, itraconazole
interferes with the 14-α demethylase enzyme, which is required for the conversion of
lanosterol to ergosterol, an important component of the fungal cell membrane, resulting
in the inhibition of ergosterol synthesis, increasing the cellular permeability and finally
leakage of the fungal cellular constituents [75]. On the other hand, the biogenic AgNPs
bind to vital cellular constituents of candidal cells as DNA and protein via phosphorous
and sulfur groups resulting in the induction of fungal cell death [76].

4. Conclusions

The biogenic silver nanoparticles exhibited a potential antifungal activity against the
tested candidal strains. Candida tropicalis was the most sensitive strain to the biogenic
AgNPs synthesized using the aqueous peel extract of P. granatum. AgNPs showed the
highest synergistic efficiency with itraconazole drugs against different fungal pathogens.
The potential synergistic efficiency of the biogenic AgNPs with antifungal agents such as
itraconazole, terbinafine, and clotrimazole against C. glabrata as a multi-drug resistant strain
confirmed the potential usage of the biosynthesized silver nanomaterials in combination
with these agents in formulation of highly effective antifungal agents against multidrug-
resistant strains.
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